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Abstract: The starting solutions corresponding to the motions of a Newtonian fluid, between two infinite circular cylinders, are deter-
mined by means of the Laplace and finite Hankel transforms. The general case, when both cylinders oscillate along their common axis
and around the same axis, is considered. The solutions that have been obtained are presented as sum of the steady-state and transient
solutions and satisfy all imposed initial and boundary conditions. Finally, the resulting shear stresses are also determined. The time
required to attain the steady-state has been obtained by means of the graphical illustrations.
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1. Introduction

The study on the flow of a viscous fluid in an annular re-
gion between two infinitely long coaxial circular cylinders
is not only of fundamental theoretical interest but it also
occurs in many applied problems. The flow between ro-
tating cylinders, starting from rest, has applications in the
food industry. The starting solutions for the motion of the
second grade fluids due to longitudinal and torsional oscil-
lations of a circular cylinder have been established in [1].
Other recent results regarding pulsatile or helical flows of
non-Newtonian fluids have been obtained by Dapra and
Scarpi [2] and Fetecau et al [3]. Vieru et al [4], by means
of the Laplace transform and Cauchy’s residue theorem,
have determined the starting solutions for the oscillating
motion of a Maxwell fluid.

The corresponding solutions for a Newtonian fluid, per-
forming the same motion, are obtained from the general
solutions as a particular case. Other interesting studies on
the flow in pipe-like domains are in [5-10]. The stationary
and nonstationary rotating Navier-Stokes equations with
mixed boundary conditions are investigated in [11].

The aim of this paper is to study the flow of a Newto-
nian fluid in an annular pipe. More exactly, by means of
the Laplace and finite Hankel transforms we establish the
starting solutions corresponding to the motion of a New-

tonian fluid between two infinite concentric circular cylin-
ders. For completeness we consider the general case when
both cylinders are oscillating. These solutions are presented
as sum of the steady-state and transient solutions and, for
high values of time, they tend to the steady-state solutions
which are periodic in time. The solutions obtained in this
paper can be used to make a comparison between flows
of Newtonian and non-Newtonian fluids. The similar solu-
tions obtained in [1] and [4] can be recovered as particular
cases of the solutions that have been obtained here.

Finally, the profiles of velocities w(r, t) and u(r, t) are
plotted as function on the radial coordinate for different
values of time t and radii R1 and R2. The time required
to attain the steady-state have been obtained by using the
graphical illustrations of the transient solutions wt(r, t)
and ut(r, t).

2. Statement of the problem

Consider that a Newtonian fluid at rest is situated in the
annular region between two infinite straight circular cylin-
ders of radii R1 and R2(> R1). At time zero, both cylin-
ders begin to oscillate along their common axis (r = 0)
and around the same axis.

∗ Corresponding author: e-mail: imransmsrazi@gmail.com

c© 2012 NSP
Natural Sciences Publishing Cor.



484 Imran Siddique et al : Unsteady flow of a viscous fluid between two oscillating cylinders

Due to the shear, the fluid is gradually moved, and its
velocity is of the form

v = v(r, t) = ω(r, t)eθ + u(r, t)ez, (1)

where eθ and ez denote the unit vectors along the θ and z
directions of the cylindrical coordinate system r, θ and z.

The governing equations, neglecting the body forces
and the pressure gradients are [3, 4]

∂ω(r, t)
∂t

= ν
( ∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
ω(r, t), (2)

∂u(r, t)
∂t

= ν
( ∂2

∂r2
+

1
r

∂

∂r

)
u(r, t), (3)

τ1(r, t) = μ
( ∂

∂r
− 1

r

)
ω(r, t), (4)

τ2(r, t) = μ
∂u(r, t)

∂r
, (5)

where μ is the constant shear viscosity, ν = μ/ρ is the
kinematic viscosity of the fluid, ρ is the constant density
of the fluid, τ1(r, t) = Srθ(r, t) and τ2(r, t) = Srz(r, t)
are the shear stresses which are different from zero.

The appropriate initial and boundary conditions are

ω(r, 0) = 0, u(r, 0) = 0, r ∈ [R1, R2], (6)

ω(R1, t)=Ω1 sin(α1t), ω(R2, t)=Ω2 sin(α2t), t >0, (7)

u(R1, t)=U1 sin(β1t), u(R2, t)=U2 sin(β2t), t > 0, (8)

where α1, α2, β1, β2 are the frequencies of the velocity
of cylinders.
The uncoupled Eqs. (2), (3), with the initial and bound-
ary conditions (6)–(8) can be solved in general by several
methods. We shall use the Laplace and finite Hankel trans-
forms [12, 13].
The boundary conditions can be considered in the more
general forms

ω(Ri, t) = Ai sin(αit) + Bi cos(βit),

u(Ri, t) = Ci sin(γit) + Di cos(δit), i = 1, 2. (9)

In this paper we solve the problem (2)–(8). The problem
(2)–(6) and (9) can be solved in the same manner which
will be presented as follows.

