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Abstract:  

A non-deterministic finite automaton is generalization of deterministic finite state automata. The concept of non-determinism plays 

an attractive role in the field of theory of computation and l-VFA defined on distributive lattices generalize some results of non-

deterministic finite automaton, in this reference we have taken lattice-valued finite automata (  l-VFA) defined on distributive lattices. 

Using these dynamic characterization properties of such l-VFA we discuss nature of accepted language by product of two l-VFA. 

Moreover covering relation of l-VFA by inter relationship of two types of products also will be presented. 
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1 Introduction 

 
The automata-theoretic approach is a fundamental 

approach for modular verification, partial-order 
verification real time system, hybrid time systems, open 
system and infinite state systems also [8]. Automata 
based methods is a power full tool in academics as well 
as industries too. Automata based application has been 
playing imported roles in the field of computer science, 
physics, biology and many more. Class of finite automata 
one is deterministic and another is non-deterministic 
have been discussed by several researchers. 
Deterministic finite automaton means the automaton 
cannot be in more than one state at any given time and 
non-deterministic means it may be in several states at any 
given time. Due to Finite number of states in a finite state 
automaton, the system designed in such a way-that it 
remembers only the important things and forgets the 
unimportant things. M. Mohri shows the theoretical 
properties of a non-deterministic lattice automaton in 
[7].Lattice automata exhibit interesting features from a 
theoretical point of view. The basis of our work is lattice 
automata on finite word, which assigned to each input - 

 
 
 

 
 

word as a lattice element. A lattice automaton is based on 
the concept of fuzzy sets defined by Zadeh [2, 5]. Class 
of fuzzy automata was introduced by Wee in [9, 10].The 
concept of a fuzzy automaton is generalization of the 
classical concept of a non-deterministic automaton. 
Fuzzy approach was applied on automata theory in the 
earlier age. The valid reason to study fuzzy automata is 
that, many languages are fuzzy by nature. A well known 
structure of membership values that has recently been 
used in the theory of fuzzy set [3,10].It has been also 
proved that, lattice automata on distributive lattice is a 
special case of weighted automata[6,9]. 

 

2. Preliminaries  
 

Throughout the paper we use terminology of [6] 

 

[6]A lattice is a 6-tuple 𝑙 = (L, ≤,∧,∨ ,0,1) where 0 and 1 are 

the least and largest elements of L, respectively, ≤ is the partial 

ordering in L; and for any a, b ∈ L a ∧ b, and a ∨ b stand for the 

greatest lower bound (or meet) and the least upper bound (or 

join) of a and b, respectively. 

 

 

 

2.1 Finite Automata 
 

An automaton is defined as a system where energy, material 
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and information are transformed, transmitted, and used for 

performing some function without direct participation of man. 

 

2.2 l- Valued finite automaton  
 

A lattice valued finite automata (l-VFA) is a 5-tuple  U =
(Q, ∑, δ, I, F), where: 

1)   Q ⟶ {q0, q1, q2 … … qn} Finite set of states 

2)   Σ ⟶ {σ1, σ2, σ3 … … . σm}Finite input alphabet 

3)  δ: Q × Σ × Q ⟶ 𝑙 Lattice valued transition relation 

4)  I: Q ⟶ 𝑙 Lattice value subset of Q representing initial state 

5)   F: Q ⟶ 𝑙 Lattice value subset of Q representing final state 

The condition (3), (4) and (5) in the above definition represents 

the following propositions: 

“q is initial state” i.e q ∈ I  truth value given by I(q) . 

“q is terminal state” i.e q ∈ F truth value given by F(q). 

 “Input σ causes state q to become p according to specification 

given by” i.e (q, σ, p) ∈ δ truth value given by δ(q, σ, p). 

 

2.3 Lattice valued recognizability  
 

 Lattice value recognizable predicate is a mapping from Set of 

string(Σ⋇)over input alphabets to l i.e   

6) recU: Σ⋇  ⟶ 𝑙 Define as: 

                recU(ω)

= ⋁{I(q0)⋀δ(q0, σ1, q1)⋀δ(q1, σ2, q2)⋀ … … … . . ⋀δ(qn−1, σn, qn)⋀F(qn)} 

 And truth value of preposition that ω  being accepted 

if −  recU(ω) ∈ 𝑙. 
Set of all l-value languages over Σ⋇ is denoted by𝑙(Σ⋇).Lattice 

value languages denoted by A, B, C. 

 

2.4 Degree of recognized Language 
 

If any language A is accepted by any automata U then its 

degree of acceptance will be number of lattice elements in 

itsrecU(ω)  i.e  A=|U| ω this is called degree of acceptance of     

l-valued language. 

