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Abstract: In this paper, we define a generalized chi-square distribution by using a new parameterk> 0. we give some properties of the
said distribution including the moment generating function and characteristic function in terms ofk. Also, we establish a relationship
in central moments involving the parameterk > 0. If k= 1, we have all the results of classicalχ2 distribution.
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1 Introduction and basic definitions

The chi-square distribution was first introduced in 1875 by F.R. Helmert, a German physicist. Later in 1900, Karl
Pearson proved that asn approaches infinity, a discrete multinomial distribution may be transformed and made to
approach a chi-square distribution. This approximation has broad applications such as a test of goodness of fit, as a test
of independence and as a test of homogeneity.

The chi-square distribution contains only one parameter, called the number of degrees of freedom, where the term degree
of freedom represent the number of independent random variables that express the chi-square. If the random variables
entering a chi-square are subjected to linear restrictions, then the number of degrees of freedom is reduced by the number
of restrictions involved. we generalize the chi-square distribution in the form of a new parameterk wherek> 0.

Here, we give some definitions which provide a base for our main results. The definitions(1.1−1.2) are given in [1]
while (1.3−1.4) are introduced in [2]. Also, we have taken some statistics related definitions(1.5−1.11) from [3-6].

1.1 Pochhmmer’s Symbol.

The factorial function is denoted and defined by

(a)n =

{

a(a+1)(a+2) · · ·(a+n−1); for n≥ 1,a 6= 0
1 if n= 0. (1.1)

The function(a)n defined in relation (1.1) is also known as Pochhmmer’s symbol.

1.2 Gamma Function.

Let z∈ C, the Euler gamma function is defined by

Γ (z) = lim
n→∞

n!nz−1

(z)n
(1.2)
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and the integral form of gamma function is given by

Γ (z) =

∞
∫

0

tz−1e−tdt, R(z)> 0. (1.3)

From the relation (1.3), using integration by parts, we can easily show that

Γ (z+1) = zΓ (z) (1.4)

The relation between Pochhammer’s symbol and gamma function is given by

(z)n =
Γ (z+n)

Γ (z)
. (1.5)

1.3 Pochhammer k-Symbol.

Fork> 0, the Pochhammerk-symbol is denoted and defined by

(a)n,k =

{

a(a+ k)(a+2k) · · ·(a+(n−1)k) for n≥ 1,a 6= 0
1 if n= 0. (1.6)

1.4 k-Gamma Function.

Fork> 0 andz∈ C, thek-gamma function is defined as

Γk(z) = lim
n→∞

n!kn(nk)
z
k−1

(z)n,k
(1.7)

and the integral representation ofk-gamma function is

Γk(z) =

∞
∫

0

tz−1e
−tk

k dt. (1.8)

Also, the researchers [7-12] have worked on the generalizedk-gamma andk-beta functions and discussed the different
properties of these functions. Here we give some of the properties ofk-gamma function as:

Γk(x+ k) = xΓk(x) (1.9)

(x)n,k =
Γk(x+nk)

Γk(x)
(1.10)

Γk(k) = 1, k> 0. (1.11)

For more details about the theory ofk-special functions like,k-gamma function,k-beta function,k- hypergeometric
functions, solutions ofk-hypergeometric differential equations, contegious functions relations, inequalities with
applications and integral representations with applications involvingk-gamma andk-beta functions,k-gamma andk-beta
probability distributions and so forth (See [13-19]).

1.5 Moments:

A moment designates the power to which the deviations are raised before averaging them. In statistics, we have three
kinds of moments as:
(i) Moments about any valuex = A is the rth power of the deviation of variable fromA and is called the rth moment of
the distribution aboutA. (ii) Moments aboutx= 0 is the rth power of the deviation of variable from 0 and is called the rth
moment of the distribution about 0.(iii) Moments about mean i.e.,x = µ is the rth power of the deviation of variable
from mean and is called the rth moment of the distribution about mean. These moments are also called central moments
or mean moments and are used to describe the set of data.

Note: The moments about any numberx= A and aboutx= 0 are denoted byµ ′
r while about mean position, it is denoted

by µr andµ0 = µ ′
0 = 1.
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1.6 Moments of the continuous distribution.