3. Calculation of the velocity field

In order to determine the exact solutions of the problem
(2), (3) with conditions (6)–(8), describing the motion of
the fluid at low and high values of time after the start of
the boundaries, the Laplace and finite Hankel transform
method is used.
Applying the Laplace transform [12, 14] to Eqs. (2) and
(3) and using the initial and boundary conditions (6)–(8)
we obtain

qω̄(r, q) = ν

(
∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
ω̄(r, q), (10)

qū(r, q) = ν

(
∂2

∂r2
+

1
r

∂

∂r

)
ū(r, q), (11)

ω̄(R1, q) =
α1Ω1

q2 + α2
1

, ω̄(R2, q) =
α2Ω2

q2 + α2
2

, (12)

ū(R1, q) =
β1U1

q2 + β2
1

, ū(R2, q) =
β2U2

q2 + β2
2

, (13)

where ω̄(r, q) =
t∫
0

ω(r, t)e−qtdt and

ū(r, q) =
t∫
0

u(r, t)e−qtdt, are the Laplace transforms of

the functions ω(r, t) and u(r, t), respectively.
In the following, let us denote by [12]

ω̄H(r1n, q) =
∫ R2

R1

rω̄(r, q)B1(rr1n)dr, (14)

the finite Hankel transform of ω̄(r, q), where r1n, n =
1, 2, ..., are the positive roots of the transcendental equa-
tion B1(R2r) = 0 and

B1(rr1n)=J1(rr1n)Y1(R1r1n)−J1(R1r1n)Y1(rr1n),(15)

respectively,

ūH(r0n, q) =
∫ R2

R1

rū(r, q)B0(rr0n)dr, (16)

the finite Hankel transform of ū(r, q), where r0n, n =
1, 2, ... , are the positive roots of the transcendental equa-
tion B0(R2r) = 0 and

B0(rr0n)=J0(rr0n)Y0(R1r0n)−J0(R1r0n)Y0(rr0n).(17)

In the above equations, Jν(·) and Yν(·) are the Bessel func-
tions of order ν of the first and second kind [15].
Integrating by parts and using the following formulae [15]
d

dr
J0[u(r)] = −J1[u(r)]u′(r),

d

dr
J1[u(r)] =

{
J0[u(r)] − 1

u(r)
J1[u(r)]

}
u′(r), (18)

Jν+1(z)Yν(z) − Jν(z)Yν+1(z) =
2
πz

,

we obtain
R2∫

R1

r

(
∂2

∂r2
+

1
r

∂

∂r
− 1

r2

)
ω̄(r, q)B1(rr1n)dr

= − 2
π

ω̄(R1, q) +
2J1(R1r1n)
πJ1(R2r1n)

ω̄(R2, q)

−r2
1nω̄H(r1n, q), (19)

R2∫
R1

r

(
∂2

∂r2
+

1
r

∂

∂r

)
ū(r, q)B0(rr0n)dr

= − 2
π

ū(R1, q) +
2J0(R1r0n)
πJ0(R2r0n)

ū(R2, q)

−r2
0nūH(r0n, q). (20)
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Applying the finite Hankel transform to Eqs. (10) and (11)
and using the boundary conditions (12) and (13) and Eqs.
(19) and (20) we find

ω̄H(r1n, q) =
(
− 2ν

π

α1Ω1

q2 + α2
1

+
2ν

π

J1(R1r1n)
J1(R2r1n)

α2Ω2

q2 + α2
2

)
1

q + νr2
1n

, (21)

and

ūH(r0n, q) =
(
− 2ν

π

β1U1

q2 + β2
1

+
2ν

π

J0(R1r0n)
J0(R2r0n)

β2U2

q2 + β2
2

)
1

q + νr2
0n

. (22)

Now, for a more suitable presentation of the final results,
we rewrite Eqs. (21) and (22) in the equivalent forms