 

2.5 Extension of transition function (𝛅) 

 
Extension of transition function gives two new prepositions to 

automata which give new shape to the automata, which is 

defined as: 

 

for all p ∈ Q 

 

 

δ⋇(q, ε, p)  = {
1 if p = q  where ε is empty string

0  otherwise 
 

 

 

for all ω = σ1, σ2, … σn ∈  Σ⋇: 

 

 

δ⋇(q, σ1, σ2, … σn, p) = 

 

 

⋁{δ(q0, σ1, q1)⋀δ(q1, σ2, q2)⋀ … … … ⋀δ(qn−1, σn, qn)} 

 

q1, q2 … qn−1, qn ∈ Q 

 

 

 

 

 

 

 

2.6 Condition of preposition for distributive 

lattice: 

 
 

If for a, b, c ∈ 𝑙  lattice is distributive then extension of 

transition function satisfy following preposition: 

 

 

δ⋇(q, θ1θ2, p) = ⋁r∈Q[ δ⋇(q, θ1, r)⋀δ(r, θ2, p)] 

 

2.7 Restricted direct product of l-valued 

automata 

 
Since 𝑙(Σ∗)  is closed under intersection operation so we can 

define direct product of two automata. Let U1 = (Q1, Σ, δ, I, F)  

and  U2 = (Q2, Σ, η, S, E) be two l- valued automaton then their 

direct product is: 

 

U1⋀U2 = (Q1 × Q2, Σ, δ⋀η, I⋀S, F⋀E) 

 

WhereQ1 ∩ Q2 = ϕand Q1 × Q2 = Q1 ∪ Q2. 

 

I⋀S: Q1 × Q2  ⟶   {
I(p)       p ∈ Q1

  S(q)   q ∈ Q2
 

 

 

 Define asI⋀S(p, q) = I(p)⋀S(q); ∀ p ∈ Q1, q ∈ Q2       (I) 

 

F⋀E: Q1 × Q2  ⟶   {
F(p)       p ∈ Q1

E(q)   q ∈ Q2
 

 

Define asF⋀E(p, q) = F(p)⋀E(q); ∀ p ∈ Q1, q ∈ Q2      (II) 

 

 

δ⋀η: (Q1 × Q2) × Σ × (Q1 × Q2) 

 

=  {

δ(q1, σ, p1) if  p1, q1  ∈ Q1

η(q2, σ, p2) if  p2, q2  ∈ Q2

1        if  p1, p2  ∈ Q1 and  if  q1, q2  ∈ Q2

 

 

 

Define as  δ⋀η[(p1, q1), σ, (p2, q2)] 
 

= δ(q1, σ, p1)⋀ η(q2, σ, p2) 

 

 ∀ p ∈ Q1, q ∈ Q2 and σ ∈ Σ (III) 

 

 

2.8 Full direct product of   l-valued automata 
 

U1 = (Q1, Σ1, δ, I, F)  AndU2 = (Q2, Σ2, η, S, E) be two l-valued 

automata then their direct product is: 

 

U1 × U2 = (Q1 × Q2, Σ1 × Σ2, δ × η, I × S, F × E) 

 

  Where Q1 ∩ Q2 = ϕand Q1 × Q2 = Q1 ∪ Q2= Q 

 

I × S: Q1 × Q2  ⟶   {
I(p)       p ∈ Q1

  S(q)   q ∈ Q2
 

 

 

 

 

 

   Define asI × S(p, q) = I(p)⋀S(q) 
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∀ p ∈ Q1, q ∈ Q2(IV) 

 

F × E: Q1 × Q2  ⟶  {
F(p)       p ∈ Q1

E(q)   q ∈ Q2
 

 

   Define as    F × E(p, q) = F(p)⋀E(q) 

 

∀ p ∈ Q1 , q ∈ Q2(V) 

 

δ × η: (Q1 × Q2) × (Σ1 × Σ2) × (Q1 × Q2)

=  {

δ(q1, σ1, p1) if  p1, q1  ∈ Q1

η(q2, σ2, p2) if  p2, q2  ∈ Q2

a  if   p1, p2 ∈ Q1 and q1, q2 ∈ Q2

1         otherwise

 

Where  

 

a = ⋁r1∈Q1
[δ(p, σ1, r1)⋀F(r1)⋀S(q)]⋀  

 

⋁r2∈Q2
[η(r2, σ2, q)⋀F(p)⋀S(r2)] 

 

δ × η[(p1, q1), σ, (p2, q2) = δ(q1, σ1, p1)⋀η(q2, σ2, p2) 