If a random variableX assumes all the values froma to b, then for a continuous distribution, the rth moment about the
arbitrary numberA and meanµ respectively, are given by

µ ′
r =

∫ b

a
(x−A)r f (x)dx (1.12)

and

µr =

∫ b

a
(x− µ)r f (x)dx. (1.13)

1.7 Probability Distribution and Expected values:

In a random experiment withn outcomes, suppose a variableX assumes the valuesx1,x2,x3, ...,xn with corresponding
probabilitiesp1, p2, p3, ..., pn, then this collection is called probability distribution and Σ pi = 1 (in case of discrete
distributions). Also, if f (x) is a continuous probability distribution function defined on an interval [a,b], then
∫ b

a f (x)dx= 1. The expected value of the variate is defined as the first moment of the probability distribution aboutx= 0
i.e.,

µ ′
1 = E(X) =

∫ b

a
x f(x)dx (1.14)

and the rth moment about mean of the probability distribution is defined asE(X − µ)r , whereµ is the mean of the
distribution.

1.8 Moment generating function:

Let f (x) be the probability density function of a variateX in the distribution, then the expected value ofetX is called
moment generating function of the distribution aboutx = 0 and is denoted byM0(t) , wheret is a positive real number
independent ofx. Thus, for a continuous random variableX assuming all the values froma to b, them.g. f . is given by

M0(t) = E(etX) =

∫ b

a
etx f (x)dx. (1.15)

Similarly, the moment generating function about assumed meanA and meanµ respectively, are given by

MA(t) = E(et(X−A)) =
∫ b

a
et(x−A) f (x)dx (1.16)

and

Mµ(t) = E(et(X−µ)) =

∫ b

a
et(x−µ) f (x)dx. (1.17)

A link between the above moment generating functions is established as

Mµ(t) = e−tµM0(t) , MA(t) = e−tAM0(t). (1.18)

Note: The moment generating function of the sum of two independentvariates is equal to the product of their respective
moment generating functions.

1.9 Normal Distribution

A normal distribution is defined by the p.d.f. as

f (z) =
1

σ
√

2π
e
(z−µ)2

2σ2 , for−∞ < z< ∞,andσ > 0, (1.19)

whereµ is the mean andσ is the standard deviation, the two parameters of the normal distribution, and it is usually
denoted byN(µ ,σ2).
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1.10 Standardized Normal Distribution

The normal probability distribution which has zero mean andunit variance is called the standardized normal distribution
or unit normal distribution and is denoted byN(0,1). The distribution function of the standard normal distribution, is
given by

ϕ(z) =
1√
2π

∫ z

−∞
e
−t2

2 dt. (1.20)

1.11 Chi-Square Distribution

Let Z1,Z2, · · · ,Zn be normally and independently distributed random variables with zero mean and unit variances. Then
the random variable expressed by the quantity as

χ2 =
n

∑
i=1

Z2
i ,

is defined as chi-square random variable withn degrees of freedom. That is, aχ2 random variable is defined as the sum
of squares of independent standard normal random variable and its density function is defined as

f (χ2) =
1

2Γ (n
2)
(

χ2

2
)

n
2−1e−

(χ2)
2 ; ,0< χ2

< ∞. (1.21)

The random variableχ2 having the above density function is said to possess the chi-square distribution withn degrees of
freedom, denoted byχ2(n), where the parametern is a positive integer.

2 Main Results: Generalized Form of Chi-Square Distribution.

Here, we introduce the generalized form of chi-square distribution with a new parameterk > 0. Also, we prove some
properties of the distribution involving the said parameter k. If k= 1, we get the classical results.

2.1 Definition

Let Z1,k,Z2,k, · · · ,Zn,k (wherek> 0) be normally and independently distributed random variables with zero mean and unit
variances, then the random variables expressed by the quantity as

χ2
k =

n

∑
i=1

Zi,k (2.1)

and is called the generalized chi-square random variable with n degrees of freedom. That is, aχ2
k random variable is

defined as the sum of squares of independent standard normal random variables. Its density function is defined as;

f (χ2
k ) =

1
2Γk(

n
2)
(

χ2
k

2
)

n
2−1e−

(χ2
k )

k

2k ; 0< χ2
k < ∞,k> 0. (2.2)

Random variablesχ2
k having the above density function are said to possess the chi-square distributions withn degrees of

freedom, denoted byχ2
k (n), where the parametern is a positive integer. Asχ2

k distribution full fill the definition of
chi-square distribution, so the curve ofχ2

k will remain unchanged for each positive value ofk given earlier.

