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Abstract: This paper introduces a new technique called Homotopy analysis Wiener Hermite expansion (HAM-WHE) which
considered as an extension to Wiener Hermite expansion linked with perturbation technique WHEP. The WHEP technique uses the
Wiener Hermite expansion and perturbation technique to solve a class of nonlinear partial differential equations witha perturbed
nonlinearity. The homotopy perturbation method (HPM) was used instead of the conventional perturbation methods whichgeneralizes
the WHEP technique such that it can be applied to stochastic differential equations without the necessary of presence ofthe small
parameter. For more generalizing, the homotopy analysis method (HAM) is used instead of HPM; since HAM contains the control
parameter to guarantee the convergence of the solution and HPM is only a special case of HAM obtained ath̄ = −1 .The proposed
technique is applied on stochastic quadratic nonlinear diffusion problem to obtain some approximation orders of mean and variance
with making comparisons with HAM and homotopy-WHE to testify the method of analysis using symbolic computation software
Mathematica. The current work extends the use of WHEP for solving stochastic nonlinear differential equations.
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1 Introduction

In many practical situations, it is appropriate to assume
that the nonlinear term affecting the phenomena under
study is small enough; then its intensity is controlled by
means of a frank small parameter, sayε. Relevant
examples in this sense appear for instance in
epidemiology [1,2]. In addition to these considerations,
diffusion models with nonlinear perturbations can also
consider the introduction of a forcing term in order to
model external aspects which can become very complex,
such as: the environment in biology; unexpected material
changes in the surrounding medium in physics; and
foreign political events that can affect the markets where
an investment has been ordered in finance. Stochastic
differential equations based on the white noise process
provide a powerful tool for dynamically modeling these
complex and uncertain aspects. El-Tawil used the
Wiener-Hermite expansion together with perturbation
theory (WHEP) technique to solve a perturbed nonlinear
stochastic diffusion equation [3]. The technique has been
developed to be applied on non-perturbed differential

equations using the homotopy perturbation method and is
called homotopy-WHEP [4]. The homotopy-WHEP
technique is used in solving nonlinear diffusion equation
with stochastic non homogeneity [5]. In this paper the
homotopy analysis method (HAM) will be used instead of
HPM to obtain some approximation orders of mean and
variance for quadratic nonlinear diffusion equation under
stochastic non homogeneity. The homotopy analysis
method (HAM) is an analytical technique for solving non
linear differential equations. HAM proposed by Liao in
1992, [6], the technique is superior to the traditional
perturbation methods in that it leads to convergent series
solutions of strongly nonlinear problems, independent of
any small or large physical parameter associated with the
problem, [7]. The HAM provides a more viable
alternative to non perturbation techniques such as the
Adomian decomposition method (ADM) [8] and other
techniques that cannot guarantee the convergence of the
solution series and may be only valid for weakly
nonlinear problems, [7]. We note here that He’s homotopy
perturbation method (HPM), [9] is only a special case of
the HAM [6]. Indeed Liao [10] makes a compelling case
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that the Adomian decomposition method, the Lyapunov
artificial small parameter method and the-expansion
method are nothing but special cases of the HAM. In
recent years; this method has been successfully employed
to solve many in science and engineering [11,12,13,14,
15,16,17,18,19]. HAM was used in solving nonlinear
stochastic diffusion models with nonlinear losses [20,21].
The HAM-WHEP is applied to find the mean and
variance of the stochastic quadratic nonlinear equation
with σn(x;ω) as non homogeneity given by [22]

∂u(t,x;ω)

∂ t
=

∂ 2u
∂x2 − εu2+σn(x;ω); (t,x) ∈ (0,∞)× (0, ℓ),

u(t,0;ω)=0,u(t, ℓ;ω)=0 andu(0,ω)=φ(x). (1)

where u(t,x;ω) is the diffusion process,ε is a
deterministic scale for the nonlinear term. Andω is a
random outcome for a triple probability space(Ω ,A,P)
whereΩ is a sample space, A is aσ -algebra associated
with Ω and P is a probability measure. The current work
also deals with the solution of 2D stochastic quadratic
nonlinear equation with asσn(x;ω) non homogeneity
which has the following important properties

En(x;ω) = 0,

En(x1;ω )n(x2;ω) = δ (x1− x2). (2)

whereE denotes the ensemble average (mean) operator,
δ (-) is the Dirac delta function it can represent several
relations.

2 HAM Technique.

A presentation of the standard HAM for deterministic
problems can be found in [6,7].The following subsection
is a brief description of HAM.To describe the basic ideas
of HAM, we consider the following differential equation:

N[u(t,x)] = 0 (3)

where N is a nonlinear operatorx and t denote
independent variables, and is an unknown function. By
means of generalizing the traditional homotopy method,
Liao [6,7] constructs the zero-order deformation equation

(1− q)L[(φ(t,x;q)− u0(t,x)] =

qh̄H(t,x)N[φ(t,x;q)]. (4)

whereq ∈ [0,1] denotes the embedding parameter,h̄ is an
auxiliary parameter andL is an auxiliary linear operator.
The HAM is based on a kind of continuous mapping
u(t,x) → φ(t,x;q),φ(t,x;q) is an unknown function,
u0(t,x) is an initial guess ofu(t,x) andH(t,x) denotes a
non-zero auxiliary function. It is obvious that when the
embedding parameterq = 0 and q = 1, equation (4)
becomes respectively

φ(t,x;0) = u0(t,x),φ(t,x;1) = u(t,x) (5)

