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Abstract: This paper addresses the problem of estimating the population mean of the study variable
using auxiliary information in double sampling. We have suggested a class of estimators of population
mean in double sampling. It has been shown that the estimator due to Khatua and Mishra (2013) is a
member of the proposed class. We have obtained the bias and mean square error (MSE) of the proposed
class of estimators under large sample approximation. It is observed that the mean square error expression
of the estimator tyg obtained by Khatua and Mishra (2013) is not correct. So, we have obtained the correct
expression of the mean square error of the estimator tyq due to Khatua and Mishra (2013). We have
compared the proposed class of estimators with that of usual unbiased estimator, usual double sampling
ratio and product estimators, Singh and Vishwakarma (2007) estimators, usual regression estimator and
usual double sampling ratio estimator and shown that the proposed estimator is better than existing
estimators. Numerical illustrations are also given in support of the present study.
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1. Introduction

In survey sampling, it is not uncommon to estimate the finite population mean Y of the study
variable of y. When information on auxiliary variable x, highly correlated with vy, is readily
available on all units of population, it is well known that ratio estimator (for high positive
correlation), product estimator (for high negative correlation) and regression estimator (for high
correlation) can be used to increase the efficiency, incorporating the knowledge of population

mean X . However, in certain practical situation when the population mean of auxiliary variable

X is not known a priori, the technique of two-phase sampling is successfully used in practice.
The conventional method in such situation, a larger sample of size n' to furnish the good estimate

of the population mean X while a sub-sample size n is selected from the first phase sample 'n' to
observe the characteristic under study.
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Consider a finite population U={1,2,3. ... ... ... .N}. Let y and x be two real variable assuming the
value y; and x; on the ith unit (i = 1,2,3......... N). Now consider y be the study variable and x be
the auxiliary variable. We consider simple random sampling without replacement (SRSWOR)
design to draw samples in each phase of two-phase sampling set-up. The first phase sample

s'(s' c u) of fixed size n' is drawn to observe x only. The second phase sample s (s c s') of

fixed size n'is drawn to observe y and x for given s, (n<n’).

Let,X:Ein )_/ZEZyi and X’:lei

ies N jes Njes

Now the usual two phase ratio, product and regression estimators are given by

tar =2 X, (1.1)
yX
ty, =—, 1.2
dp %' ( )
tar =y + byx (X’ -X), (1.3)

where by, is the sample regression coefficient of 'y' on X', caiculated from the data based on
second phase sample of size 'n’,

The mean square error (MSE) of the estimators given in (1.1), (1.2) and (1.3) to first order of
approximation are respectively given by

MSE(ty, )= Y2[1C2 + (h—1)C% - 2C,,, )| (1.4)
MSE(t, )= Y2C2 + (1 -2 - 2C,,, )| (15)
MSE(ty, )= Y?C2M1-p? )+ 207 (1.6)
where A = (1 —ij A= (l —ij

n N n N

2 _ S 2_ Sy Syx
Cy=a, Cy=ﬁ , ny=t=prCX,
82 =T (% -2 $2 = =T (X - X2,

1 p— p—
Syx = EZ?:l(Yi -VNX;—X) = pSnyv
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p being the population correlation coefficient between 'y' and 'x'.

Singh and Vishwakarma (2007) have proposed modified exponential ratio and product estimate to
estimate finite population mean Y of study variable y in presence of auxiliary variable x. As
Singh and Vishwakarma (2007) assumed that the population mean X of auxiliary variable x is

not known, they used the two phase mechanism to estimate the population mean Y.

The modified exponential ratio and product estimator suggested by Singh and Vishwakarma
(2007) to estimate population mean Y under two phase sampling are given by

X' —X
tyer = V.€X 1.7
der y p(i'+)_(J ( )
X=X
tyep = Y-EX 1.8
dep y p(i+¥'j ( )

The MSE of the estimators t,, and Lgep 1O first order of approximation respectively are

given by
_ C2
MSE(t e )= Y?| ACZ + (A — x')(TX - cyxj (1.9)
_ C?2
MSE(tg,, )= Y?| AC2 +(k—x')(TX+cyxj (1.10)

Khatua and Mishra (2013) have suggested a generalized exponential estimator to estimate finite
population mean Y under two-phase sampling scheme with assumption that the population mean
auxiliary variable X, X is not known.

tog =7[d1+d2(7—2)]exp{)_;,;;}, (1.12)

where d; and d,are suitable chosen constants or suitable chosen constants or statistics and

d, +d, are not necessarily equal to unity.

