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Abstract: This paper introduces a new technique called Homotopy aisalWiener Hermite expansion (HAM-WHE) which
considered as an extension to Wiener Hermite expansiordimkith perturbation technique WHEP. The WHEP technique tise
Wiener Hermite expansion and perturbation technique teesalclass of nonlinear partial differential equations vatiperturbed
nonlinearity. The homotopy perturbation method (HPM) wasdlinstead of the conventional perturbation methods wdécteralizes
the WHEP technique such that it can be applied to stochasterahtial equations without the necessary of presencihefsmall
parameter. For more generalizing, the homotopy analysthodgHAM) is used instead of HPM; since HAM contains the coht
parameter to guarantee the convergence of the solution & il only a special case of HAM obtainedfat= —1 .The proposed
technique is applied on stochastic quadratic nonlinedunsidn problem to obtain some approximation orders of me@hwvariance
with making comparisons with HAM and homotopy-WHE to testifie method of analysis using symbolic computation soféwar
Mathematica. The current work extends the use of WHEP fairspistochastic nonlinear differential equations.

Keywords: Stochastic nonlinear Diffusion equation; Homotopy analysethod; WHEP technique; Convergence-controller parame

1 Introduction equations using the homotopy perturbation method and is
called homotopy-WHEP 4]. The homotopy-WHEP

In many practical situations, it is appropriate to assumetechnique is used in solving nonlinear diffusion equation
that the nonlinear term affecting the phenomena undeith stochastic non homogeneit$|[ In this paper the
study is small enough; then its intensity is controlled by homotopy analysis method (HAM) will be used instead of
means of a frank small parameter, say Relevant ~HPM to obtain some approximation orders of mean and
examples in this sense appear for instance invariance for quadratic nonlinear diffusion equation under
epidemiology [,2]. In addition to these considerations, Stochastic non homogeneity. The homotopy analysis
diffusion models with nonlinear perturbations can also method (HAM) is an analytical technique for solving non
consider the introduction of a forcing term in order to linear differential equations. HAM proposed by Liao in
model external aspects which can become very complex1992, B, the technique is superior to the traditional
such as: the environment in biology; unexpected materiaPerturbation methods in that it leads to convergent series
changes in the surrounding medium in physics; andsolutions of strongly nonlinear problems, independent of
foreign political events that can affect the markets whereany small or large physical parameter associated with the
an investment has been ordered in finance. Stochastieroblem, []. The HAM provides a more viable
differential equations based on the white noise procesglternative to non perturbation techniques such as the
provide a powerful tool for dynamically modeling these Adomian decomposition method (ADM®B] and other
complex and uncertain aspects. El-Tawil used thetechniques that cannot guarantee the convergence of the
Wiener-Hermite expansion together with perturbationsolution series and may be only valid for weakly
theory (WHEP) technique to solve a perturbed nonlineafonlinear problems;7]. We note here that He’s homotopy
stochastic diffusion equatior], The technique has been Perturbation method (HPM)9[ is only a special case of
developed to be applied on non-perturbed differentialthe HAM [6]. Indeed Liao 0] makes a compelling case
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that the Adomian decomposition method, the LyapunovThus asq increases from 0 to 1, the solutiap(t,x;q)
artificial small parameter method and the-expansionvaries from the initial guessy(t, x) to the solutioru(t, x).
method are nothing but special cases of the HAM. InIn topology, this kind of variation is the called
recent years; this method has been successfully employedieformation, equation 4jconstruct the homotopy

to solve many in science and engineeriig,[12,13,14, ¢(t,x;q). Having the freedom to choose the auxiliary
1516,17,18,19.. HAM was used in solving nonlinear parametdn , the auxiliary functionH(t,x), the initial
stochastic diffusion models with nonlinear loss2g, 21]. approximatiomip(t,x) , and the auxiliary linear operator
The HAM-WHEP is applied to find the mean and L, we can assume that all of them are properly chosen so
variance of the stochastic quadratic nonlinear equatiorthat the solutiop(t,x;q) of the zero-order deformation
with on(x; w) as non homogeneity given b27] equation 4) exists for 0< g < 1. Expandingp(t,x;q) in

the Taylor series with respect ¢p one has
dut,xw) d%u Y pect®

2 RS
=—— —&u+on(xw);(t,x) € (0,,0) x (0,0), o
ot ox2 [t %0) = Uo(t, )+ 3 Um(t,)q" (6)
u(t,0;w)=0,u(t, ¢; w)=0 andu(0, w)=@(X). (1) m=1
where u(t,x;w) is the diffusion process,e is a  Where 1 Mot x:
deterministic scale for the nonlinear term. Adis a Um(t,X) = _M (7)
random outcome for a triple probability spag@,A, P) m-oq" oo

where Q is a sample space, A is @-algebra associated Assume that the auxiliary paramdier the auxiliary
with Q and P is a probability measure. The current work functionHi(t,x), the initial approximationig(t,x) and the

also deals with the solution of 2D stochastic quadraticauxiliary linear operatok are so properly chosen that the
nonlinear equation with agn(x;w) non homogeneity  series ) converges afj = 1 and

which has the following important properties -
En(X; w) = 07 qD(t,X, 1) = Uo(t,X) + z um(tax)v (8)
m=1
En(xy; ;W) = O(X1 — X2). 2 . , -
N0 )nlei ) ba =) @ Which must be one of the solutions of the original

whereE denotes the ensemble average (mean) operatononlinear equation, as proved by Lig].[As h= —1 and
0 (-) is the Dirac delta function it can represent severalH (t,x) = 1 (4)becomes

relations. (1-q)LI(9(t, . G) — Uo(t, )] + AN[@(t, . 0)] =0, (9)

