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Abstract: Various integral transforms have been extended to varipases of Boehmians. In this article, we discuss the Steltje
transform in a class of Boehmians. The presented transfoasepves many properties of the classical transform in plaees of
Boehmians.
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1 Introduction generated by the sequence of semino(tm$®))y which
makes., (.#) a locally convex Hausdorff topological

Let p(p # 0) be a nonnegative complex number. Then, for vector spacey (.#) ¢ . (.#),T(#) is the Schwartz

all T in the plant cut, the classical Stieltjes transform is space of test functions of compact suppditie topology

defined by[10] of T(.#) is, indeed, stronger than that induced Dh¢)
o ® o(x) by.7, (.#), and th/e restriction of any element.&f, (.¥)
& 0(1) = P (1) to 1(¥) is in T (#), the dual space of Schwartz
0o (T+X)

distributions.
If p>0, p(x)is alocally integrable on”,0 < x < o, the ~ For a non-negative, # 0,(t+x) P € .4 (#),Rep > a,

integral (1) converges, and the limitg(x+0) exist, then  the distributional ~Stielties transform & (1) of
the transform inversion formula is recovered from (1) as @€ 7, (7) is therefore defined by

H(@(x+0)+9(x—0)) o [ax S, (x+ P T E (1) ar.

= di A .

et £40(1) = (09, (1+X) "), (3)
wherecyy is a contour in the plane cut fromx—in to
x-+in. In [18, Section 4.2 Zemanian has extended the Where,Rep> a, 7 belongs to the complex plane cut along
Stielties transform to the linear space///'ayb, of the negative real axis including the origion.

generalized functions, which are distributions in the sens .- di /
of Zemanian, when assigned the weak topology. In aTheorem 1(Analyt|C|ty Offs‘) Letg € 7q (), Rep>

different perfomance, Pandy ifi0] has extended the a; then E3 (1) is differentiable and
theory of Stieltjes transform to the dual spaeg (.#), _
Su (&) of all infinitely smooth complex-valued D‘;fg'q;(r) = <qo(x),(—1)k(p)k(r+x)*<p+k>>, (4)

functionsg(x) over.# where

(@) = sup (1+x)° where(p), = p(p+1)...(p+k—1).

0<x< 0

X"D'Qco(X)] <o, (2
On a more general spaces than distributions,
Roopkumar in[15], has discussed some variant of the
. . Stieltjes transform on certain space of Boehmians. The
fixed real numberDy = — . The topology ot#a (#) is  Stieltjes transform of a Boehmian is a usual Boehmian

for any fixedk(k=0,1,2,...) and a being arbitrary but
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and is well defined, consistent with the distributional In what follows, we construct two spaces of
Stieltjes transform and has all desired properties. In thisBoehmians by aid of the equatio( and(6). The space
paper, we discuss the a generalization of Stieltjesobtained from(5) is denoted by
transform in[15] and obtain some of its properties.

This paper is organized as follows: the Stieltjes b((a,Y),(1,Y),4,.7),
transform is reviewed in Section 1. Section 2 presents th

general construction of Boehmian spaces. The Boehmi
transform and its properties are obtained in Section 4.

More about Stieltjies transforms is available in
[8,9,10,13,14,15.

2 Stieltjes Transforms for Boehmians

One of the most youngest generalizations of functionsp((-a, A), (T,

and more particularly of distributions, is the theory of

Qvhere is the collection of delta sequandgs) satisfying

a
spaces are described in Section 3. The extended St|eltjeﬂs1e§mr}§mes

On(X)ax=1;

Ay (X)) <M,M €R,M > 0;

Az :lim suppdn (X) C [an, bn], bn,an — 0 asn — o;
Ay (m(X) eT(S).

The space obtained frof®) and (6) will be denoted

by
b((SLa, L), (T,Y),A,7).

initiate the construction of
Y),A,.7) since the construction of the
space b((S,Y),(1,Y),A,.#) follows from similar

Let us

Boehmians. The idea of construction of Boehmians wagechnique.

initiated by the concept of regular operators introduced by.
Boehmel6]. Regular operators form a subalgebra of the

field of Mikusinski operators and they include only such

functions whose support is bounded from the left. In a
concrete case, the space of Boehmians contains all regular
operators, all distributions and some objects which are

neither operators nor distributions.
The construction of Boehmians is similar to the

construction of the field of quotients and in some cases, it Es oY W)
gives just the field of quotients. On the other hand, the
construction is possible where there are zero divisors

such as the spadg (the space of continous functions)
with the pointwise additions and convolutioBee; for
further construction,1—7,15—17.