Remarks: If k = 1, thenZ1,Z2, · · · ,Zn are in the classical form of normally and independently distributed random
variables with zero mean and unit variances.
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2.2 Proposition:

The generalized chi-square distribution function defined in (2.2), with a new parameterk> 0, has the following properties:

(i)The mean of generalized chi-square distribution is equal to the number of degrees of freedom.

(ii)The variance of generalized chi-square distribution is equal to 2nk.

Proof: Using the definition of expected values, we have

µk = E(χ2
k ) =

2
2Γk(

n
2)

∞
∫

0

(
χ2

k

2
)

n
2 e−

(χ2
k )

k

2k dχ2
k . (2.3)

Substitutingy=
χ2

k
2 impliesdy=

dχ2
k

2 , the equation (2.3) gives

µk =
2

Γk(
n
2)

∞
∫

0

y
n
2 e−

yk

k dy=
2

Γk(
n
2)

Γk(
n
2
+ k)

=
2

Γk(
n
2)

n
2

Γk(
n
2
) = n,

which shows the required result.

(ii): To find the variance, we proceed as

E
(

(χ2
k )

2
)

=
4

2Γk(
n
2)

∞
∫

0

(
χ2

k

2
)

n
2+1e−

(χ2
k )

k

2k dχ2
k (2.4)

Puttingy=
χ2

k
2 impliesdy=

dχ2
k

2 and equation (2.4) takes the form

E[(χ2
k )

2] =
4

Γk(
n
2)

∞
∫

0

y
n
2+1e−

yk

k dy=
4

Γk(
n
2)

Γk(
n
2
+2k)

=
4

Γk(
n
2)

n
2
(
n
2
+ k)Γk(

n
2
) = n(n+2k).

Now, variance is given by

Var(χ2
k ) = E

(

(χ2
k )

2
)

−
(

E(χ2
k )
)2

= n(n+2k)−n2 = 2nk.

This implies that the variance ofχ2
k is equal to the twice of degrees of freedom multiplied by the new parameterk.

2.3 Theorem.

Fork> 0, the algebraic moments of orderr, of generalized chi-square distribution are given by

µ ′
r,k = 2r(

n
2
)(

n
2
+ k) · · · (n

2
+(r −1)k) (2.5)

Proof: Using the definition of expected values, along with the generalized form of chi-square distribution, we get

µ ′
r,k = E((χ2

k )
r) =

2r

2Γk(
n
2)

∞
∫

0

(
χ2

k

2
)

n
2+r−1e−

(χ2
k )

k

2k
dχ2

k . (2.6)

Let y=
χ2

k
2 ⇒ dy=

dχ2
k

2 . Thus, the right hand side of equation (2.6) becomes,

µ ′
r,k =

2r

Γk(
n
2)

∞
∫

0

y
n
2+r−1e−

yk

k dy=
2r

Γk(
n
2)

Γk(
n
2
+ rk)

By the properties ofk-gamma function given in the relation (1.9), we get the desired theorem.
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2.4 Theorem.

The characteristic function, for the generalized chi-square distribution withn degrees of freedom, is given by

φk(t) = (1−2kt)−
n
2k ; t <

1
2k

,k> 0. (2.7)

Proof: By the definition of expected values, we see that

φk(t) = E(etχ2
k ) =

1
2Γk(

n
2)

∞
∫

0

(
χ2

k

2
)

n
2−1e−

1
2k (1−2kt)(χ2

k )
k
dχ2

k .

Settingy=
χ2

k (1−2kt)
1
k

2 gives dy

(1−2kt)
1
k
=

dχ2
k

2 and above equation becomes

φk(t) =
1

2Γk(
n
2)(1−2kt)

n
2k−

1
k

∞
∫

0

(y)
n
2−1e−

yk

k
dy

(1−2kt)
1
k

=
1

Γk(
n
2)(1−2kt)

n
2k

∞
∫

0

(y)
n
2−1e−

yk

k dy

= (1−2kt)−
n
2k ; t <

1
2k

,k> 0.