This is mostly used in the homotopy-perturbation method.
2 HAM Technique. According to definition 7),the governing equation and

the corresponding initial condition ofim(t,x) can be
deduced from the zero-order deformation equatién (
Define the vectobim(t,x) = {Uo(t,X), U1 (t,X), .., Un(t,X)}
Differentiating equation4) m times with respect to the
embedding parametgrand then setting = 0 and finally
dividing them bym!, we have the mth -order deformation

N[u(t,x)] =0 3) equation:

_ ' L[um(t,X) — XmUm-1(t,X)] = AH(t,x)R(Uum-1),  (10)
where N is a nonlinear operatorx and t denote
independent variables, and is an unknown function. By"Where

A presentation of the standard HAM for deterministic
problems can be found i6]7]. The following subsection
is a brief description of HAM.To describe the basic ideas
of HAM, we consider the following differential equation:

means of generalizing the traditional homotopy method, 1 0™ IN[o(t,xq)]
Liao [6, 7] constructs the zero-order deformation equation RlUm-1) = m— 1! ogqm-1 4=0 (1)
(L—a)L[(e(t,xq) — uo(t,x)] = and
ghH (t,X)N[@(t,x;q)]. (4) [ Owhenm<1

( ). Lol ) . Xm = 1 otherwise ° (12)
whereq € [0, 1] denotes the embedding paramelfeis an he solution | das:
auxiliary parameter ant is an auxiliary linear operator. The solution is computed as:
The HAM is based on a kind of continuous mapping ®
u(t,x) — o(t,xq),0(t,x;q) is an unknown function, u(t,x) = _Z}Ui (t,x). (13)

=

Up(t,X) is an initial guess ofi(t,x) andH(t,x) denotes a
non-zero auxiliary function. It is obvious that when the It should be emphasized that,x for m> 1 is governed
embedding parametey = 0 and g = 1, equation 4) by the linear equation 10) with linear boundary

becomes respectively conditions that come from the original problem, which
can be solved by the symbolic computation software such
@(t,x;,0) = up(t,x), p(t,x; 1) = u(t,x) (5) as Mathematica, Maple, and Matlab
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Natural Sciences Publishing Cor.



Math. Sci. Lett5, No. 1, 13-26 (2016) www.naturalspublishing.com/Journals.asp NS = 15

3 Application of HAM for Solving Stochastic ~ Now the solution of the mth -order deformation equation

Quadratic Nonlinear Diffusion Equation (18) for m> 1 becomes
Oum_1(t,X)  0%um_1(t,x)
HAM will be used to find mean and variance of stochastic - (Um(t:X) = Xmtm-1(t,X)] = A ot - %2
quadratic nonlinear diffusion problerb)(like follows. The m—1
auxiliary linear operator chosen as +& % Um-—1—i (t,X) Ui (t, X)
1=

ap(t,xq) 9%@(t,xq)

Lip(txq)] = === ——— 2= (14) —(1=Xm)od(x=x1)]. (22)

The first order approximation is obtained by substituting
with m= 1 in (18) as follows

We have many choices in guessing the initial
approximation together with its initial conditions which L[u1(t,x)] = RAR(up) (23)
greatly affects the consequent approximation. The choice
of up(t,x) is a design problem which can be taken aswhere

follows: 2
w - R(up) = du(;(t,x) 9 L;O(;’X) +ewd—on(xw); (24)
Uo(t,X) = ZOBnelBnt sin—-x, (15) t X
n= ¢ then
¢
2 . nm _ = 0UW(t,x)  9%uo(t,X) n _
By = ?4¢(X) sin 7xdx. Llui(t,x)] =R a0 Fe + eug— on(x; cz)2)]5)

The approximated first order solution o025 can be

One can notice that the selected value function . ) ; . : )
obtained using Eigen function expansion as follows:

satisfies the initial and boundary conditions and it
depends on the paramet®y which is totally free .One

8

can also notice thBf, selection could control the solution Ur(t,x) = 3 Ina(t)sin—7x,
convergence. Furthermore, we define the nonlinear n=
Operator as Where
t
. d9(t,xq)  9@(t,x;q) / =m2(t-1)
N[p(t.x0)] = == — == Ina (t) Oe TR (ndr,
+e[o(t,x )P —on(xw)  (16)
¢
We construct the zero-order deformation equation, Faa(t) = 2_/ 9uo(t,X)
ha(t) =
14 ax2
(1= )L [(Um(t,X) = XmUm-1(t,X)] = 0
ahH (t, X)R(Um-1). (17) +€U5— on(x; w)] sin%nxdx. (26)

mte |)”nth1—.order deformation equation fon > 1 and  The ensemble average of the first order approximation is
X)=1is

[ee]