 

∀ p1, q1 ∈ Q1, p2, q2 ∈ Q2, σ1 ∈ Σ1&σ2 ∈ Σ2(VI) 

 

 

2.9 Covering relation of automata 

 
For l –VFA Ui = (Qi, Σi, δi, Ii, Fi)  i = 1,2  let ∅: Q2 → Q1 and 

ψ: Σ1 → Σ2  are two mapping then ( ∅, ψ): U1 → U2  called 

covering from U1 to U2  if for all σ ∈ Σ  following inequality 

holds: 

δ1(∅(q), σ, ∅(p)) ≤ δ2(q, σ, p) 

 

              I1( ∅(q)) ≤ I2(q)                and           

 

F1( ∅(q)) ≤  F2(q) 

 

 

Example: l- Valued finite automaton 
 

1)   Q ⟶ {q0, q1, q2, q3, q4} Finite set of states 

2)   Σ ⟶ {0,1}Finite input alphabet 

3)  δ: Q × Σ × Q ⟶ 𝑙 Lattice valued transition relation. 

  Define as: 

δ(q0, 0, q1) = b ,δ(q0, 0, q2) = c  
 

 δ(q1, 1, q1) = 1 , δ(q2, 0, q2) = 1  
 

δ(q1, 0, q3) =  1 , δ(q2, 0, q3) = 1   
 

δ(q3, 0, q4) = a , δ(q4, 0, q4) = 1  
 

δ(q4, 1, q4) = 1        
 

𝑙 = {0,1, a, b, c, ≤} Where: 

 

b < 𝑎 𝑎𝑛𝑑 𝑐 𝑐𝑎𝑛 𝑛𝑜𝑡 𝑏𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑎 𝑎𝑛𝑑 𝑏. 
 

4)  I: Q ⟶ 𝑙  Lattice value subset of Q representing initial 

state, I = 1/q0 

 

 

5)   F: Q ⟶ 𝑙 Lattice value subset of Q representing final state, 

F=1/q4 

 By the calculation, we can see that for any A ∈ 𝑙(Σ⋇) 

 

  recU(ω) = (a ∧ b) ∨ (a ∧ c) = b if ω∈01∗00(0 + 1)∗ and  

 

  recU(ω) = 0 in other cases. 
 

Defined automata are represented is figure given below:  

 

 
                         Fig. 1; l- Valued finite automaton 

 

 

3.  Main Theorem  
 

If  U1 = (Q1, Σ, δ, I, F) and U2 = (Q2, Σ, η, S, E) is l –VFA and 

have same input and accepting A, B regular languages 

respectively and  there are an automata U1⋀U2  = (Q1 ×
Q2, Σ, δ⋀η, I⋀S, F⋀E)  which accept regular language A⋀B,and 

if U1 = (Q1 , Σ1, δ, I, F)   and  U2 = (Q2, Σ2, η, S, E)  be two l- 

VFA have different  inputs and accepting A, B regular 

languages respectively and there are an automata U1 × U2  = 

(Q1 × Q2, Σ1 × Σ2, δ × η, I × S, F × E)   which also accept 

regular language A⋀B then there must be an relation from Q2to 

Q1 such that U1 covers U2. 
Proof: We will prove covering relation by inter relationship 

between two products of automata. For this let  ∅  be an 

mapping define as: 

 
∅: Q2 → Q1And ψ: Σ → Σ1 × Σ2 byψ(σ) = (σ1σ2) 

 

δ⋀η[∅(p1, q1), σ, ∅(p2, q2)= δ⋀η[(p1, q1), ψ(σ), (p2, q2)] 
 

  = δ⋀η[(p1, q1), σ1σ2 , (p2, q2)] 
 

   = δ(p1, σ1, p2)⋀η(q1, σ2, q2) 

 

                                             = δ × η[(p1, q1), σ, (p2, q2)] 
 

                                                                             ……(from VI) 

Similarly:         I⋀S(∅(p1, q1))  =  I⋀S(p1, q1) 

 

                                                     = I(p1)⋀S(q1) 

 

                                                      =I × S(p1, q1) 

 

                                                                                 …(from IV)            

 Similarly:      F⋀E(∅(p1, q1))  =  F⋀E(p1, q1) 

 

                                                    = F(p1)⋀E(q1) 

 

                                                    = F × E(p1, q1) 
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                                                                         .. ……..(from V) 

 

From above properties we can write U1⋀U2 ≤ U1 × U2 hence 

(∅, ψ) is covering fromU1to U2 . 

 

3.1 Properties of covering relation 
 

Covering relation of two l –VFA automaton satisfy reflexive 

and transitive properties. 