It is to be mentioned that the mean square error (MSE) expression of the estimator Lage obtained

by Khatua and Mishra(2013) is not correct. The correct expression of the bias and MSE of the
Khatua and Mishra (2013) estimator tyge are given in the following theorem.
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Theoram 1.1 To the first degree of approximation, the bias and MSE of the Khatua and Mishra
(2013) estimator tge are respectively given by

B(t dee

):V[dl{uwc§(3—4k)}+wcia—zk)—1} (1.12)
and
MSE (tyge )= Y2[02 L+ 2C2 + (L - 1)C2 (- 2K)}+d2 (1 - M JX?C2 +1
+2d,d, (A - )X (1~ 2k)CE ~ 2d1{1+ wci(s— 4k)} (1.13)
—d,X(n - )1 2k)C?]
where k=pC, /C, .
Proof. To obtain the bias and MSE of t,, we write
y=Y(+e,), X=X(1-¢,), X =X(1+e,)
Such that
E(e;)=E(e;)=E(e;)=0
and

El2)=2C2 E(?)=2C2,  E[?)='C2,  E(ege,)=2kC2,  E(eel)=NkCZ,
E(ee)=\CE

Now expressing (1.11) in terms of e’s we have

B _ ' 1+ej—-1-e
toe = Y (1+ eO)[dl +d,X(1+¢e; _1—e1)]exp{M}

2

= V(e ), +d,X (e, - e'l)]exp{_ (e, ; &) (1+ Y ]_1}

= Y(1+eo)d; +d,X(e; —e’l)]{l— (& _ei)(u & +eij1 + (e —et) (1+ & +eij2--1

2 2 8 2
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' r\1 1\2 P \—2
:V{dl(heo){l—(el_el)(u e1+91] +(e1—e1) [1+ e1+e1) }
2 2 8 2

—d,X(L+e, e, —¢ 1—(61_61) 1+elJrei _1+(e1—e;)2 1+el+ei N
2 o€ € 5

2 2

=Y|d,(t+e 1—(61_6’1)(1— &+ +...j+M+...
1 0 5 > 2

' ’ 1\2
—dzi(1+eo)(el—ei>{1— (el_el)(l—el—i_el +...j+—(e1 _8e1) +}]

2 2

4 8

= V{dl(ljt eo){l (elgei) + (ef _eiz)z + (312 2681+ e12)+“}

o egfo - G Bodl), oo oel], |

2 4 8

_ V{dl{neo (e,—¢)) . (eqe1 ;eoei) N (3e12 —ei— 2e1e1) (3e0e12 —eoesi2 - 2e0e1e1)+ }

2 8

Neglecting terms of e’s having power greater than two we have

2 ' 12 ' 2 12 '
_dzi{(% —e1)+(eoe; —eoe; ) - (el 20 1 e )+ (e _el)(sel —& - Zele1)+..H

tye = Y| di1+e, _(91_91)+ (eoel_eoei)+ (3912 —ef’ _29191)
® 2 8

2 ' 12
_dzi{(el —e'l)—i— (eoe1 _eoei)— (el —2e,e; +€] )}]

2

Subtracting Y from both side of the above expression we have
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' _ ' 2 N 12 N '
(tdge —V)E 7{d1{1+ ey — (e, ;el) + G 5 eoe) + <3e1 e18 2e1e1)}
(1.14)
2 ' 12
- dzy{(el - ei)"‘ (eoel - eoei)_ (el — 261261 s )} _1:|

Taking expectation of both sides of (1.14) we get the bias of tige 1O the first degree of

approximation as
B(tdge ): E(tdge _V)
- V{dl{u (.~ W)Ci (3- 4k)}j
8 (1.15)

+d,X(.-2)C2(1- 2K)-1]

Squaring both sides of (1.14) and neglecting terms of e’s having power greater than two we have

(91 —€ )2
4

+2e - (el - ei)— (eoel - eoei)

(tdge —7)2 =7{d12{1+ el +

2 12 '
—(ege; —€08) )+ (361 _814_ 2ele1)} +d2X%(e, —e))* +1

1\2
— , , e, —e

(el2 —2e.e; + ef)

+(eoel _eoei)_ 5 }

_ 2d1{1+e0 3 (e ;e;) 3 (€08, —€0e) N (3e12 —ei - 2e1e1)}

2
_ , (62 -2l +ep?)
+2d,X1 (e —€})+ (ege; —08]) - >

or
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(tdge - 7)2 = 72[1+ d2{1+2e, — (e, —€])— 2(e48;, — €08} ) + (el2 - elei)}+ d2X?(e, — ;)
—2d,d,X{(e; —€})+2(ege; - eoei)—( 2 _2ee| + ef )}