Thus asq increases from 0 to 1, the solutionφ(t,x;q)
varies from the initial guessu0(t,x) to the solutionu(t,x).
In topology, this kind of variation is the called
deformation, equation (4)construct the homotopy
φ(t,x;q). Having the freedom to choose the auxiliary
parameter̄h , the auxiliary functionH(t,x), the initial
approximationu0(t,x) , and the auxiliary linear operator
L, we can assume that all of them are properly chosen so
that the solutionφ(t,x;q) of the zero-order deformation
equation (4) exists for 0< q ≤ 1. Expandingφ(t,x;q) in
the Taylor series with respect toq, one has

φ(t,x;q) = u0(t,x)+
∞

∑
m=1

um(t,x)q
m (6)

where

um(t,x) =
1

m!
∂ mφ(t,x;q)

∂qm

∣

∣

∣

∣

q=0
(7)

Assume that the auxiliary parameterh̄ , the auxiliary
functionH(t,x), the initial approximationu0(t,x) and the
auxiliary linear operatorL are so properly chosen that the
series (6) converges atq = 1 and

φ(t,x;1) = u0(t,x)+
∞

∑
m=1

um(t,x), (8)

Which must be one of the solutions of the original
nonlinear equation, as proved by Liao [6]. As h̄ =−1 and
H(t,x) = 1 (4)becomes

(1− q)L[(φ(t,x;q)− u0(t,x)]+ qN[φ(t,x;q)] = 0, (9)

This is mostly used in the homotopy-perturbation method.
According to definition (7),the governing equation and
the corresponding initial condition ofum(t,x) can be
deduced from the zero-order deformation equation (4).
Define the vector−→um(t,x) = {u0(t,x),u1(t,x), ..,um(t,x)}
Differentiating equation (4) m times with respect to the
embedding parameterq and then settingq = 0 and finally
dividing them bym!, we have the mth -order deformation
equation:

L[um(t,x)− χmum−1(t,x)] = h̄H(t,x)R(um−1), (10)

where

R(um−1) =
1

m−1!
∂ m−1N[φ(t,x;q)]

∂qm−1

∣

∣

∣

∣

q=0
, (11)

and

χm =

{

0 when m ≤ 1
1 otherwise , (12)

The solution is computed as:

u(t,x) =
∞

∑
i=0

ui(t,x). (13)

It should be emphasized thatumt,x for m ≥ 1 is governed
by the linear equation (10) with linear boundary
conditions that come from the original problem, which
can be solved by the symbolic computation software such
as Mathematica, Maple, and Matlab
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3 Application of HAM for Solving Stochastic
Quadratic Nonlinear Diffusion Equation

HAM will be used to find mean and variance of stochastic
quadratic nonlinear diffusion problem (1) like follows. The
auxiliary linear operator chosen as

L[φ(t,x;q)] =
∂φ(t,x;q)

∂ t
−

∂ 2φ(t,x;q)
∂x2 . (14)

We have many choices in guessing the initial
approximation together with its initial conditions which
greatly affects the consequent approximation. The choice
of u0(t,x) is a design problem which can be taken as
follows:

u0(t,x) =
∞

∑
n=0

Bneβnt sin
nπ
ℓ

x, (15)

Bn =
2
ℓ

ℓ
∫

0

φ(x)sin
nπ
ℓ

xdx.

One can notice that the selected value function
satisfies the initial and boundary conditions and it
depends on the parameterBn which is totally free .One
can also notice thatBn selection could control the solution
convergence. Furthermore, we define the nonlinear
operator as

N[φ(t,x;q)] =
∂φ(t,x;q)

∂ t
−

∂ 2φ(t,x;q)
∂x2

+ε[φ(t,x;q)]2−σn(x;ω) (16)

We construct the zero-order deformation equation,

(1− q)L[(um(t,x)− χmum−1(t,x)] =

qh̄H(t,x)R(um−1). (17)

The mth -order deformation equation form ≥ 1 and
H(t,x) = 1 is

L[(um(t,x)− χmum−1(t,x)] = h̄R(um−1) (18)

subject to boundary conditions

um(t,0) = 0,um(t, ℓ) = 0, (19)

and initial condition

um(0,x) = 0, (20)

where

R(um−1) =
∂um−1(t,x)

∂ t
−

∂ 2um−1(t,x)
∂x2

+ε
m−1

∑
i=0

um−1−i(t,x)ui(t,x))

−(1− χm)σδ (x− x1). (21)

Now the solution of the mth -order deformation equation
(18) for m ≥ 1 becomes

L[(um(t,x)− χmum−1(t,x)] = h̄[
∂um−1(t,x)

∂ t
−

∂ 2um−1(t,x)
∂x2

+ε
m−1

∑
i=0

um−1−i(t,x)ui(t,x)

−(1− χm)σδ (x− x1)]. (22)

The first order approximation is obtained by substituting
with m = 1 in (18) as follows

L[u1(t,x)] = h̄R(u0) (23)

where

R(u0) =
∂u0(t,x)

∂ t
−

∂ 2u0(t,x)
∂x2 + εu2

0−σn(x;ω); (24)

then

L[u1(t,x)] = h̄[
∂u0(t,x)

∂ t
−

∂ 2u0(t,x)
∂x2 + εu2

0−σn(x;ω)]

(25)
The approximated first order solution of (25) can be
obtained using Eigen function expansion as follows:

u1(t,x) =
∞

∑
n=0

In,1(t)sin
nπ
ℓ

x,

where

In,1(t) =

t
∫

0

e(
−nπ
ℓ )2(t−τ)Fn,1(τ)dτ,

Fn,1(t) =
2h̄
ℓ

ℓ
∫

0

[
∂u0(t,x)

∂ t
−

∂ 2u0(t,x)
∂x2

+εu2
0−σn(x;ω)]sin

nπ
ℓ

xdx. (26)