Before we proceed we introduce the following
definition.

Definition 2 (Main Definition) Let ¢ andw be integrable
functions defined o0, «). Betweeng and w define
the mappingk by the integral

(A w)( qo

) dy. )

Definition 3 Let ¢ and w be integrable functions defined
on (0,0). The Mellin type convolution product
betweenp andw is given by[18] as

/ (0
The producty satisfies the following propertig$3]

M (ey)t) =WYoo );
(i) ((@+Y) Y ) (t) = (@Y ) () + (Y Y ) (1);

(@Y w)( ) dy. (6)

(i) (apYy ) (t) = a(PY ) (t),a is a complex
number ;
V) (@Y )Y ¢) (1) = (@Y (¥ Y ) (1).

We refer to[18] for more details.

Theorem 4Let @, € .74 (.#). Then, we have

Eovw@=(Eero)®.
Let @,y be arbitrary in the space’y (.#); then, by
using(1), we write
@ (xy 1
o=/ T L

By change of variablesy ! =

0=, oo

By using Fubini's theorem, we obtain

&, dx= ydE, we get that

ES QY w)( ———pdydé.

r+sw

al 2 w(y) /°° 1
Yw)(1)= | —== ————d&dy.
¢s (pY w) (1) o Y o w(E)(Ty_lﬁ_E)p &ay.
8
Hence, Equation 8 can be written as
w _
ovan- [ 2Pedoy oy
This completes the proof of the theorem.
Theorem5Letp e %, () andg, Y € T(.¥). Then, we
have
(@A (YY) (1) =((@rd) L) (1), (9)
forallte 7.
Letpe S () andy, ¢ € T () be arbitrary. Then

using(5) and(6) and Fubini’'s theorem yield
0= (/ &
—/ O

(@A (YY)

)dy

t)dtdy. (1)
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Applying change of variables if10) and rearranging Theorem9 Let ¢ € Y () and (&) € A4; then

imply
(QA (¥ ) (1) = Jo~ Y %ww)dv(vﬁ.)
By (6), Equation 11 is written as
) -1
r@voym= [ POy o

Once again, by6) we complete the proof of the theorem.

Theorem 6Letgpc %, (F); thenfgjqoe u (F).

Detailed proofis as follows : Lep € .7, (.#) , then by
using(1) and(2) we get
| Pt

W (@) <sup 1+r

Hence, computations yield

“ Jotor

B K)
yp( ) ’ | 0 ‘(T+X)(p+k>’

W () < sup 1+r

(T~ (PR ‘dx
|@(x)]dx,

where(p), =p(p+1)...(p+k—1) < p(p+kK).

Hence, the hypothesis thgte .7, (.#) implies that
W (@) < oo for any fixedk, k= 0,1,2,... .

This complete the proof of the theorem.

Let us follow the abstract construction of

b((S, M), (T,Y),A,7).

Theorem7Let p € /4 (#) and¢ € T(.#). Then,p A
¢ € Su(I).
Proof For ¢ € .74 (.#) and¢ € T(.#) and limsupp¢ C

(a,b),0 < a< b. Then, we have
sup(1+1)7 [TD¥ (1 ¢) ()| = sup/ (141)° ka‘P ‘\cp )|dy
s

ie. SALWWW

whereA is certain positive constant.

Hence, the fact thap € T (.#) completes the proof of
the theorem.

Theorem 8 Let @, @ € S (F) and @, € T().
Then, we have

(1) (@A @) (y)= (@A @)(y).

(2) (@ + @) A 1) (Y) =
(@A 01) (Y)+ (@2 A §1) (y).

(3) Letgh — @ in S (F) andg € T(F); thengh A
¢ — @A ¢ asn— oo,

Proof of Equations 2 and 3 follows from simple
integration.

Hence the theorem is completely proved.

b((&ﬂa,A),(r,

The operation A can be

(P A %) (T) =

@ (1) asn — oo.

Proof Let the hypothesis of the theorem satisfies for some

@and(d,) . Then, for a compact subsétof .7 and by
using the property; of delta sequences we have that

W (A& —0) = Slylp(1+ )7 [T (9 4 80— 9) (7)]

;pu+r>[:1ﬁot<9%%jl—¢u0‘mmwMy
—1
Since the mappinch(y) = % —@(1) Is a

member of ¥, (&) for every choice ofy € .7 it
follows that

bn
W (948 9) < w(h) | " lan(y)]ay.
By the propertyl, of delta sequences we write

Ve (@A S — @) <My () (bn—an)
whereM in certain positive constant.