- 2d1{1+ e — (e, ; el) _(eqey ; ecei) , (3e2 —e; 8 2e1e1)}

2 ’ 12
+ 2d2Y{(el —e))+(eqe; — 8] ) - (el —2€.e; +€; )H

2

(1.16)

Taking expectation of both sides of (1.16) we get the mean squared error of the estimator tyge 1O

the first degree of approximation as

MSE(tgg )= Y2[L+d2jL+AC2 + (L —1/)C2 (1— 2K)}+d2X? (L —1')C2
+2d,d,XC2 (L -1 )1-2k)

- 2d1{1+%(3—4k)}
—d,X(n-2)C2(1-2K))]
= Y2+ a2+ d2A0) + 2010,A00 — 20, A0 — d A (1.17)
which is minimum when
[Am) Asu)} {dl} _ { Ady } (L.18)
Asy Ax |[d2] | As)/2
Solving (1.18) we get the optimum values of d, and d, as

LAwAL-AL)

1= =dy (1.19)
2AAmA L - Ady)
Aci\A i — 2A

0, = Al ;(1)):(120 (120
2AmA L - Ady)
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Ay = [+ 2C2 + (- n)a-2k)C2]
Ay = (A —N)X*CE,

Agn) = (A —1)X([A-2k)C

A—A)CE
Ay =|1+ % (3- 4k)}

Substituting (dlo,dzo) in place of (dl,dz) in (1.17) we get the minimum MSE of tg, as

min . MSE{tq.)— V2| 1- [4Az(1)Ai(1) +AAs) . A% A J 1.21)
4 A1(1)'0‘2(1) - AS(l) )

which is correct expression of MSE of t ..

If we set dy =1 in (1.11), then the class of estimators t,, reduces to:

toge) = v+ dz(x'_i)]exp{;,;;} (1.22)

Putting d; =1 in (1.15) and (1.17) the bias and MSE of tygen) are respectively given by

Bltgpan) - )2 (3 ak) 0, X(1- 2] (1.23)
and
MS E(tdge(l)): Y? [].-l— Al(l) - 2A4(1) + dgAz(l) + d2A3(1)] (1.24)

The MSE t44y) is minimized for

A
d. =80 _gq 1.25
2= oA " 20pt (1.25)

Thus the resulting (minimum) MSE of tdge(l) is given by



J. Stat. Appl. Pro. Lett. 2, No. 1, 71-88 (2015) NSEY 79

_ AS
MSE(tye ) )= Y2 1+ Agg) — 2A,p) + 22
( dge (1)) 1(2) 4() A
=82 — (-2 (1.26)
which is equal to the approximate variance of the usual regression estimator
Yig =¥ +B(X'~X%) (1.27)
where f& =Sy /sf( is the sample regression coefficient of y on x.

we note that the MSE expression of the estimator of tgge():

(r-2)

MSE(tye )= Y2 1+ d2{1+AC2 + C2(1-4k)p +d3X? (A —1/)C2
ge (1) y

(1.28)
+20,0,XC2 (3 — 1)1 2K)+ 20,d,XC2 (2 — 1)1 - 2K) - 24,

obtained by Khatua and Mishra (2013) is not corrected. So the other results of the paper are also
incorrect. This led authors to derive the correct expression of MSE of the estimator tqge) which is
given in 1.28.

2. The Suggested Class of Estimators

For estimating the population mean Y , we define a class of estimators as

t, = Y[8; +8,(X' = X)] (%}a exp{%} (2.1)

where (61,62) are suitably chosen constants such that the MSE of t is minimum, (a,8) are

suitably chosen classes scalars which may assume real number or the functions of p, Cy ,C, etc.

It is to be noted that for (a,8): (0,1) the proposed class of estimators t, reduces to the class of
estimators reported by Khatua and Mishra (2013).

To obtain the bias and MSE of t; we express t; in terms of e’s we have
v i 1+ef ) 5(e; —ey)
to=Y(+e, 5, +5,X(e] —e,)] T2 | exp| 11/ (2.2)

l+e 2+e, +e;
1 1 1



80 NS E H. P.Singh et. al. : An Efficient Class of Two-Phase Exponential ...

We assume that |e;| <1, |ej| <1 so that the right hand side of (2.2) is expandable. Expanding the

right hand side, multiplying out and neglecting terms of e’s having power greater than two we
have some members of the proposed class of estimators t, are given in Table 2.1