The ensemble average of the first order approximation is

E[u1(t,x)] =
∞

∑
n=0

E(In,1(t))sin
nπ
ℓ

x,

where

E(In,1(t)) =

t
∫

0

e(
−nπ
ℓ )2(t−τ)E(Fn,1(τ))dτ

E(Fn,1(t))=
2h̄
ℓ

L
∫

0

[
∂u0(t,x)

∂ t
−

∂ 2u0(t,x)
∂x2 +εu2

0]sin
nπ
ℓ

xdx,

thenE[u1(t,x)] becomes:

E[u1(t,x)] =
e−π2th Sin[πx](3(−1+ et(π2+βn))π(π2+2βn))

3(π3+2πβn)

+
e−π2thSin[πx](−8ε +8et(π2+2β n)ε)

3(π3+2πβn)
(27)
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The covariance of the first order solution can have the
following expression

Cov[u1(t,x1),u1(t,x2)] =

E[(u1(t,x1)−Eu1(t,x1))(u1(t,x2)−Eu1(t,x2))] =
∞

∑
n=1

(In,1(t)−EIn,1(t))sin
nπ
ℓ

x1)(
∞

∑
m=1

(Im,1(t)

−EIm,1(t))sin
mπ
ℓ

x2)] (28)

where Cov denotes the covariance operator. The
covariance is obtained from the following final express

Cov(u1(t,x1),u1(t,x2)) =

4h̄2σ2

ℓ2

∞

∑
n=1

∞

∑
m=1

sin
nπ
ℓ

x1sin
mπ
ℓ

x2(

ℓ
∫

0

sin
nπ
ℓ

xsin
mπ
ℓ

xdx)

(

t
∫

0

t
∫

0

e(
−nπ
ℓ )2(t−τ1)e(

−mπ
ℓ )2(t−τ2)dτ1dτ2).

Cov(u1(t,x1),u1(t,x2)) =

2(1− e−π2t)2h2Sin[πx1]Sin[πx2]

π4 (29)

The variance of the first order solution can have the
following expression

Var[u1(t,x)] = E[u1(t,x)−Eu1(t,x)]
2 =

E[(
∞

∑
n=1

(In,1(t)−EIn,1(t))sin
nπ
ℓ

x)]2 (30)

whereVar denotes the variance operator.The variance can
then be obtained from equation (29) by setting

Var[u1(t,x)] =

4h̄2σ2

ℓ2

∞

∑
n=1

∞

∑
m=1

sin
nπ
ℓ

xsin
mπ
ℓ

x(

ℓ
∫

0

sin
nπ
ℓ

xsin
mπ
ℓ

xdx)

(

t
∫

0

t
∫

0

e(
−nπ
ℓ )2(t−τ1)e(

−mπ
ℓ )2(t−τ2)dτ1dτ2)

Var[u1(t,x)] =
2(1− e−π2t)2h2Sin[πx]2

π4 (31)

The second order approximation is obtained by
substituting withm = 2 in (18) as follows

L[u2(t,x)− u1(t,x)] = h̄R(u1) (32)

where

R(u1) =
∂u1(t,x)

∂ t
−

∂ 2u1(t,x)
∂x2 + ε

1

∑
i=0

u1−i(t,x)ui(t,x)

=
∂u1(t,x)

∂ t
−

∂ 2u1(t,x)
∂x2 +2εu0(t,x)u1(t,x) (33)

Substituting by (33) in (32) we get

L[u2(t,x)− u1(t,x)] = h̄[
∂u1(t,x)

∂ t
−

∂ 2u1(t,x)
∂x2

+2εu0(t,x)u1(t,x)] (34)

The solution of (34) can be obtained using Eigen function
expansion as follows:

u2(t,x) = u1(t,x)+
∞

∑
n=0

In,2(t)sin
nπ
ℓ

x,

where

In,2(t) =

t
∫

0

e(
−nπ
ℓ )2(t−τ)Fn,2(τ)dτ, ,

Fn,2(t) =
2h̄
ℓ

ℓ
∫

0

[
∂u1(t,x)

∂ t
−

∂ 2u1(t,x)
∂x2

+2εu0(t,x)u1(t,x)]sin
nπ
ℓ

xdx. (35)

The ensemble average of the second order solution can be
obtained as

E[u2(t,x)] = E[u1(t,x)]+
∞

∑
n=0

E(In,2(t))sin
nπ
ℓ

x,

where

E(In,2(t)) =

t
∫

0

e(
−nπ
ℓ )2(t−τ)E(Fn,2(τ))dτ,

E(Fn,2(t)) =
2h̄
ℓ

ℓ
∫

0

[
∂
∂ t

E[u1(t,x)]−
∂ 2

∂x2 E[u1(t,x)]

+εu0(t,x)E[u1(t,x)]]sin
nπ
ℓ

xdx,

thenE[u2(t,x)] becomes

E(Fn,2(t)) =
e−π2th(3(−1+ et(π2+βn))π(π2+2βn)

3(π3+2πβ n)
+

−8ε +8et(π2+2βn)ε)Sin[πx]
3(π3+2πβ n)

+

(e−π2th2(−128βnε2− (π2+3βn)(9π2βn(π2+2βn)+

72πβnε −16ε(3π3+6πβn+8ε))+

etβ n(128et(π2+2βn)βnε2+(π2+3βn)

(9eπ2tπ2βn(π2+2βn)+72et(π2+βn)πβnε −
16ε(3π3+6πβn+8ε))))Sin[πx])/

(9π2β n(π2+2βn)(π2+3βn))(36)