ω̄H(r1n, q) = − 2Ω1

πr2
1n

α1

q2 + α2
1

+
2Ω2J1(R1r1n)
πr2

1nJ1(R2r1n)
α2

q2 + α2
2

+
[
2α1Ω1

πr2
1n

q

q2 + α2
1

−2α2Ω2J1(R1r1n)
πr2

1nJ1(R2r1n)
q

q2 + α2
2

]
1

q + νr2
1n

, (23)

respectively,

ūH(r0n, q) = − 2U1

πr2
0n

β1

q2 + β2
1

+
2U2J0(R1r0n)
πr2

0nJ0(R2r0n)
β2

q2 + β2
2

+
[
2β1U1

πr2
0n

q

q2 + β2
1

−2β2U2J0(R1r0n)
πr2

0nJ0(R2r0n)
q

q2 + β2
2

]
× 1

q + νr2
0n

. (24)

By a straightforward calculus we obtain the following function-
finite Hankel transform pairs:

f(r) =
R1Ω1(R2

2 − r2)
r(R2

2 − R2
1)

,

fH(r1n) =
∫ R2

R1

rf(r)B1(rr1n)dr = − 2Ω1

πr2
1n

,

g(r) =
R2Ω2(r2 − R2

1)
r(R2

2 − R2
1)

,

gH(r1n) =
∫ R2

R1

rg(r)B1(rr1n)dr =
2Ω2J1(R1r1n)
πr2

1nJ1(R2r1n)
,

h(r) =
U1

ln(R2/R1)
ln(R2/r), (25)

hH(r0n) =
∫ R2

R1

rh(r)B0(rr0n)dr = − 2U1

πr2
0n

,

k(r) =
U2

ln(R2/R1)
ln(r/R1),

kH(r0n) =
∫ R2

R1

rk(r)B0(rr0n)dr =
2U2J0(R1r0n)
πr2

0nJ0(R2r0n)
.

Generally, for a finite Hankel transform
aH(rin) =

∫ R2

R1
ra(r)Bi(rrin)dr, i = 0, 1,

the inverse Hankel transform is [12]

a(r) =
π2

2

∞∑
n=1

r2
inBi(rrin)J2

i (R2rin)
J2

i (R1rin) − J2
i (R2rin)

aH(rin), (26)

i = 0, 1.

Applying the inverse Hankel transform to Eqs. (23)
and (24) and using (25) and (26) we obtain the Laplace
transforms of the functions ω(r, t) and u(r, t) in the fol-
lowing forms

ω̄(r, q) =
R1Ω1(R2

2 − r2)
r(R2

2 − R2
1)

α1

q2 + α2
1

+
R2Ω2(r2 − R2

1)
r(R2

2 − R2
1)

α2

q2 + α2
2

+π

∞∑
n=1

J2
1 (R2r1n)B1(rr1n)

J2
1 (R1r1n) − J2

1 (R2r1n)
−

[
α1Ω1q

q2 + α2
1

−α2Ω2J1(R1r1n)
J1(R2r1n)

q

q2 + α2
2

]
1

q + νr2
1n

,

respectively,

ū(r, q) =
U1ln(R2/r)
ln(R2/R1)

β1

q2 + β2
1

+
U2ln(r/R1)
ln(R2/R1)

β2

q2 + β2
2

+π

∞∑
n=1

J2
0 (R2r0n)B0(rr0n)

J2
0 (R1r0n) − J2

0 (R2r0n)

[
β1U1q

q2 + β2
1

−β2U2J0(R1r0n)
J0(R2r0n)

q

q2 + β2
2

]
1

q + νr2
0n

. (27)

Applying the inverse Laplace transform to Eqs. (27) and
(28) and using the convolution theorem, we find the veloc-
ity fields

ω(r, t) =
R1Ω1(R2

2 − r2)
r(R2

2 − R2
1)

sin(α1t)

+
R2Ω2(r2 − R2

1)
r(R2

2 − R2
1)

sin(α2t)

+π

∞∑
n=1

J2
1 (R2r1n)B1(rr1n)

J2
1 (R1r1n) − J2

1 (R2r1n)[
α1Ω1

∫ t

0

cos α1(t − s)e−νsr2
1nds −

−α2Ω2
J1(R1r1n)
J1(R2r1n)

∫ t

0

cos α2(t − s)e−νsr2
1nds

]
,
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and

u(r, t) =
U1ln(R2/r)
ln(R2/R1)

sin(β1t)

U2ln(r/R1)
ln(R2/R1)

sin(β2t)

+π
∞∑

n=1

J2
0 (R2r0n)B0(rr0n)