Remarks: If X(k) andY(k) are independentχ2
k random variables withn1 andn2 degrees of freedom respectively, then the

sumX(k)+Y(k) is aχ2
k -random variable withn1+n2 degrees of freedom. OR the sum of twoχ2

k variates is equal to aχ2
k

variate.

Proof: The moment generating function of the sum of two independentvariates is equal to the product of their respective
moment generating functions. Thus, we have
M(X(k)+Y(k)) = M(X(k)).M(Y(k))

= (1−2kt)
−n1
2k .(1−2kt)

−n2
2k

= (1−2kt)−
(n1+n2)

2k ,

which shows the desired result.

2.5 Theorem.

Theχ2
k -distribution tends to normal distribution as the number ofdegrees approaches infinity.

Proof: The moment generating function ofχ2
k(n) is Mo(t) = (1−2kt)−

n
2k . Let us consider theχ2

k standard variables
χ2

k−n√
2nk

.
Then its m.g.f. about mean is

Mµ(t) = e
− nt√

2nk Mo(
t
σ
)

= e
− nt√

2nk(1− 2kt√
2nk

)−
n
2k .

Taking natural log, we have

lnMµ(t) = − nt√
2nk

− n
2k

ln(1− 2kt√
2nk

)

= − nt√
2nk

+
n
2k

[ 2kt√
2nk

+
1
2

4k2t2

2nk
+higher powers of

1
n

]

=
t2

2
+higher powers of

1
n
.

Thus asn → ∞, then lnMµ(t) → t2
2 so thatMµ(t) → e

t2
2 which is the m.g.f. of standard normal variable. Hence the

random variable
χ2

k−n√
2nk

tends to standard normal distribution and consequently theχ2
k -distribution tends to normality asn

approaches infinity.
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2.6 Theorem.

The curve ofχ2
k distribution is positively skewed.

Proof: From the moment generating function ofχ2
k distribution, we see that

µ ′
1,k = n, µ ′

2,k = n(n+2k) ,

µ ′
3,k = n(n+2k)(n+4k) , µ ′

4,k = n(n+2k)(n+4k)(n+6k).
Now, the moment about mean (central moments) are given by
µ1,k = 0

µ2,k = µ ′
2,k− (µ ′

1,k)
2 = n(n+2k)−n2 = 2nk

µ3,k = µ ′
3,k−3µ ′

2,kµ ′
1,k+2(µ ′

1,k)
3 = 8nk2

µ4,k = µ ′
4,k−4µ ′

3,kµ ′
1,k+6µ ′

2,k(µ
′
1,k)

2−3(µ ′
1,k)

4 = 12nk2(n+4k)
and

β1 =
(µ3,k)

2

(µ2,k)3 =
k
n
, and β2 =

µ4,k

(µ2,k)2 =
12nk2(n+4k)

4n2k2 = 3+
12k
n

.

Remarks: As β1 6= 0 implies that the distribution is not symmetrical. Also,β2 => 3 implies that it is extremely skewed.
Actually, the curve ofχ2

k distribution is positively skewed and the skewness decreases asn increases. Forn= 1 andk= 1,
we have

f (χ2
1) =

1
√

2πχ2
1

e−
χ2
1
2 ,

the curve is extremely J-shaped.

2.7 Theorem.

Fork> 0, theχ2
k distribution withn degrees of freedom , the central moments obey the relation

µr+1,k = 2r(µr,k+nµr−1,k). (2.8)

Proof: The rth moment ofχ2
k distribution about mean are given by

µr,k =
1

2
n
2 Γk(

n
2)

∫ ∞

0
(χ2− µk)

re−
(χ2)k

2k (χ2)
n
2−1d(χ2).

and

µr−1,k =
1

2
n
2 Γk(

n
2)

∫ ∞

0
(χ2− µk)

r−1e−
(χ2)k

2k (χ2)
n
2−1d(χ2).

Usingµk = n, from the above equations, with some algebraic calculations along with integration by parts, we can easily
conclude the required result.

Conclusion.In this paper, the authors conclude that
(i)The mean of the generalized chi-square remain the same for each positive value ofk and the variance of the

generalized chi-square will be multiplied with parameterk. If k tends to 1 then the variance will tends to the variance
of chi-square.

(ii)The m.g.f of the generalized chi-square is(1−2kt)
−n
2k , if k= 1 then it will be equal to the m.g.f of simple chi-square.