The covariance of the second order solution has the
following expression

Cov(u2(t,x1),u2(t,x2) =

E[(u2(t,x1)−Eu2(t,x1))(u2(t,x2)−Eu2(t,x2))] =

E[(
∞

∑
n=1

(In,1(t)−EIn,1(t))sin
nπ
ℓ

x1+

∞

∑
n=1

(In,2(t)−EIn,2(t))sin
nπ
ℓ

x1)
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Cov(u2(t,x1),u2(t,x2) =Cov(u1(t,x1),u1(t,x2)+

E[(
∞

∑
n=1

(In,1(t)−EIn,1(t))sin
nπ
ℓ

x1+
∞

∑
n=1

(In,2(t)−

EIn,2(t))sin
nπ
ℓ

x1)+
∞

∑
n=1

∞

∑
m=1

E((In,2(t)−EIn,2(t))

(Im,2(t)−EIm,2(t)))sin
nπ
ℓ

x1sin
mπ
ℓ

x2

Cov(u2(t,x1),u2(t,x2) =
1

π82h2(3
(

(−1+ e−π2t)2
)

π4

−1
/

(π2+βn) 2e−2π2tπ3(2
(

(−1+ e−π2t)2
)

π2

+2
(

(−1+ e−π2t)2
)

βn +(−1+ eπ2t)

(−1+ et(π2+βn))πε − (−1+ et(π2+βn))π3tε)

+etβ n(128et(π2+2βn)βnε2+(π2+3βn)

−4e−2π2t(π(−4
(

(−1+ e−π2t)2
)

h2π

+
(1− eπ2t +π2t)((−1+ etβn)π4+ etβ n(−1+ eπ2t)βn

2)ε
βn(π2+βn)

)

−
16e2tβnh2(1− eπ2t +π2t)2ε2Sin[πx]2

π2 ))Sin[πx1]Sin[πx2](37)

Cov(u1(t,x1),u2(t,x2) =
1

π52h2(
(

(−1+ e−π2t)2
)

π

−1
/

(π2+βn) e−2π2t(2
(

(−1+ e−π2t)2
)

π2

+2
(

(−1+ e−π2t)2
)

βn +(−1+ eπ2t)(−1+ et(π2+β n))πε

−(−1+ et(π2+β n))π3tε))Sin[πx1]Sin[πx2] (38)

In this manner, we can have more results ofE[um(t,x)]
and Var[um(t,x)] obtained at m = 3,4, .... The final
expression of mean of the 3rd order solution will be.
E[u(t,x)] = ∑M

m=0 E[um(t,x)]=u0(t,x) + E[u1(t,x)] +
E[u2(t,x)]+E[u3(t,x)]

E[u(t,x)] =
1
9
(9etβ n +

6e−π2th(3(−1+ et(π2+βn))π(π2+2βn)−8ε +8et(π2+2βn)ε)
π3+2πβn

+(e−π2th2(−128βnε2− (π2+3βn)(9π2βn(π2+2βn)+

72πβnε −16ε(3π3+6πβn+8ε))+ etβ n(128et(π2+2β n)βnε2

+(π2+3βn)(9eπ2tπ2βn(π2+2βn)+72et(π2+βn)πβnε
−16ε(3π3+6πβn+8ε)))))/
(π2βn(π2+2βn)(π2+3βn)))Sin[πx]. (39)

Sinceu(t,x) = ∑N
i=0 ui(t,x) Then the final expression of

the variance of the 2nd order solution will be
Var

(

∑N
i=1 ui(t,x)

)

=

∑N
i=1Var[ui(t,x)]+

(

∑N
i=1 ∑N

j 6=iCov[ui(t,x),u j(t,x)]
)

Var[u(t,x)] =Var[u1(t,x)]+

Var[u2(t,x)]+2Cov[u1(t,x),u2(t,x)] (40)

Var[u(t,x)] = h2t(4.+ h(4.−1.7149t)+

h2(1.−0.735t+0.12t2))

Var[u(t,x)] =
1

π84h2Sin
(

(−1+ e−π2t)2
)

(3
(

(−1+ e−π2t)2
)

π4−

1
/

(π2+βn) 2e−2π2tπ3(2
(

(−1+ e−π2t)2
)

π2

+2
(

(−1+ e−π2t)2
)

βn +(−1+ eπ2t)

(−1+ et(π2+βn))πε − (−1+ et(π2+βn))π3tε)−

2e−2π2t(π(−4
(

(−1+ e−π2t)2
)

h2π

+
1

βn(π2+βn)
(1− eπ2t +π2t)((−1+ etβn)π4+

etβ n(−1+ eπ2t)βn
2)ε)

−
16e2tβnh2(1− eπ2t +π2t)2ε2Sin[πx]2

π2 )) (41)

4 WHE technique

As a consequence of the completeness of the
Wiener-Hermite set[29], any arbitrary stochastic process
can be expanded in terms of the Weiner-Hermite
polynomial set and this expansion converges to the
original stochastic process with probability one. The
solution functionu(t,x,ω) can be expanded in terms of
Wiener-Hermite functions [26] as:

u(t,x;ω) = u(0)
(

t,x)+

∞
∫

−∞

u(1)
(

t,x;x1)H
(1) (x1 ;ω)dx1

+

∞
∫

−∞

∞
∫

−∞

u(2)
(

t,x;x1,x2)H
(2) (x1 ,x2;ω)dx1dx2

+

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

u(3)(t,x;x1,x2,x3)H
(3)(x1,x2,x3;ω)dx1dx2dx3

+... (42)