J2
0 (R1r0n) − J2

0 (R2r0n)[
β1U1

∫ t

0

cos β1(t − s)e−νsr2
0nds

−β2U2
J0(R1r0n)
J0(R2r0n)

∫ t

0

cos β2(t − s)e−νsr2
0nds

]
. (28)

Using the following result∫ t

0

cos a(t − s)e−bsds (29)

=
1

a2 + b2
(a sin(at) + b cos(at) − be−bt),

we can write the functions ω(r, t) and u(r, t) under the
forms

ω(r, t) = ωs(r, t) + ωt(r, t), (30)

where

ωs(r, t) =
R1Ω1(R2

2 − r2)
r(R2

2 − R2
1)

sin(α1t)

+
R2Ω2(r2 − R2

1)
r(R2

2 − R2
1)

sin(α2t)

+π

∞∑
n=1

J2
1 (R2r1n)B1(rr1n)

J2
1 (R1r1n) − J2

1 (R2r1n)[
α1Ω1

α2
1 + (νr2

1n)2
(α1 sin(α1t) + νr2

1n cos(α1t))

− α2Ω2

α2
2 + (νr2

1n)2
J1(R1r1n)
J1(R2r1n)

(α2 sin(α2t) + νr2
1n cos(α2t))

]
,

ωt(r, t)=−νπ

∞∑
n=1

r2
1nJ2

1 (R2r1n)B1(rr1n)
J2

1 (R1r1n) − J2
1 (R2r1n)[

α1Ω1

α2
1 + (νr2

1n)2
− α2Ω2

α2
2 + (νr2

1n)2
J1(R1r1n)
J1(R2r1n)

]

e−νtr2
1n , (31)

respectively,

u(r, t) = us(r, t) + ut(r, t), (32)

where

us(r, t) =
U1ln(R2/r)
ln(R2/R1)

sin(β1t)

+
U2ln(r/R1)
ln(R2/R1)

sin(β2t)

+π
∞∑

n=1

J2
0 (R2r0n)B0(rr0n)

J2
0 (R1r0n) − J2

0 (R2r0n)[
β1U1

β2
1 + (νr2

0n)2
(β1 sin(β1t) + νr2

0n cos(β1t))

− β2U2

β2
2 + (νr2

0n)2
J0(R1r0n)
J0(R2r0n)

(β2 sin(β2t) + νr2
0n cos(β2t))

]
.

ut(r, t) = −νπ
∞∑

n=1

r2
0nJ2

0 (R2r0n)B0(rr0n)
J2

0 (R1r0n) − J2
0 (R2r0n)[

β1U1

β2
1 + (νr2

0n)2
− β2U2

β2
2 + (νr2

0n)2
J0(R1r0n)
J0(R2r0n)

]
(33)

e−νtr2
0n .

The starting solutions (32) and (35), presented as the sum

 
 
 
 
Figure 1. The variation of ω and ωt with r for different values of t and R1=0.04, R2=0.06 

of the steady-state solutions ωs(r, t), us(r, t) and the tran-
sient solutions ωt(r, t), ut(r, t) satisfy both the partial dif-
ferential equations (2) and (3) and all imposed initial and
boundary conditions. They describe the motion of the fluid
for any time after its initiation. After the time in which
the transients disappear, the starting solutions tend to the
steady-state solutions (33) and (36), which are periodic in
time.

4. Calculation of the shear stress

The shear stresses τ1(r, t) = Srθ(r, t) and τ2(r, t) = Srz(r, t)
can be determined from (4), (5) and (32)–(37). After a
straightforward calculation we find

τ1(r, t) = τ1s(r, t) + τ1t(r, t), (34)
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Figure 2. The variation of ω and ωt with r for different values of t and R1=0.4, R2=0.6 

 
 
 
 

Figure 3. The variation of ω and ωt with r for different values of t and R1=0.08, R2=0.8 

where

τ1s(r, t) = − 2μR1R
2
2Ω1

r2(R2
2 − R2

1)
sin(α1t)

+
2μR2

1R2Ω2

r2(R2
2 − R2

1)
sin(α2t)

−πμ
∞∑

n=1

r1nJ2
1 (R2r1n)B21(rr1n)

J2
1 (R1r1n) − J2

1 (R2r1n)[
α1Ω1

α2
1 + (νr2

1n)2
(α1 sin(α1t) + νr2

1n cos(α1t))

− α2Ω2

α2
2 + (νr2

1n)2
J1(R1r1n)
J1(R2r1n)