. nm
L (um(t.) = Xt 2(.)] = R(Um 1) (28) Flalt = 2 Bllnal)sinTx
subject to boundary conditions where
t
um(t,O)ZO,Um(t,é)Zo, (19) Inl /e =MM)2(t—1) F 1( ))d
and initial condition 0
L
Um(0,x) =0, 20 2 .
m(0,X) (20) E(Fa(t)) = 2h [0UO(I,X) 0 Uo(;x) ted Smn_nde’
¢ ot OX l
where 0
Rtm 1) — Oum_1(t,X) 02Upn_1(t,X) thenE([uy (t,x)] becomes:
m ot X2 e ™th Sin[rx| (3(— 1+ €AY (12 + 2B,))
f Bl (tX)] = 3(13 + 27PBn)
+& 20 Um-1-i (t, X)ui (t, X)) 2 nzn
i= N thSin[7x| (—8¢ + 8¢ (T +2PN)g) 27
—(1—Xm)od(x—x1).  (21) 3(18+ 271By)
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The covariance of the first order solution can have theThe solution of 84) can be obtained using Eigen function

following expression expansion as follows:
Cov|uy(t,x1),us(t,x2)] = w nit
E{(un(t,xa) ~ Eus(t, %) (un(t,xo) — Eus(t,50))] = Rl =ttt ) Inalt)singx
S (Ing(0) = Elny (0)sin "7 x0) (Y (Imy 1) where
n=1 m=1 t o)
~Elm, (1)) sin )] (28) na(t) = [ FHTR (e,
where Cov denotes the covariance operator. The °

covariance is obtained from the following final express o ¢ du(t,x) A2t x)
Cov(uy(t,Xy), s (t, X)) = Fna(t) = / [ -
0

2 ot X2
4ﬁ202 © @

mrt . NI . mm
Z ZSIH xlsln 7 X ( sm7xsm7xdx) +2£uo(t,x)u1(t,x)]sin%nxdx. (35)

o~—0

The ensemble average of the second order solution can be

tt obtained as
0% Elua(t 0] = Eua(1 0]+ 3 Ellnz(t)sin 7y x
COV(U]_('[,X]_), Ul(t,Xz)) = n=
2(1— e ™) 2n2Sin[ x| Sin[ 7o) (29) where
Tl4 t
The variance of the first order solution can have the E(ln2(t) /e A1) E(Fn2(1))dT,

following expression
Var[uy (t,x)] = E[uy(t,x) — Euy(t,x)]% =

0

¢
® N 2R .0 92
Bl 3 (na ) =Eln, @)sin=m01" - (30) - E(Rna(t) = 7 / (5 Elua(tx)] — 5Efuat.x)]
whereVar denotes the variance operator.The variance can ° Cnm
then be obtained from equatio?9) by setting “+eup(t,X)E[ug(t,x)]] sm7xdx,
Var[uy(t,x)] = thenE[uy(t,x)] becomes
‘
4?0?22 2 nm . mm N mm e th(3(—1+ (™ +P)) (2 + 2
7 z Z sm7xsm7x(/sm7xsm7xdx) E(Fn2(t)) = (3( 3(n3+2nﬁr)1) ( L) +
n=1 0
tt —8¢ + 86 (™+2B) £)Sin[ 11|
(//eT (1) P T)gry dry) 3(r8 4 2mBn)
00 . (€ Tt h?(— 128862 — (112 + 3Bn) (92Bn(T2 + 2B0) +
— T\ 2K2Q 2
Var[Uj_(t,X)] _ 2(1_e 7?!4h Sn[TD(] (31) 727'[Bn8— 168(3713+67Tﬁn+88))+
Bn 74-2pn 2
The second order approximation is obtained by € (128‘3‘( o) e +("2+3B“)
substituting withm= 2 in (18) as follows (9e"2t 11 Bn (17 + 2Bn) + 72 (TP+n) TIBnE —
L{uz(t,%) — uy(t,X)] = AR(uy) (32) 166 (37T + 6715, + 8¢))))Sin[ X))/
where (97BN (12 + 2n) (1 + 3Bn))(36)
dur(t,x)  d%uy(t,x 1 The covariance of the second order solution has the
R(uy) = ;(t ) _ 01)52 )+£zou1_i(t,x)ui(t,x) following expression
=
Cov(uz(t,X1),Uz(t,x2) =
duy (t, 0%uy(t,
= U1( X) - Ul( X) +28u0(tax)ul(t7x) (33) E[(ux(t,X1) — Eua(t,X1))(u2(t,X2) — Eux(t,X2))] =
ot ax2 -
Substituting by 83) in (32) we get i E[(D (Iny(t) —Eln,(t))s ”n7nX1+
Jup(t,x) dcuq(t,x n=1
Lua(t) — ug(t )] = 200 O . .
+26ug(t.X)ua 1, )] (34) 2,(Inalt) = Elna(1)) sinx)
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Cov(up(t,%1), Ua(t, %2) = Cov(uy(t,x1), ul(t X2) + Var[u(t,x)] = h’t(4. +h(4. — 1.7149) +
E[(i(In,l(t)—EIn,l(t))smné ‘ot Z I (® h?(1. — 0.73% + 0.12t?))
n=1
_i 2ai . — T\ 2
Eln,z(t))sm Z z E((In, (t) — Eln, (1) varlu(t, ] = 7g4n sin((-1+e7™?)
o (e )
(Im, (t) = Elm, (1)) sin—xg Sin—>Xx>
‘ ‘ 1/ + B) 26 22 ((~ 14 €))7
1
Cov(Un(t, 1), Up(t, Xo) = $2h2(3((—1+ e ™)?) 12((-14e ) ot (-14 6%
—1/(7+ By) 26 P2 (- 146 2) 2 (~1+ &™) e — (—14 PR rte) —
+2((-1+e ™) ot (-14+€™) 26 2™ (ri(~4((~1+e™)?) WP
(~1+€0m ) me — (~14 &) ) (- (-1t P
+elBa(128d (T B 62 | (724 3B,) Pl +B;2
4 27t 4 1 7t 2 h2 etBn( 1+e t)B )8)
—4e (r(— ((— +e ) ) T _16e2t3nh2(1—e"2‘+nzt)zaZS'n[nx]z)) 1)