The first term in the expansion (42) is the non-random
part or ensemble mean of the function. The first two terms
represent the normally distributed (Gaussian) part of the
solution. Higher terms in the expansion depart more and
more from the Gaussian form[30]. The Gaussian
approximation is usually a bad approximation for
nonlinear problems, especially when high order statistics
are concerned [31]. The componentsu(i)(t,x1,x2, ...,xi)
are called the (deterministic) kernels of the
Wiener-Hermite expansion ofu(t,x). They are functions
of time and space variables and fully account for the time
dependence ofu(t,x) as well as for its statistical
properties [32].ω is a random output of a triple
probability space(Ω ,A,P) , whereΩ is a sample space,
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B is aσ -algebra associated withΩ andP is a probability
measure. For simplicityω will be dropped later on The
function H(n)(t,x1,x2, ...,xn) is the nth order
Wiener-Hermite time-independent functional which is
defined for 1D continuous problem as [28]:

H(n)(x1,x2, ...,xn) = δ n/2(0)e
1
2 ∑n

i=1ξ 2(xi)
n

∏
k=1

(

−∂
∂ξ (xk)

)

e
−1
2 ∑n

i=1ξ 2(xi) (43)

Whereξk is a denumerable set of independent Gaussian
random variables with zero mean and unit variance, and is
the Dirac delta function. The WH functional form a
complete set [29]and they satisfy the following recurrence
relation forn ≥ 1

H(n)(x1,x2, ...xn) = H(n−1)(x1,x2, ...xn−1).H
(1)(xn)

−
n−1

∑
m=1

H(n−2)(xn1,xn2, ...xin−2).δ (tn−m − tn),n ≥ 2 (44)

With H(0) = 1 andH(1)(x1) = N(x1): the white noise. By
construction, the Wiener-Hermite functions are
symmetric in their arguments and are statistically
orthonormal w.r.t the weighting functione

1
2 ∑n

i=1ξ 2(xi), i.e
E[H(i)H( j)] = 0∀i 6= j. The average of almost all
Wiener-Hermite functions vanishes, particularly,
E[H(i)] = 0 for i ≥ 1. The expectation and variance will
beE[u(t,x)] = u(0)(t,x)

Var[u(t,x)] =
∞
∫

−∞
[u(1)(t,x;x1)]

2dx1+

2
∞
∫

−∞

∞
∫

−∞
[u(2)(t,x;x1,x2)]

2dx1dx2 + ... The WHE method

can be elementary used in solving stochastic differential
equations by expanding the solution as well as the
stochastic input processes via the WHE. The resultant
equation is more complex than the original one due to
being a stochastic integro-differential equation. Takinga
set of ensemble averages together with using the
statistical properties of the WHE functions, a set of
deterministic integro-differential equations are obtained
in the deterministic kernelsu(i)(t,x1,x2, ...,xi) To obtain
approximate solutions of these deterministic kernels, one
can use perturbation theory in the case of having a
perturbed system depending on a small parameter .
Expanding the kernels as a power series of , another set of
simpler iterative equations in the kernel series
components is obtained. This is the main algorithm of the
WHEP algorithm, [27]. The technique was successfully
applied to several nonlinear stochastic equations; see for
example [22].

5 HAM-WHE

Step 1: Applying the Wiener-Hermite expansion The first
order solution can be obtained when Consider equation (1)

and searching for the Gaussian part of the solution process,
u(t,x,ω) can be expanded as:

u(t,x;ω) = u(0)(t,x)+

x
∫

0

u(1)(t,x;x1)H
(1)(x1)dx1 (45)

which is a stochastic integro-differential equation in the
deterministic kernelsu(k)(−) whereu(0)(t,x) andu(1)(t,x)
are deterministic kernels to be evaluated, substituting in
the original equation (1) we get:

∂u(0)(t,x)
∂ t

+

x
∫

0

∂u(1)(t,x;x1)

∂ t
H(1)(x1)dx1 =

[
∂ 2u(0)(t,x)

∂x2 +

x
∫

0

∂ 2u(1)(t,x;x1)

∂ t
H(1)(x1)dx1]−

ε



u(0)(t,x)+

x
∫

0

u(1)(t,x;x1),H
(1)(x1)dx1





2

+

σn(x;ω), (46)

Performing the direct average of (46), we get the following
set of deterministic equation:

i)
∂u(0)(t,x)

∂ t
=

∂ 2u(0)(t,x)
∂x2 − ε

(

u(0)(t,x) ])2−

ε
x
∫

0

[u(1)(t,x;x1)]
2dx1,

u(0)(t,0) = 0,u(0)(t, ℓ) = 0,u(0)(0,x) = ϕ(x). (47)

Multiplying equation (46) by H(1)(x2) , taking the
average with using the statistical properties of
Wiener-Hermite polynomials [23]. And lettingx2 → x1 in
the result, we get the following set of deterministic
equation:

ii)
∂u(1)(t,x;x1)

∂ t
=

∂ 2u(1)(t,x;x1)

∂x2 −

2ε u(0)(t,x)u(1)(t,x;x1)+σδ (x− x1)

u(0)(t,0;x1) = 0,u(0)(t, ℓ;x1) = 0,u(0)(0,x,x1) = 0.(48)

The general expression of first order mean is obtained by
taking the average ofu(t,x) that expanded in equation (55)
we get:

µ [u(t,x)] = E[u(t,x)] = u(0)(t,x) (49)

The general expression of first order variance is:

Var[u(t,x)] = E[((u,(t,x)−Eu(t,x)]2 =

[

x
∫

0

x
∫

0

u(1)(t,x;x1)u
(1)(t,x;x2)E(H

(1)(x1)H
(1)(x2))dx2dx1] =

x
∫

0

[u(1)(t,x;x1)]
2dx1 (50)
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Step 2: Using HAM in solving the nonlinear
integral-differential equations (47and 48) separately as
follows: The auxiliary linear operator for equation (47) is
defined as