Hence, the propertg; of delta sequences implies

PLH—@0—0

asn — o in the topology of#; ().

This completes the proof of the theorem.
Thus, the spach ((-%4, A),(T,Y),A,.#) describes a

Boehmian space.

We define the sum and multiplication by a scalar in
Y),A,7)as:

[%] " [2—] - {Wé:;rgq;n)\ 50]

and

[8)-12]

p is a complex number.

Between¥, () andb ((#4, A),(T,Y),A,.7) there

is a canonical embedding expressed as

A Sn
on

X
X—

asn — oo,

extended to

b((FLa, L), (T,Y),A,.9)x S (F) by
Xn Xn )\t
— At= .
on on
Convergence ib((“x, L), (T,Y),A,.#) is defined
as follows :
0 convergence A sequence

(Bn) € b((:-F4, L),(T,Y),A,.7) is said to bed
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convergentto 3 € b((S,, L), (T,Y),A,.7) if there (¢n),(dn) € A such thatB; = [ﬂ] andf; = [ﬁ] .
can be a delta sequen@®) such that . ¢n on
Therefore, we write
A A Fa (I Y K
(BaAdn),(BAOn) € Sa(S) Ege(BlYﬁl):Ege< ¢h Y Kn )
g $n Y On
an - al
. &q (Y Kn)
Bn A &) — (B A& ie. = |2 T
(Bn k&) = ( ) v,
asn— oo, in Sy (&),vk,ne N. _—
A convergence A sequence ie &g Akn
(Bn) € b((Fa,A),(T,Y),A,.#) is said to beA e | onY o
convergentto 8 € b((-#a, A),(T,Y),A,.#) if there -
can be adn) € A such that , R [Kn:|
i.e. = A=
5e a(F) n on
—B)Abne ; : )
(Bn=P) “ This completes the proof of the theorem.
vneN, and(By—B) A & — 0asn — o in .Fy (7). Theorem 12The transfordg defines a linear mapping
from b(S,Y),(T,Y),A,7) into
Similary, the spac®((.%4,Y),(T,Y),4,.#) can be b((La,£),(1,Y),4,.7).
established. Proof is straightforward from the definitions.
Addition, scalar multiplications and" in the space  Theorem 13 Let ¢ € b((L.Y),(1,Y),4,.7) and
b((“a,Y),(T,Y),A,.7)is defined as : n @l o
0 € 1(.#). Then we have
[@%{@}_ @Y $n+0nY & g
n ¢n B 5nY¢n Qe<[%]Y5): 1 )
& on on '
and
0 [@] _ [%} Proof By applying (12) for
%) Lon [@] € b((Fa,Y),(1,Y),4,7) and & € 1(.7)
and %
X X Yt yields
&' e a
. . g Hlyvs) = &g (Y 9)
p is a complex number, respectively. s\ |5, - 5

By Theorem 3 and once again b§2) we get

(3] o) 5[5

This completes the proof of the theorem.

3 £ Transform of Boehmians

Definition 10 Let [%] € b(Ha,Y),(1,Y),4,.9).

Then, we define the extension bﬂ as
Theorem 14 The transform X is consistent with

e [m] _[Ea 1 £3 () Sa(S) = Sa(I).

151 | oy (12)  proof For every @ € (), let
B eb(H,Y),(T,Y),A,#) be its representative,

in the spacd (A, L), (T,Y),A,.7). then we have8 = [% ,Yne N, (dn) € A. For all

Definition 10 is clearly well-defined by Theorem 6 ne N its clear that(d,) is independent from the

Defailed proof is omitted. representative

Let us now derive some properties&’. We also have

Theorem 11Let B1,B; € b((Z4,Y),(T,Y),A,.#) then e e([OYE&] Eij(mén)}f{fiwén}f & ga
&S (BLY B1) = &g B A B SRS <[ o Di{ S N 7[5ﬂpfg¢
Proof Assume the requirements of the theorem are
satisfied for somg;, 3, € b((S,Y),(T,Y),A,.7), which is the representative 6@ @in the space/y ().
then there are (@),(kn) € Y% () and Hence the proof is completed.
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Theorem15 The mappingsé% are continuous with
respect ta) andA convergence.
Proof of this theorem is available in many papers of the
same author. We prefer we omit the details.
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