(iii)The moments of the generalized chi-square isµ1 is equal ton for each value ofk > 0 and the momentsµ2,µ3, · · ·
will change with the parameterk, if k tends to 1 then it will simply be the moments of chi-square.

(iv)The generalized chi-square tends to a standard normal distribution for each positive value ofk.
Acknowledgement.

The authors would like to express profound gratitude to referees for deeper review of this paper and the referee’s useful
suggestions that led to an improved presentation of the paper.
Conflict of Interests.
The author(s) declare(s) that there is no conflict of interests regarding the publication of this article.

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


126 G. Rahman et. al. : Generalization of Chi-square Distribution

References

[1] E.D. Rainville,Special Funtions, Macmillan Company, New York, 1960.press, 1990.
[2] R. Diaz and E. Pariguan ,On hypergeometric functions and pochhammer k-symbol, Divulgaciones Matemticas, Vol.15 No.

2(2007),pp.179-192.
[3] M.G. Kendall and A. Stuart,The Advanced Theory of Statistics, Vol. 2, Charles Griffin and Company Limited, London 1961.
[4] R.J. Larsen and M.L. Marx,An Introduction to Mathematical Statistics and Its Applications 5th edition, Prentice-Hall International.
[5] C. Walac,A Hand Book on Statictical Distributations for Experimentalists, last modification 10 september 2007.
[6] N.A.J. Hasting and J.B. Peacock:Statistical distributions, Butterworth and Company Ltd, 1975.
[7] C.G. Kokologiannaki, Prpperties and inequalities of generalized k-gamma, beta and zeta functions, International Journal of

Contemp. Math Sciences, Vol.5, 2010, No. 14, PP. 653-660.
[8] C.G. Kokologiannaki and V. Krasniqi,Some properties of k-gamma function. LE Matematiche, Vol, LXVIII (2013), PP.13-22.
[9] V. Krasniqi, A limit for the k-gamma and k-beta function, Int. Math. Forum, 5(2010), No. 33, PP. 1613-1617.
[10]M. Mansoor,Determining the k-generalized gamma functionΓk(x) by functional equations, International Journal Contemp. Math.

Sciences, Vol. 4, 2009, No. 21, PP. 1037-1042.
[11]S. Mubeen and G.M. Habibullah,An integral representation of some k-hypergeometric functions, Int. Math. Forum, Vol. 7(2012),

No.4, PP. 203-207.
[12]S. Mubeen and G.M. Habibullah,k-Fractional integrals and applications, International Journal of Mathematics and Science Vol.

7(2012), No.2, PP. 89-94.
[13]G. Rehman, S. Mubeen, A. Rehman and M. Naz,On k-Gamma , k-beta distributions and Moment generating Functions, Journal

of Probability and Statistics, Volume 2014, Article ID 982013, 6 pages.
[14]S. Mubeen , M. Naz , G. Rahman,A note on k-hypergeometric diffrential equations,Journal of Inequalities and Special Functions

ISSN: 2217-4303, URL: http://www.ilirias.com, Volume 4, Issue 3(2013), Pages 38-43.
[15]S. Mubeen, G. Rahman, A. Rehman and M. Naz,Contiguous function relations for k-hypergeometric functions,ISRN Mathematical

Analysis Volume 2014, Article ID 410801, 6 pages.
[16]S. Mubeen, M. Naz, A. Rehman and G. Rahman,Solutions of k-hypergeometric differential equations, Journal of Applied

Mathematics Volume 2014, 13 pages.
[17]S. Mubeen, A. Rehman and F. Shaheen,Properties of k-gamma, k-beta and k-psi functions,Bothalia Journal, Vol.4 (2014), pp.371-

379.
[18]A. Rehman, S. Mubeen, N. Sadiq and F, Shaheen,Some inequalities involving k-gamma and k-beta functions with applications.

Journal of inequalities and applications (2014,2014 : 224).
[19]V. Krasniqi,Inequalities and monotonicity for the Ration of k-gamma function, Scientia Magna, Vol. 6, Issue 1(2010), Pages 40-45.

c© 2015 NSP
Natural Sciences Publishing Cor.


	Introduction and basic definitions
	Main Results: Generalized Form of Chi-Square Distribution.