L[u(0)(t,x)] =
∂u(0)(t,x)

∂ t
−

∂ 2u(0)(t,x)
∂x2 (51)

with

u(0)0 (t,x) =
∞

∑
n=0

Bneβnt sin
nπ
ℓ

x, (52)

Bn =
2
ℓ

ℓ
∫

0

φ(x)sin
nπ
ℓ

xdx

Furthermore, we define the nonlinear operator as

N[u(0)(t,x)] =
∂u(0)(t,x)

∂ t
−

∂ 2u(0)(t,x)
∂x2 +

ε[u(0)(t,x)]2+ ε
∫ x

0
[u(1)(t,x;x1)]

2dx1 (53)

We construct the zero-order deformation equation,

(1− q)L[(u(0)m (t,x)− χmu(0)m−1(t,x)] =

qh̄H(t,x)R(u(0)m−1) (54)

The mth-order deformation equation form ≥ 1 and
H(t,x) = 1 is

L[(u(0)m (t,x)− χmu(0)m−1(t,x)] = h̄R(u(0)m−1) (55)

Subject to boundary conditions

u(0)m (t,0) = 0,u(0)m (t, ℓ) = 0 (56)

and initial condition

u(0)m (0,x) = 0 (57)

whereχm is defined by (12) and

R(u(0)m−1) =
∂u(0)m−1(t,x)

∂ t
−

∂ 2u(0)m−1(t,x)

∂x2 +

ε(
m−1

∑
i=0

u(0)m−1−i(t,x)u
(0)
i (t,x))+

ε
∫ x

0
(

m−1

∑
i=0

u(1)m−1−i(t,x;x1)u
(1)
i (t,x;x1))dx1 (58)

Now the mth order deformation equation (55) for m ≥ 1
becomes

L[(u(0)m (t,x)− χmu(0)m−1(t,x)] = h̄[
∂u(0)m−1(t,x)

∂ t
−

∂ 2u(0)m−1(t,x)

∂x2 + ε(
m−1

∑
i=0

u(0)m−1−i(t,x)u
(0)
i (t,x))+

ε
∫ x

0
(

m−1

∑
i=0

u(1)m−1−i(t,x;x1)u
(1)
i (t,x;x1))dx1; (59)

The first correction is obtained by substituting withm = 1
in (55) as follows:

L[u(0)1 (t,x)] = h̄R(u(0)1 (t,x)) (60)

where

R(u(0)1 (t,x)) =
∂u(0)0 (t,x)

∂ t
−

∂ 2u(0)0 (t,x)

∂x2 +

ε[u(0)0 (t,x)]2+ ε
∫ x

0
[u(1)0 (t,x;x1)]

2dx1; (61)

then

L[u(0)1 (t,x)] = h̄[
∂u(0)0 (t,x)

∂ t
−

∂ 2u(0)0 (t,x)

∂x2 +

ε[u(0)0 (t,x)]2+ ε
∫ x

0
[u(1)0 (t,x;x1)]

2dx1], (62)

The approximated first correction solution of (62) can be
obtained using Eigen function expansion as follows:

u(0)1 (t,x) =
∞

∑
n=0

I(0)n,1(t)sin
nπ
ℓ

x

where

I(0)n,1(t) =

t
∫

0

e(
−nπ
ℓ )2(t−τ)F (0)

n,1 (τ)dτ

F(0)
n,1 (t) =

2h̄
L

L
∫

0

[
∂u(0)0 (t,x)

∂ t
−

∂ 2u(0)0 (t,x)

∂x2 +

ε[u(0)0 (t,x)]2+ ε
∫ x

0
[u(1)0 (t,x;x1)]

2dx1]sin
nπ
ℓ

(63)

The auxiliary linear operator for equation (48) is defined
as

L[u(1)(t,x;x1)] =
∂u(1)(t,x;x1)

∂ t
−

∂ 2u(1)(t,x;x1)

∂x2 (64)

with

u(1)0 (t,x;x1) =
∞

∑
n=0

I(1)n,0(t)sin
nπ
ℓ

x

where

I(1)n,0(t) =

t
∫

0

e(
−nπ
ℓ )2(t−τ)F (1)

n,0 (τ)dτ

F(1)
n,0 (t) =

2σ
ℓ

sin
nπ
ℓ

x1 (65)

Defining the nonlinear operator as

N[u(1)(t,x)] =
∂u(1)(t,x;x1)

∂ t
−

∂ 2u(1)(t,x;x1)

∂x2 +

2ε(u(0)(t,x)u(1)(t,x;x1); (66)

We construct the zero-order deformation equation,

(1− q)L[(u(1)m (t,x)− χmu(1)m−1(t,x)] =

qh̄H(t,x)R(u(1)m−1). (67)
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The mth-order deformation equation form ≥ 1 and
H(t,x) = 1 is

L[(u(1)m (t,x)− χmu(1)m−1(t,x)] = h̄R(u(1)m−1) (68)

Subject to boundary conditions

u(1)m (t,0;x1) = 0,u(1)m (t, ℓ;x1) = 0 (69)

and initial condition

u(0)m (0,x;x1) = 0 (70)

where

R(u(1)m−1) =
∂u(1)m−1(t,x;x1)

∂ t
−

∂ 2u(1)m−1(t,x;x1)

∂x2 +

2ε(
m−1

∑
i=0

u(0)m−1−i(t,x)u
(1)
i (t,x;x1))−σδ (x− x1) (71)