Table 2.1 Some members of the proposed class of estimators ts

) Values of scalars
S.No. | Estimators 51 82 oL 5
1 t, =y 1 0 0 0
2 t, = y(X'/X) 1 0 1 0
3 t, = y(X/X') 1 0 -1 0
4 t, = y(x'/x)* 1 0 o 0
Srivastava (1970) estimator
t. = yex X -X
5 5 = YEXP X' +X 1 0 0 1
Singh & Vishwakarma (2007) estimator
t, =yex X=X
6 6 = YEXP X4 X 1 0 0 -1
Singh & Vishwakarma (2007) estimator
= d(X' —X
7 t7 =Yyexp (_’—_)j 1 0 0 0
X +X
_ — = X' —X
o | Bosld (x-S X P P PO
Khatua and Mishra (2013) estimator
— —, v X
9 ty =Y[8, +8,(X - x)(;] 5, 5, -1 0
10 tyy = Y[5, +8,(X - X)(_z exp —(X__ X_' 8, 8, 1 /8
X' 8(X +X')
_ A X (X-x'
11 ty, =0, +6,(X' =X)| — [exp| ——= d ) -1 -1/4
1 Y[ 1 2( )(X'j p(4(?'+i)) 1 )




J. Stat. Appl. Pro. Lett. 2, No. 1, 71-88 (2015) NSy 8]

t, = 7{61{1+ &, — 6(e; —e1) _ e(eoelz_eoei) + 9(812 ;eiz)Jr 92(e18— ei)z}

SZX{(el —ei)'F (eoel —eoei)_ e(El —91)2 }}

or

, : 2 .2\ a2 Y
(t,-Y)= V[51{1+ € — e, —et) _ Oleoe; —eqei) + 6<el —& )+ 0°(e,~¢))
2.3)

- 822{(‘91 — e 1+ (ege; —eo) - e(el—;e’l)?‘} —1}

where 0 = (20 +8).

Taking expectation of both sides of (2.3) we get the bias of the proposed class of estimator t to the
first degree of approximation as

Bl )= 7{61{“ (x-x')eci(e—4k+2)}+62 X(.-2)C2(0-2K) } o

8 2
Squaring both sides of (2.3) and neglecting terms of e’s having power greater than two we have
(t,-YF =Y [1+ d? {1+ 2e, —0(e, —e;)—20(e e, —ey€}; )+ €5
0 2 2 ’ 2 a2 2372 a2
+> ole? +e;” —2ee ]+ 67 —e? + +d5X%(e; —€])

- Zdldzi{(el - ei)+ 2(9091 - eoei)— e(el - ei)z}

- 2d1{1+ €y — e(elz_ el) e(eoelz— €et) + g (6(e1 —ef+ 2(e12 —e? ))}

Ev2 [ 2 e ’
+ 2d2X{(el - 91)+ (eOel - eOel)_ E(el - el)ZH
(2.5)

Taking expectation of both sides of (2.5) we get the mean squared error of tto the first degree of
approximation as

MSE(t, )= Y2[L+82A, +52A, +25,5,A, — 25,A, —5,A, | 2.6)
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where

p— 4 2 p—
A, {1”03 L= )ecxz(e 4k+1)}

A, =(L-1)X2C2,
Az =X(L-21')0-2k)CE,

A, :{uw(e%ku)}

The MSE of t; is minimum when

)

Solving (2.7) we get the optimum values of &, and J, as

2A,A, — A2
81:( =8y (2.8)

— A3(A1 _2A4) —

_ =5 29
2AA, -AZ) 7 29

2

Putting (2.8) and (2.9) in (2.6) we get the minimum MSE of t, as

(2.10)

2 2 Ap2
min.MSE(ts):V{l—llAzA“+A1A3 4A3A4}

4(A1A2 - Ag )

For &; =1, the proposed class of estimators t, reduces to :

te) = Y1+, (X' - x)(%j exp{%} (2.11)

Putting 8; =1in (2.4) and (2.6) we get the bias and MSE of ts(l) to the first degree of

approximation are respectively given by
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(1) |

Bltyy )= Y 0(0— 4k + 2)+ 45,X(0 — 2k)]

MSE(tyn))= Y2[L+ A, - 2A, + 824, +8,A; |
The MSE ty;) is minimized for

A
8, =——2=d
2 2A, 2(0pt)

Thus resulting minimum MSE of ts(l) is given by

. — A2
min MSE(tyy )= Y2{1+ A —2A, - 4A32}

=82 [p—(r—2)p?]

(2.12)

(2.13)

(2.14)

(2.15)

which is equal to the approximate variance of the usual regression estimator Y, in two phase

sampling.