Proof:U1 = (Q1, Σ, δ, I, F)  and U2 = (Q2, Σ, η, S, E)  is l –VFA. 

Now define identity mapping ∅: Q → Q  so that we have 

Q1 = Q2, δ = η, I = S, F = E  and by definition of U1 and U2 

having same input and output alphabets again we get same 

results, thus covering relation is reflexive. 

Now to prove relation is transitive supposeU3 covers  U2 and  

U1 covers U3 

Where U1 = (Q1 , Σ, δ, I, F)U2 = (Q2, Σ, η, S, E)  and U3 =
(Q3, Σ, γ, O, D)nowU3 covers  U2 imply that: 

S = O and E = D and   ∃  a mapping β: Q2  → Q3 such that:                                                                        

 

  1)  γ(β(q), σ, β(p)) ≤ η(q, σ, p) 

 

 2) O( β(q)) ≤ S (q) 

 

  3) D( β(q)) ≤  E (q) 

 

Now if U1  covers U3  imply that S = I and E = F  and ∃  a 

mapping τ: Q3  → Q1 such that: 

 

    4)  δ(τ(q), σ, τ(p)) ≤ γ(q, σ, p) 

 

   5) I( τ(q)) ≤ O (q) 

 

   6) F( τ(q)) ≤  D(q) 

 

Now consider the mapping     π(τOβ):Q2  → Q1 

 

δ(π(q), σ, π(p)) ≤ δ(τOβ(q), σ, τOβ(p))  (From equation 4) 

 

≤  γ(β(q), σ, β(p))(From equation 1) 

 

≤ η(q, σ, p) 

 

Which are shows that covering relation is transitive. 

 

3.2 Main Theorem  

 
If l is distributive lattice and U1 = (Q1 , Σ, δ, I, F)  and  U2 =
(Q2, Σ, η, S, E)  be twol-VFA accepting A and B languages 

respectively then A⋀B will be accepted byU1⋀U2 . 

 

Proof:  Let for  a, b, c ∈ 𝑙   a⋀(b⋁c) = (a⋀b)⋁( a⋀b ) by the 

definition of language acceptability if A is accepted by U1 and 

B accepted by  U2  then there is an recU1
(ω)  and  recU2

(ω) 

such that A= |U1| = recU1
(ω)  and B= |U2| = recU2

(ω)  let 

ω = σ1, σ2, … σn ∈  Σ⋇ 

 

 (A⋀B) ω = |U1|ω⋀|U2|ω 

 

= ⋁p0,p1…pn∈Q1
[I(p0)⋀δ(p0, σ1, p1)⋀ … ⋀δ(pn−1, σn, pn)⋀F(pn)] ⋀ 

 

⋁q0,q1……qn∈Q1
[S(q0)⋀δ(q0, σ1, q1)⋀ … … … ⋀δ(qn−1, σn, qn)⋀E(qn)] 

 

  

 

 

 

 

 

= ⋁p0,p1……pn∈Q1
⋁q0,q1……qn∈Q1

 I(p0)⋀S(q0)]⋀[F(pn)⋀E(qn)]⋀ 

 

 

 [δ(p0, σ1, p1)⋀ … … … ⋀δ(pn−1, σn, pn)⋀η(q0, σ1, q1)⋀ … 

 

… … ⋀η(qn−1, σn, qn)] 
 

=
⋁p0,p1……pn∈Q1

⋁q0,q1……qn∈Q1
[I(p0)⋀S(q0)]⋀[F(pn)⋀E(qn)]⋀ 

 
δ(p0, σ1, p1)⋀η(q0, σ1, q1) … … … . . ⋀δ(pn−1, σn, pn)⋀η(qn−1, σn, qn)] 
 

   =⋁(p0,q0),(p1,q1)……(pn,qn)∈Q1×Q2
{[ 

 

I⋀S(p0, q0)]⋀[F⋀E(pn, qn)]⋀[ δ⋀η((p0, q0), σ1, (p1, q1))⋀ 

 

      ……..⋀ δ⋀η((pn−1, qn−1), σn, (pn, qn))] 

 

  =|U1⋀U1|ω 

 

By above result we can conclude that there exist an automata 

U1⋀U1 accepting language A⋀B. 

 

 

4. Conclusion  

 
An automaton is defined as a system where energy, material 

and information are transformed, transmitted and used for 

performing some functions without direct participation of man 

while covering gives a copy of an l-VFA having fewer states 

and equally powerful in computation, moreover covering 

relation is transitive as well as reflexive also hence presented 

result in this paper helps in theory of computation. 
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