(A= (L Pt P14 M) BP)e
Bn(T2 + Bn)

16e#Pnh2(1 — ™ + 112t)22Sin[ X2
_ =

)

))Sin[1xq) SIN[1X[37)

Cov(us(t,%1), Ua(t, %) = %2h2(((—1+e—"2‘)2) T
_1/ 772+B 2n2t( ((_1_|_e7n2t)2) 7'[2
+2((~1+e ™) Byt (~14 ) (-1 4P g

—(—1+€&PHBY) Bte))Sin[ x| Sin[xg) (38)
In this manner, we can have more resultsEdfim(t, x)]
and Var[um(t,x)] obtained atm = 3,4,.... The final

expression of mean of the 3rd order solution will be.

E[U(t,X)] = zwboE[Um(taX)]:UO(tvx) + E[Ul(t,X)] =+
E[ua(t,x)] + E[us(t,x)]
Efu(t, )] = %(9e‘ﬁn+

e th(3(— 1+ (B (12 + 2B,) — 8e + 8P +2Bn)g)
e+ 213,

(€ T2 (—128Bng% — (1% + 3Bn) (97 Bn( TP + 2Bn) +
721Bne — 166 (315 + 6718, + 8¢)) + €PN (1288 (2PN g, 2
(12 + 3Bn) (97 BT + 2By) + 728 7 +P0) e
—16¢(31 + 676, + 8¢)))))/
(TBn(71% + 2Bn) (1 + 3n) ) Sin[10x]. (39)
Sinceu(t,x) = YN, ui(t,x) Then the final expression of
the variance of the 2nd order solution will be
Var (ElN:l Ui (t,X)) =
5 Var(un (t.))+ (514 5 Coviun (6.0, uj (8. )]
Var|u(t,x)] = Var[uy(t,x)] +

Var[uz(t,X)] + 2Cov[us (t, X), Uz (t,X)]

(40)

7-[2

4 WHE technique

As a consequence of the completeness of the
Wiener-Hermite sef9], any arbitrary stochastic process

can be expanded in terms of the Weiner-Hermite
polynomial set and this expansion converges to the
original stochastic process with probability one. The
solution functionu(t,x, w) can be expanded in terms of

Wiener-Hermite functionsg] as:

u(t,x; w) = u(°>(t,x)+/ ut >(t,x;x1)H(1> (X1 ; w)dxy
+// u(2>(t,x;x1,x2)H<2) (X1 ,X2; w)dxydxz

+///u (t,%; %1, %2, X3)H ) (X1, X2, X3; ) dx1 Axp0X3

+o. (42)

The first term in the expansiod?) is the non-random
part or ensemble mean of the function. The first two terms
represent the normally distributed (Gaussian) part of the
solution. Higher terms in the expansion depart more and
more from the Gaussian for3(]. The Gaussian
approximation is usually a bad approximation for
nonlinear problems, especially when high order statistics
are concerned3[l]. The componentsi()(t,x3, %o, ..., %)
are called the (deterministic) kernels of the
Wiener-Hermite expansion af(t,x). They are functions
of time and space variables and fully account for the time
dependence ofu(t,x) as well as for its statistical
properties 32.co is a random output of a triple
probability spacd Q,A P) , whereQ is a sample space,
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B is ao-algebra associated with andP is a probability  and searching for the Gaussian part of the solution process,
measure. For simplicityo will be dropped later on The u(t,x, w) can be expanded as:

function H(t,x;,%p,...,x,) is the nth order X

Wiener-Hermite time-independent functional which is . v — 0 / @t xx HO 4
defined for 1D continuous problem £4: u(t,x; @) = U (LX) + A Ut xx) Oajdx (45)

H (Xg, X2, ..., X)) = 5n/2(o)e% s E2(%) |£| ( —9 ) which is a stochastic integro-differential equation in the
k1 \9€ (%) deterministic kernela®™ (—) whereu© (t,x) andu®(t, x)
o7 I1 &%) (43 &€ deterministic kernels to be evaluated, substituting in

the original equationl)) we get:

Whereéy is a denumerable set of independent Gaussian ) X 0 D v
random variables with zero mean and unit variance, and i24" (t,X) 4 /du (t,x%1) H® (x,)dxq =

the Dirac delta function. The WH functional form a ot ot
complete setd9)and they satisfy the following recurrence 0 «
relation forn>1 2,00) ¢ 20t x
> J<u g,x) +/0 ulH( ’X’Xl)H<1)(x1)dx1]—
H® (X, Xz, .. %) = H Y (xq, X2, .. X0-1). HP (%)) ox 0 ot

n—-1
-5 H2) (X, Xngy - Xir 5)-O(th-m—1tn),n>2  (44)
m=1

2
X
£ (u(())(t,x)+/u<1)(t,x;x1),H<1)(x1)dx1> +
With H© = 1 andH® (x;) = N(x): the white noise. By 0

construction, the Wiener-Hermite functions are on(x w), (46)
symmetric in their arguments and 1are 2statistically Performing the direct average @), we get the following
orthonormal w.r.t the weighting functioee 2-1°%) je  set of deterministic equation:

OHG = ovi i
\If\;ilgnel;l-ngmitgVI 7f,éunJ(.:tic-Jrnhse a\\//aeﬁiisghees,of ?)Ig]rgihlzillly, i)du((’) (t.x) = 02u(0>£t,x) —€ (u(0> t,x)])2 -
E[H®] =0 fori > 1. The expectation and variance will ot ox «
beE[u(t,x)] :0L°|<°> (t,X) g/[u(l) (t, % %0)] 20,
Var[u(t,x)] = [ [u®(t,x;xq)]?dx + 0

©) —oy® —0.u9 —

@ o ut’(t,0) = 0,ut™(t, ) = 0,u™(0,x) = ¢ (x). (47

2 [ [ [uP(t,xx1,%)]2dx1d% + ... The WHE method t.0) t.6 0% =90. (47)
—00—0 ) , o i Multiplying equation 46) by H<1>(x2) , taking the
can be elementary used in solving stochastic d|1‘ferent|alé“,erage with using the statistical properties of

equations by expanding the solution as well as theyjener-Hermite polynomial2F]. And lettingx, — Xy in
stochastic input processes via the WHE. The resultanhe yesylt, we get the following set of deterministic
equation is more complex than the original one due Oequation:

being a stochastic integro-differential equation. Taking

set of ensemble averages together with using the. Ju®(t,x;x1)  92uM(t,x;x)

statistical properties of the WHE functions, a set of ) ot - Ix2 N

deterministic integro-differential equations are obeain 26U (£, x)uD (t, x: X1) + O (X — X1)

in the deterministic kernela((t,x;,xz,...,x) To obtain 0 . ’ ’(O’)

approximate solutions of these deterministic kernels, one U (£,0;x1) = 0,u™(t, £;x) = 0,u™(0,x,x1) = 0.(48)

can use perturbation theory in the case of having arhe general expression of first order mean is obtained by

perturbed system depending on a small parameter taking the average af(t, ) that expanded in equation (55)
Expanding the kernels as a power series of , another set gfe get:

simpler iterative equations in the Kkernel series 0

components is obtained. This is the main algorithm of thep[u(t,x)] = E[u(t,x)] = u@(t,x) (49)
WHEP algorithm, £7). The technlque' was su_ccessfully The general expression of first order variance is:
applied to several nonlinear stochastic equations; see for

example 2. Var|u(t,x)] = E[((u, (t,x) — Eu(t,x)]? =
X X
[//u<1) (t, % x )UD (t, % %2) E(H® (x1)HD (x0) ) dxadxg ] =
5HAM-WHE 0°0
Step 1: Applying the Wiener-Hermite expansion The first /[u<1) (t,%x1)]%dxq (50)

order solution can be obtained when Consider equatipn ( A

(@© 2016 NSP
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Step 2: Using HAM in solving
integral-differential equations4fand 48) separately as
follows: The auxiliary linear operator for equatiofj is
defined as

auO(t,x)  92uO(t,x)
(0) _ ’ _ ’
L[u™(t,x)] Gt 52 (51)
with
ul®(t,x) = z By sin ”7"x, (52)

=0
5 ¢

= Z/ sm—xdx
0

Furthermore, we define the nonlinear operator as

auO(t,x)  92uO(t,x
N[ (t,x)] = dE = z?xg '+
X
i (0 € [t x) o (59
0

We construct the zero-order deformation equation,
(1= Q)LI(um(t,%) — Xty 4 (t,X)] =
ofiH (£, )R(uy ;) (54)

The mth-order deformation equation fon > 1 and
H(t,x)=11is

LI (v (€,%) = Xty 5 (€,)] = AR(UR 1) (55)
Subject to boundary conditions
Ui (t,0) = O, un (t, ) = (56)
and initial condition
U (0,) =0 (57)
wherexn is defined by {2) and
RU® ) aug?ll(t,x) o2 (t,x)
m-1 ot ax2
m-1 0
( Z}uf]f1 (XU u® >(t,x))+
x et e
/ 20 o1 (B X ) U (%, xg ) )dxg (58)

Now the mth order deformation equatio®g for m> 1
becomes

ou t, X
LI (63) — x@ 6, 0] = F2emetX)

ot
52 ( ) (t X)
dxz

xml ()
s/ Z} mlltxx1 (t,%;X1))dxq;

m-1

el dnlai(toou” )+

(59)

the nonlinear The first correction is obtained by substituting with= 1

in (55) as follows:

Liut” (t,%)] = AR(uy (t, %)) (60)
where
(0) 2,,0)
0) _Ouy (X)) 07Uy (%)
R (t,) = =0 "
) 2 X Wi vev V1264, -
gluy” (t,x)]“+ € A [Ug” (t,%; X1 )] “dxq; (61)
then
(0) 2,,(0)
(0) - ouy’ (t,x) - 07Uy (t,x)
L[ul (t,X)] - ﬁ[ ot X2
(0) 2 KW ey 12
E[UO (t,X)] + £ 0 [UO (t,X,Xl)] dX]_], (62)

The approximated first correction solution &2} can be
obtained using Eigen function expansion as follows:

I O sm—x
Zo

t
30 = [ FHIR
0

L
FO ) — 2h [0ug°) (tx) azug)) (t,x)
L ot ox2
0
X

e[ul (t,))2 + e/ (63)

0

The auxiliary linear operator for equatioAg) is defined
as

USD (1, % %1 )] 2dxq | sin %T

oul(t,x;x1)  2uD(t,x;x1)

Dt xx)] = _
Lu™(t,%x;x1)] ot e (64)
with
uo)(t,x;xl): Ié%(t)sin—x
n=
where
t
50 = [e IR mar
0
Fn(%}(t) 20 smnTnxl (65)
Defining the nonlinear operator as
ouM(t,x;x1)  2ud(t,x;x1)
(1) _ s Ay AL _ s Ay AL
N[u'™ (t,x)] ot 2 +
28 (U@ (t,x)u® (t, x; X1 ); (66)

We construct the zero-order deformation equation,
(1= QLU (€,X) — Xty 4 (t,39] =

qRH (t, )R ). (67)
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The mth-order deformation equation fon > 1 and
H(t,x)=1is

LI(US (£, %) — XUy 3 (£,0] = AR(USY ) (68)
Subject to boundary conditions
u® (t,0;%) = 0,uP(t,£x1) = 0 (69)
and initial condition
UK (0, %) = 0 (70)
where
RuY ) = U (t,%: %) B o2l |t xx)
m-1/" ot X2
o M
2¢( ZO U1 (6077 (8% X)) — 00(X—Xq) (71)
i=

Now the mth-order deformation equatio®8{ for m> 1
becomes

au t,X; X1
L(u (£, %:%0) — XmUipy (8,3, %0)] = ﬁ[% -
m-1

#2834 (e L)
=

—00(Xx—x1));

dzufﬁll(t ,X;X1)
X2
(72)

The first correction is obtained by substituting with= 1
in (68) as follows

L[u(ll) (t,xx1)] = ﬁR(ugl) (t,x;x1)) (73)
where
Dy o 2. (D)t
@)/, o _ 0y (t,Xx1) 97U (1, X X1)
R(UO (t,X,Xl)) - ot - [9X2
2£(ug)0> (t,x)uél> (t,x;x1))—0d0(x—x1); (74)

then

Dty 20D 4 g
@)/, o _ =0Ug (6 Xx1)  9Ug (1, XX )
L[ul (t,X, Xl)] - ﬁ[ 0t - 0X2

26 (U (t.X)us" (. x:%0)) — T(x— X)), (75)

The approximated first correction solution @5f can be
obtained using Eigen function expansion as follows

L
1) 2R 7 ou(txx) 92U (b xix)
0

ax?
(0) @)/ o . nm 2ho . nm
2e(uy” (t,X)uy (t,x,xl))]sm7xdx—Tsm7x1, (76)

mearn-u,Sn=-1e=1

15F

.
/
/
/
P
1.0 /
/

Fig. 1. The change of the meanwith parameteh at differentt
andx values.

mean-u, e=1,t=x=.1

01121

0.110+

0.106}-,7"

0.1041

L L L T L Loh
-1.05 -1.00 -0.95 —0.90 —0.85 -0.80

Fig. 2. The change of the meanwith parameteh at different
Bn values,e =1 andt =x=0.1..

The ensemble average of the first order first correction
approximation is obtained by substituting #o§

Efug (t,%)] = u@t,x) = u (t,%) + u2(t,x) 77)

The variance of the first order first correction
approximation is obtained by substituting B0}

X
UVt P = [t xx) +
0

UM (t,xx)]%dxy (78)

Varuy(t,x) =

o S~—_x

whereVar denotes the variance operator. Similarly the
second, third and fourth corrections are obtained by
substituting in equation®band68) by m= 2 3 4.

6 Result analysis

In the following figures, results of HAM technique are
shown first followed by HAM-WHEP results finally
comparisons between them.
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Mean x=.1, fn=-1,h=—.96
Variance-ul-u2 gn=-1¢=1x=5

0.08¢ e
006 ,/"'—“
,,/ — var-ul
,1" — varu2
0.04r Il/
l”
002t [
’I
05 ' ,/'
0‘.2 0‘,4 0‘.6 0‘.8 1‘.0 !
Fig. 3: The change of the mearwith timet at differente values,
x=0.1, pr = —1 andh = —0.96. Fig. 6: Variance comparison between first and second
approximationau, up with timet atx = 0.1, 8, = —landh =
—0.96
Variancepn=-1,x=.1
0.008F e = —
/»/
0.006
Mean
0.0041 — HAMat h=-.96 03l
—— HPM
. 0.2
0.0021- picard
0.1F
0.2 0.4 0.6 0.8 1.0 - -0.5 0.5 1.0
1
-0.2
Fig. 4: The change of the varianaewith timet at differente oab

valuesx= 0.1, B, = —1 andh = —0.96.