3. Efficiency comparisons

For (8,,8,,0,8)=(1,0,0,0) in (2.2.1), the class of estimators t reduces to the usual unbiased

estimator
=y
The variance of Y is given by
var(y) = MSE(Y)=Ay°C? =S
From (2.1.14), (2.1.15), (2.1.6) and (2.3.2) we have
MSE(Y) — MSE(ty,) = (A —1')Y?C2k* >0
MSE(ty ) — MSE(ty,) = (A —1)Y*CZ(1-k)* >0

MSE(t,) — MSE(ty,) = (A -1 )Y?C5(1+Kk) > 0

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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"\\/ 2
MSE(tyy ) — MSE(ty,) = Mci 1-2k)* >0 (3.6)

"\\/ 2
MSE(t,,,) - MSE(ty, ) = A=2NV2 2, a2 50 (37)
It is clear from (3.3), to (3.7) that the usual two — phase regression estimator Yy, is better than

sample meany, ratio estimator tq, the product estimator tq, in two phase sampling, two phase
exponential ratio estimator tq, and the two phase exponential procedure estimator tgep.

Further from (2.10) and (2.15) we have

A3 [aAn%+ AAZ-aAZA,)
4A, 4AA, -A2)

MSE(t, )— min. MSE(t,) = VZ[Al —2A, -

 YAA,-AZ-2AA,f
- an,(AA, -A2)

>0 (3.8)

which shows that the proposed class of estimator’s ts is more efficient than the regression
estimator ty,. Thus the proposed class of estimator’s ts is better than usual unbiased estimatory,

conventional two phase ratio estimator tq two — phase product estimator ty, and the two phase
regression estimator ty;.

4. Empirical Study

To have tangible idea about the performance of the members of the proposed class of estimators t;
over usual unbiased estimator y we have computed the percent relative efficiency (PRE) of the

member of the suggested class of estimator’s t; with respect to ¥ by using the formula:

AC2
1x100 (4.2)

PRE(t,,y) =1
(t.5) L+ 82A, +52A, +25,5,A, — 25,7, — 8,A, |

For better eye view, we have considered two natural population data set with positive correlation
between y and x and two population data sets with negative correlation between y and x earlier
considered by Khatua and Mishra (20103). The descriptions are given below:

Population I: Murthy (1967), P. 228

y: Output, x: Fixed Capital, N =80, n"=70 ,n=30
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A =0.02083, " = 0.00179, Y =5182.64, Cf, =0.1255, C)Z( =0.5635,C,, =0.2503,
p=0.9413, k =0.44419
Population I1: Das (1988)

y: No. of agricultural labors for 1971, x: No of agricultural labors for 1961, N =278, n'=70,
n=30

A =0.0297, A" = 0.01069, Y =390 6,C’=20883,C;=26237,C, =16883,
p=0.7213, k =0.64348

Population I11: Steel and Torrie (1960), P. 282
y: Log of leaf burn in sacs, x:Chlorine percentage, N =30,n'=12 ,n=4

A =0.21667, 1" = 0.05, Y=06 8 ,Cf, =0.2306,C2 =0.5614, Cyx =-0.1798,
p =-0.4996, k =-0.32027

Population 1V: Gujurati(1999), P. 259

y: Year to year percentage change in the index of hourly earnings, Xx: The unemployment rate
(%), N =12,n"=8 ,n=5,

A =0.11667, ' = 0.041667, Y =4.066 ,Cf, =0.0977 ,C)Z( =0.0535, ny =-0.0519,
p=-0.718, k=-0.970

We have computed the percent relative efficiencies of the different members of the proposed
class of estimator’s tqe With respect to usual unbiased estimator yand findings are shown in

Tables 2.4.1 and 2.4.2.
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Table 2.4.1 Percent relative efficiency with respect to mean per estimator ( 7 )whenp>0

Populatio Estimators
n

tdr tder tdlr tdge 1:9 th t11
1

68.57 493.04 | 526.58 | 530.93 | 1406.10 | 1948.66 | 3427.95
2

130.02 146.34 | 149.98 | 156.69 172.39 179.84 189.72

Table 2.4.2 Percent relative efficiency with respect to mean per estimator (Y ) when p <0

Populatio Estimators
n
tpr tdep tdlr tdge tg t10 t11
3
59.76 115.15 | 123.76 | 126.25 127.78 129.96 132.96
4
149.47 133.95 | 149.56 | 149.65 149.81 149.79 149.77

Tables 2.4.1 and 2.4.2 clearly show that the modified two-phase estimator is more efficient than
mean per unit estimator, two- phase ratio estimator, two —phase ratio type exponential estimator,
two-phase product estimator, two-phase product type exponential and two-phase regression
estimator. Tables 2.4.1 and 2.4.2 also exhibits that the new generated estimators are more
efficient than the existing once. Thus the proposed estimators are to be preferred in practice.
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