Now the mth-order deformation equation (68) for m ≥ 1
becomes

L[(u(1)m (t,x;x1)− χmu(1)m−1(t,x;x1)] = h̄[
∂u(1)m−1(t,x;x1)

∂ t
−

∂ 2u(1)m−1(t,x;x1)

∂x2 +2ε(
m−1

∑
i=0

u(0)m−1−i(t,x)u
(1)
i (t,x;x1))

−σδ (x− x1)]; (72)

The first correction is obtained by substituting withm = 1
in (68) as follows

L[u(1)1 (t,x;x1)] = h̄R(u(1)0 (t,x;x1)) (73)

where

R(u(1)0 (t,x;x1)) =
∂u(1)0 (t,x;x1)

∂ t
−

∂ 2u(1)0 (t,x;x1)

∂x2 +

2ε(u(0)0 (t,x)u(1)0 (t,x;x1))−σδ (x− x1); (74)

then

L[u(1)1 (t,x;x1)] = h̄[
∂u(1)0 (t,x;x1)

∂ t
−

∂ 2u(1)0 (t,x;x1)

∂x2 +

2ε(u(0)0 (t,x)u(1)0 (t,x;x1))−σδ (x− x1)], (75)

The approximated first correction solution of (75) can be
obtained using Eigen function expansion as follows

u(1)1 (t,x;x1) =
∞

∑
n=0

I(1)n,1(t)sin
nπ
ℓ

x

where

I(1)n,1(t) =

t
∫

0

e(
−nπ
ℓ )2(t−τ)F (1)

n,1 (τ)dτ

F (1)
n,1 (t) =

2h̄
ℓ

L
∫

0

[
∂u(1)0 (t,x;x1)

∂ t
−

∂ 2u(1)0 (t,x;x1)

∂x2 +

2ε(u(0)0 (t,x)u(1)0 (t,x;x1))]sin
nπ
ℓ

xdx−
2h̄σ
ℓ

sin
nπ
ℓ

x1, (76)
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Fig. 1: The change of the meanu with parameter̄h at differentt
andx values.
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Fig. 2: The change of the meanu with parameter̄h at different
βn values,ε = 1 andt = x = 0.1..

The ensemble average of the first order first correction
approximation is obtained by substituting in (49)

E[u1(t,x)] = u(0)(t,x) = u(0)0 (t,x)+ u(0)1 (t,x) (77)

The variance of the first order first correction
approximation is obtained by substituting in (50)

Varu1(t,x) =

x
∫

0

[u(1)(t,x;x1)]
2dx1 =

x
∫

0

[u(1)0 (t,x;x1)+

u(1)1 (t,x;x1)]
2dx1 (78)

whereVar denotes the variance operator. Similarly the
second, third and fourth corrections are obtained by
substituting in equations (55and68) by m = 2,3,4.

6 Result analysis

In the following figures, results of HAM technique are
shown first followed by HAM-WHEP results finally
comparisons between them.
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Fig. 3: The change of the meanu with timet at differentε values,
x = 0.1, βn =−1 andh̄ =−0.96.
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Fig. 4: The change of the varianceu with time t at differentε
values,x = 0.1, βn =−1 andh̄ =−0.96.
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Fig. 5: Mean comparison between firstu1, secondu2 and third
order u3 approximations with timet at x = 0.1, βn = −1 and
h̄ =−0.96.

6.1 HAM Results

Results of the solution of 2D stochastic quadratic
nonlinear diffusion model using HAM technique are
shown at
σ = 1,ℓ= 1,βn =−1,n = 1,ε = 1,Φ(x) = sin nπ

ℓ x. Figure
1 shows thēh-curve of third order approximation of mean
for different values of time t and space variablex at
σ = 1,ℓ = 1,βn = −1,n = 1,ε = 1,Φ(x) = sin nπ

ℓ x.Figure
2 shows thēh-curve of third order approximation of mean

0.2 0.4 0.6 0.8 1.0
t

0.02

0.04

0.06

0.08

Variance-u1-u2,Βn=-1,Ε=1,x=.5

var-u1

var-u2

Fig. 6: Variance comparison between first and second
approximationsu1, u2 with time t at x = 0.1, βn = −1andh̄ =
−0.96
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Fig. 7: Mean comparison between HAM first order ath̄=−0.96,
HPM first order and Picard first order att = 0.1.
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Fig. 8: Mean comparison between HAM second order ath̄ =
−0.96, HPM second order and Picard second order att = 0.1.

for differentβn values. According to thesēh-curves, it is
easy to discover that the valid region of is a horizontal
line segments−1.1≤ h̄ ≤ −0.9, thush̄ = −0.96. Figures
3 and4 show mean and variance with timet for different
ε values respectively. Figure5 shows mean comparison
between first, second and third order approximations;
figure 6 shows variance comparison between first and
second order approximations.Figures7 and8 show mean
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Fig. 9: Variance comparison between HAM first order ath̄ =
−0.96, HPM first order and Picard first order att = 0.1.
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Fig. 10: Variance comparison between HAM second order ath̄ =
−0.96, HPM second order and Picard second order att = 0.1.

comparison between HAM, HPM and Picard [19]
methods for first, second and third order approximations.