Fig. 7: Mean comparison between HAM first ordethat —0.96,
HPM first order and Picard first ordertat 0.1.

Mean-ul-u2-u3 n=-1e=1x=.5

—— mean-ul
— mean-u2

0.3 “ mean-u3 Mean

—— HAMath=-.96 03f
— HPM

picard

Fig. 5: Mean comparison between finst, secondu, and third —03f
order uz approximations with time at x = 0.1, 3, = —1 and
h=—-0.96.

Fig. 8. Mean comparison between HAM second ordehat
—0.96, HPM second order and Picard second ordéeea0.1.

6.1 HAM Results

Results of the solution of 2D stochastic quadraticfor different3, values. According to thed@curves, it is
nonlinear diffusion model using HAM technique are easy to discover that the valid region of is a horizontal
shown at  line segments-1.1 <h < —0.9, thush = —0.96. Figures
0=1/=1Br=-1n=1¢=10(x) =sinx Figure 3 and4 show mean and variance with tiniéor different

1 shows theh-curve of third order approximation of mean ¢ values respectively. Figurg shows mean comparison
for different values of time t and space variableat  between first, second and third order approximations;
0=1/=1By=-1n=1¢e=1®(x) =sinixFigure figure 6 shows variance comparison between first and
2 shows theh-curve of third order approximation of mean second order approximations.Figuiand8 show mean
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Table 2: Variance comparison between HAM first orderhat
—0.96, HPM first order and Picard first ordenat 0.1, By = —1

Variance ande = 1.
0.020F t HAM HPM Picard
0 0 0 0
0.2 0.01403 0.01403 0.015224
—— HAMath=-96 0.4 0.018199 | 0.018199 | 0.019747
e 0.6 0.018821 | 0.018821 | 0.020422
P 0.8 0.018908 | 0.018908 | 0.020517
ocos| 1 0.01892 0.01892 0.02053
L L L L Lt

meanu12

Fig. 9: Variance comparison between HAM first orderfat&
—0.96, HPM first order and Picard first ordertat 0.1.

Variance

0.005

—— HAMat h=-.96

~ ew Fig. 11: The change of the mean of first order second correction
— picard approximatioru% with parameteh at differentt, x values,e =1
andf, = —1.

0.0041

0.0031

0.002f-

0.001f

mean-u12fn=-1,

0.2 0.4 0.6 0.8 1.0

Fig. 10: Variance comparison between HAM second ordér-at
—0.96, HPM second order and Picard second ordera0.1.

Fig. 12: The change of the mean of first order second correction
approximatiom% with parameteh at differentf3, values and =
x=0.1.

comparison between HAM, HPM and Picard9]
methods for first, second and third order approximations.

Table 1: Mean comparison between HAM second ordeh at meanuizon-—1,
—0.96, HPM second order and Picard second ordér=ai0.1,
Bn=—-1ande =1.

X HAM HPM Picard

-1 -4.5E-17 -4.5E-17 -4.3E-17

-0.6 -0.34622 -0.34622 -0.33616

-0.2 -0.21398 -0.21398 -0.20776

0.2 0.213978 0.213978 0.207758

0.6 0.346223 0.346223 0.336159 . . i

1 Z26E-17 Z26E-17 Z33E-17 Fig. 13_: The che_mge_ of2 th_e variance of flr_st order second
correction approximations with parameteh at differentt andx
values.

Tables1 and2 show the comparison between Homotopy

analysis method, Homotopy perturbation method and

Picard method. these tables shows the results between

three methods are closed. Figur@sand 10 illustrate  approximations of mean and variance because of huge
variance comparison between HAM, HPM and Picard computations required. Comparisons among results of the
methods for first and second approximations only. Wecomputations of mean and variance illustrates that the
should note to the inability of computing high order results of three methods are very close from each other.
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meanu13n=-1,

—— I'stcorrection

—— 2nd correction

— 3'd correction

Fig. 14: The change of the mean of first order third correction
approximatioruf with parameteh at differentt andx values.

varu13

Fig. 18: The change of the first order second correction variance
u} with timet at differente values x = 0.1 andh = —0.3.

Variance

— 1'stcorrection

—— 2'nd correction

—— 3'rd correction

Fig. 15: The change of the variance of first order third correction *
approximatiomf with parameteh at differentt andx values.

L L L L Ly
02 04 06 08 10

Fig. 19: The change of the first order second correction variance
u31 with timet at differente valuesx = 0.1 andh = —0.3.

Mean

Variance

— 1'stcorrection
. —— 2'nd correction
—— 1t correction
—— 3'rd correction
0.101- — 2nd correction

3'rd correction

02 04 06 08 10

Fig. 20: The change of first order variance of first, second and
third corrections. Comparison between the different aioas
for e =0.5andx=0.1.