(α2 sin(α2t) + νr2
1n cos(α2t))

]
, (35)

τ1t(r, t) = νπμ
∞∑

n=1

r3
1nJ2

1 (R2r1n)B21(rr1n)
J2

1 (R1r1n) − J2
1 (R2r1n)[

α1Ω1

α2
1 + (νr2

1n)2
− α2Ω2

α2
2 + (νr2

1n)2
J1(R1r1n)
J1(R2r1n)

]

e−νtr2
1n ,

and

B21(rr1n) = J2(rr1n)Y1(R1r1n)
−J1(R1r1n)Y2(rr1n), (36)

respectively,

τ2(r, t) = τ2s(r, t) + τ2t(r, t), (37)

where

τ2s(r, t) = − μU1

rln(R2/R1)
sin(β1t)

+
μU2

rln(R2/R1)
sin(β2t)

−πμ

∞∑
n=1

r0nJ2
0 (R2r0n)B10(rr0n)

J2
0 (R1r0n) − J2

0 (R2r0n)[
β1U1

β2
1 + (νr2

0n)2
(β1 sin(β1t) + νr2

0n cos(β1t))

− β2U2

β2
2 + (νr2

0n)2
J0(R1r0n)
J0(R2r0n)

(β2 sin(β2t) + νr2
0n cos(β2t))

]
. (38)

τ2t(r, t) = νπμ

∞∑
n=1

r3
0nJ2

0 (R2r0n)B10(rr0n)
J2

0 (R1r0n) − J2
0 (R2r0n)[

β1U1

β2
1 + (νr2

0n)2
− β2U2

β2
2 + (νr2

0n)2
J0(R1r0n)
J0(R2r0n)

]

e−νtr2
0n . (39)

and

B10(rr0n) = J1(rr0n)Y0(R1r0n)
−J0(R1r0n)Y1(rr0n). (40)

5. Conclusion

The main purpose of this paper is to provide exact solu-
tions for the velocity field v(r, t) = ω(r, t)eθ + u(r, t)ez

and the shear stresses τ1 = Srθ(r, t) and τ2 = Srz(r, t),
corresponding to the non-steady flow of a Newtonian fluid
between two circular cylinders. The motion is produced
by the longitudinal and torsional oscillations of both cylin-
ders. These solutions are obtained by means of the Laplace
and finite Hankel transforms and are presented as a sum of
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Figure 4. The variation of u and ut with r for different values of t and R1=0.04, R2=0.06 

 
 
 
 

Figure 5. The variation of u and ut with r for different values of t and R1=0.4, R2=0.6 

the steady-state and transient solutions. They describe the
motion of the fluid for low and high values of the time. For
high values of t, when the transient solutions disappear, the
motion is described in the corresponding steady-state solu-
tions, which are periodic in time. Straightforward compu-
tation shows that w(r, t) and u(r, t) given by (29) and (30)
satisfy both the associate partial differential equations (2)
and (3) and all imposed initial and boundary conditions.
Finally, in order to reveal some relevant physical aspects
of the obtained results, the diagrams of the velocity fields

 
 
 
 

Figure 6. The variation of u and ut with r for different values of t and R1=0.08, R2=0.8 

w(r, t) and u(r, t) given by Eqs. (32–34) and (35–37) have
been drawn against r for different values of t. In order to
determine the time required to attain the steady-state the
diagrams of the transient velocities wt(r, t) and ut(r, t)
given by Eqs. (34) and (37) have been drawn against for
different values of t. From these diagrams we can deter-
mine those values of t after which this transient compo-
nents of the velocity can be neglected.

Figs.1–3 show the influence of time and radii R1, R2

on the circumferential velocity w(r, t) and the transient
circumferential velocity wt(r, t). Figs. 4–6 show the in-
fluence of time and radii R1, R2 on the longitudinal veloc-
ity u(r, t) and the transient longitudinal velocity ut(r, t).
From these figures it is clearly seen that the time required
to attain the steady-state have lower values if the radii R1

and R2 have low values. This time increases if R1 or R2

increases.
The graphics have been plotted for Ω1 = 5, Ω2 = 2,

U1 = 6, U2 = 4, μ = 0.915 ∗ 10−3 (the distilled water at
24◦), α1 = 2, α2 = 1, β1 = 2, β1 = 1, ρ = 1000.

The units of the parameters in Figs.1–6 are taken from
IS units and the roots r0n and r1n have been approximated
with nπ

R2−R1
[15].
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