Table 1: Mean comparison between HAM second order ath̄ =
−0.96, HPM second order and Picard second order att = 0.1,
βn =−1 andε = 1.

x HAM HPM Picard
-1 -4.5E-17 -4.5E-17 -4.3E-17
-0.6 -0.34622 -0.34622 -0.33616
-0.2 -0.21398 -0.21398 -0.20776
0.2 0.213978 0.213978 0.207758
0.6 0.346223 0.346223 0.336159
1 4.46E-17 4.46E-17 4.33E-17

Tables1 and2 show the comparison between Homotopy
analysis method, Homotopy perturbation method and
Picard method. these tables shows the results between
three methods are closed. Figures9 and 10 illustrate
variance comparison between HAM, HPM and Picard
methods for first and second approximations only. We
should note to the inability of computing high order

Table 2: Variance comparison between HAM first order ath̄ =
−0.96, HPM first order and Picard first order atx = 0.1, βn =−1
andε = 1.

t HAM HPM Picard
0 0 0 0
0.2 0.01403 0.01403 0.015224
0.4 0.018199 0.018199 0.019747
0.6 0.018821 0.018821 0.020422
0.8 0.018908 0.018908 0.020517
1 0.01892 0.01892 0.02053

-1.2 -1.0 -0.8 -0.6 -0.4
h

0.05

0.10

0.15

0.20

0.25

0.30

mean-u12

t,x=.1

t,x=.2

t,x=.3

t,x=.4

t,x=.5

Fig. 11: The change of the mean of first order second correction
approximationu2

1 with parameter̄h at differentt,x values,ε = 1
andβn =−1.
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Fig. 12: The change of the mean of first order second correction
approximationu2

1 with parameter̄h at differentβn values andt =
x = 0.1.
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Fig. 13: The change of the variance of first order second
correction approximationu2

1 with parameter̄h at differentt andx
values.

approximations of mean and variance because of huge
computations required. Comparisons among results of the
computations of mean and variance illustrates that the
results of three methods are very close from each other.
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Fig. 16: The change of the first order second correction meanu1
2

with time t at differentε valuesx = 0.1 andh̄ =−0.96.
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Fig. 17: The change of the first order third correction meanu1
3

with time t at differentε values,x = 0.1 andh̄ =−0.96.

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

Mean

1'st correction

2'nd correction

3'rd correction

Fig. 18: The change of the first order second correction variance
u1

2 with time t at differentε values,x = 0.1 andh̄ =−0.3.

0.2 0.4 0.6 0.8 1.0
t

2.´10-6

4.´10-6

6.´10-6

8.´10-6

0.00001

0.000012

Variance

1'st correction

2'nd correction

3'rd correction

Fig. 19: The change of the first order second correction variance
u31 with timet at differentε values,x = 0.1 andh̄ =−0.3.
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Fig. 20: The change of first order variance of first, second and
third corrections. Comparison between the different corrections
for ε = 0.5 andx = 0.1.
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Fig. 21: he change of first order variance of first, second and
third corrections. Comparison between the different corrections
for ε = 1 andx = 0.1
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Fig. 22: he change of first order variance of first, second and
third corrections. Comparison between the different corrections
for ε = 5 andx = 0.1

6.2 HAM-WHE Results

Results of the solution of 2D stochastic quadratic
nonlinear diffusion model using HAM-WHE technique
are shown at
σ = 1,ℓ = 1,βn = −1,n = 1,ε = 1,Φ(x) = sin nπ

ℓ x.
Figures 11 and 13 show the h̄-curves of mean and
variance of first order second correction for different time
and space values. Figure12 shows the Plot of̄h-curve of
mean of first order second correction at differentβn
values att = x = 0.1.Figures14 and15 shows the Plot of
h̄ -curves of mean and variance of first order third
correction for different time and space values. Figures16,
17 and18 show first order mean of first, second and third
correction for different values ofε for ε = 0.1, ε = 0.5
and ε = 5. For small value of nonlinearity strength
ε = 0.1,1, the divergence of solution occurred in later
interval aftert = 0.7, but for large value ofε the mean of
the solution diverges att = 0.1 as indicated in figure18.
Figures19, 20, 21 and 22 show first order variance of
first, second and third correction for different values of
for ε = 0.1, ε = 0.5 and ε = 5 . For small value of
nonlinearity strengthε = 0.1,1 the divergence of solution
occurred in later interval aftert = 0.7, but for large value
of ε the mean of the solution diverges aftert = 0.1 as
indicated in figure22. We can say that it’s a good result
since in (WHEP and homotopy-WHEP) we couldn’t use
high values ofε without explosion of the solution in a
small time interval.

7 Conclusions and Discussion

In this paper, the HAM-WHEP is proposed and used to
give a statistical analytic solution of the stochastic
diffusion equations. The application of this method has
two steps, the first step indicated the approximation of the
stochastic model using the first order series of the Wiener
Hermite expansion of the stochastic solution process and
the second step presented the application of the homotopy
analysis method (HAM) to approximate the deterministic
system which reduced from the first step using the
statistic- al properties of WHE. The solution obtained by
means of the HAM is an infinite power series for

appropriate initial approximation, which can be, in turn,
expressed in a closed form.
Different from all other analytic methods, the
HAM-WHE provides us with a simple way to adjust and
control the convergence region of the series solution by
means of the auxiliary parameter̄h. Thus the auxiliary
parameter̄h plays an important role within the frame of
the HAM so also the HAM-WHE which can be
determined by the so called̄h-curves. As shown in figures
1 and2 we can see that the valid̄h region using HAM is
−1 < h̄ < −0.9.and using HAM-WHE the interval is
−0.98< h̄ < −0.92, as shown in figure11. The results
demonstrate reliability and efficiency of the HAM-WHE
method. From the results of two steps, some cases studies
indicated some corrections of the approximation process
for the statistical moments of the solution process, we can
say that this is the first time to apply HAM-WHE method
on stochastic problems and we found that it’s easier than
WHEP and more general than HPM and
homotopy-WHEP since HPM is a special case of HAM
obtained at and its results is accurate.
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