Fig. 16: The change of the first order second correction mf%an
with timet at differente valuesx = 0.1 andh = —0.96.

Varianve,

— 1'stcorrection

—— 2'nd correction

~—— 3'rd correction
— L'stcorrection

—— 2nd correction

3'rd correction

t
02 04 06 08 10

Fig. 21: he change of first order variance of first, second and
third corrections. Comparison between the different caivas
fore=1andx=0.1

Fig. 17: The change of the first order third correction meén
with timet at differente valuesx = 0.1 andh = —0.96.
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Varianve,

appropriate initial approximation, which can be, in turn,

0.00025- ~
) RN N expressed in a closed form.
/ S —— Different from all other analytic methods, the
/ S| Zmcometon HAM-WHE provides us with a simple way to adjust and
/I ([ Srdoomention control the convergence region of the series solution by
owmed means of the auxiliary parametér Thus the auxiliary
L . parameteh plays an important role within the frame of

02 04 06 08 10

the HAM so also the HAM-WHE which can be
Fig. 22: he change of first order variance of first, second anddetermined by the so callddcurves. As shown in figures
third corrections. Comparison between the different ativeas 1 and2 we can see that the valfdregion using HAM is
fore =5andx=0.1 —1 < h < —-0.9.and using HAM-WHE the interval is
—0.98 < h < —0.92, as shown in figurd1l The results
demonstrate reliability and efficiency of the HAM-WHE
method. From the results of two steps, some cases studies
6.2 HAM-WHE Results indicated some corrections of the approximation process
) ) _ for the statistical moments of the solution process, we can
Results of the solution of 2D stochastic quadratic say that this is the first time to apply HAM-WHE method
nonlinear diffusion model using HAM-WHE technique on stochastic problems and we found that it's easier than
are shown ) atl. WHEP and more general than HPM and
0=10=16 = -1n=1l¢e = 10(x) = sinFX.  homotopy-WHEP since HPM is a special case of HAM
Figures 11 and 13 show the h-curves of mean and obtained at and its results is accurate.
variance of first order second correction for different time
and space values. Figut2 shows the Plot oh-curve of
mean of first order second correction at differeBy
values at = x = 0.1.Figuresl4 and 15 shows the Plot of
h -curves of mean and variance of first order third
correction for different time and space values. Figurgs
17 and18 show first order mean of first, second and third
correction for different values of for e = 0.1, e = 0.5
and € = 5. For small value of nonlinearity strength

€= O'JI" 1f’ the dlvergen;:e IOf S°|Ut'|0n occrl:rred n Iafter [2] M. El-Beltagy and M. El-Tawil, Toward a Solution of a Ckas
interval aftert = 0.7, but for large value of the mean o of Non-Linear Stochastic perturbed PDEs Using Automated

th_e solution diverges dt=10.1 as i_ndicated in flguré.8 WHEP Algorithm, Applied Mathematical Modeling7(12-
Figures19, 20, 21 and 22 show first order variance of 13), 71747192 (2013).

first, second and third correction for different values of ;31 m. A, El-Tawil, The application of WHEP technique on

for e =01, € =05 ande = 5 . For small value of partial differential equations. Int. J. Differ. Equ.Apgi(3),

nonlinearity strengtts = 0.1, 1 the divergence of solution 325-337 (2003).

occurred in later interval aftér= 0.7, but for large value  [4] M. A. El-Tawil, The homotopy Wiener-Hermite expansion

of € the mean of the solution diverges afte= 0.1 as and perturbation technique (WHEP). In Transactions on

indicated in figure22. We can say that it's a good result Computational Science |. LNC&750, 159-180 (2008).

since in (WHEP and homotopy-WHEP) we couldn't use [5] M. A. El-Tawil , N. A. El-Mulla, Using homotopy-

high values ofe without explosion of the solution in a WHEP technique in solving non-linear diffusion equation

small time interval. with stochastic non- homogeneity. In Transactions on
Computational Science VII, LNCS890, 51-76 (2010).

[6] S. J. Liao, The proposed homotopy analysis technique for
the solution of nonlinear problems. PhD thesis, Shanghai Ji
Tong University (1992).

. . [71S. J. Liao, Notes on the homotopy analysis method:
In this paper, the HAM-WHEP is proposed and used to some definitions and theories, Communications in Nonlinear

give a statistical analytic solution of the stochastic  gujonce Numerical Simulatiod, 983-997 (2009).
diffusion equations. The application of this method has[8] G. Adomian, A review of the decomposition method and

two steps, the first step indicated the approximation of the' * g5 16 recent results for nonlinear equations, Computers and
stochastic model using the first order series of the Wiener  yjathematics with Applicationg1, 101-127 (1991).

Hermite expansion of the stochastic solution process angg) 5. H. He, Homotopy perturbation method: A new nonlinear
the second step presented the application of the homotopy  analytical technique, Applied Mathematics and Computatio
analysis method (HAM) to approximate the deterministic 135, 73-79 (2003).

system which reduced from the first step using the[10]S. J. Liao, Comparison between the homotopy analysis
statistic- al properties of WHE. The solution obtained by = method and the homotopy perturbation method, Applied
means of the HAM is an infinite power series for Mathematics and Computatidi69, 1186-1194 (2005).
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