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Abstract: In this paper, we define a generalized chi-square distohuty using a new parameter- 0. we give some properties of the
said distribution including the moment generating funetémd characteristic function in termslkfAlso, we establish a relationship
in central moments involving the parameker 0. If k = 1, we have all the results of classigg distribution.
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1 Introduction and basic definitions

The chi-square distribution was first introduced in 1875 bR.FHelmert, a German physicist. Later in 1900, Karl
Pearson proved that as approaches infinity, a discrete multinomial distributiomyrbe transformed and made to
approach a chi-square distribution. This approximationlir@ad applications such as a test of goodness of fit, as a test
of independence and as a test of homogeneity.

The chi-square distribution contains only one parametdied the number of degrees of freedom, where the term degree
of freedom represent the number of independent randomblesidhat express the chi-square. If the random variables
entering a chi-square are subjected to linear restrictitves) the number of degrees of freedom is reduced by the numbe
of restrictions involved. we generalize the chi-squargrithistion in the form of a new parametemwherek > 0.

Here, we give some definitions which provide a base for ounmesults. The definitiontl.1 — 1.2) are given in [1]
while (1.3 — 1.4) are introduced in [2]. Also, we have taken some statistilzed definitiong1.5— 1.11) from [3-6].

1.1 Pochhmmer’s Symbol.

The factorial function is denoted and defined by

a(a+1)(a+2)---(a+n—-1); for n>1,a#0
R I S ’ CRY
The function(a), defined in relation (1.1) is also known as Pochhmmer’s symbol
1.2 Gamma Function.
Letze C, the Euler gamma function is defined by
ninz~1
r(z= r!mo @ (1.2)
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and the integral form of gamma function is given by

r(z)= / t#letdt, R(z) > 0. (1.3)
0
From the relation (1.3), using integration by parts, we casilg show that
M(z+1) =12 (2 (1.4)
The relation between Pochhammer’s symbol and gamma fumistigiven by
_ (z+n)
(2n= T@ (1.5)

1.3 Pochhammer k-Symbol.

Fork > 0, the Pochhammérsymbol is denoted and defined by

a(a+k)(a+2k)---(a+(n—1)k) for n>1a#0

(@os = { 30 W20 (@ (020 >1.a# (L6)
1.4 k-Gamma Function.
Fork > 0 andz € C, thek-gamma function is defined as

ik (nk)k—1
(2 = lim ————— 1.7
k( ) Nesoo (Z)n,k ( )
and the integral representationlke§amma function is

[=4) i
l(2) = / t#Lledt. (1.8)

0

Also, the researchers [7-12] have worked on the generakzpinma and-beta functions and discussed the different
properties of these functions. Here we give some of the ptiggefk-gamma function as:

Tc(X+K) = x(X) (1.9)
~ Ni(x+nk)

(X)nk = R (1.10)

(k) =1, k> 0. (1.12)

For more details about the theory kfspecial functions likek-gamma functionk-beta function k- hypergeometric
functions, solutions ofk-hypergeometric differential equations, contegious fioms relations, inequalities with
applications and integral representations with applicetinvolvingk-gamma andk-beta functionsk-gamma andk-beta
probability distributions and so forth (See [13-19]).

1.5 Moments:

A moment designates the power to which the deviations asedabefore averaging them. In statistics, we have three
kinds of moments as:

(i) Moments about any value= A is the rth power of the deviation of variable frofnand is called the rth moment of
the distribution abouA. (i) Moments aboux = 0 is the rth power of the deviation of variable from 0 and idexhthe rth
moment of the distribution about Qi) Moments about mean i.ex,= u is the rth power of the deviation of variable
from mean and is called the rth moment of the distributionulooean. These moments are also called central moments
or mean moments and are used to describe the set of data.

Note: The moments about any numbet A and abouk = 0 are denoted by, while about mean position, it is denoted
by ur andpio = py = 1.
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1.6 Moments of the continuous distribution.

If a random variableX assumes all the values froato b, then for a continuous distribution, the rth moment aboat th
arbitrary numbeA and mearu respectively, are given by

W= /:(X—A)'f(x)dx (1.12)

and )
pe= [0 10 (1.13)

1.7 Probability Distribution and Expected values:

In a random experiment with outcomes, suppose a varialdeassumes the values, xp, X3, ..., Xy With corresponding
probabilities p1, p2, ps, ..., Pn, then this collection is called probability distributioméa>p; = 1 (in case of discrete
distributions). Also, if f(x) is a continuous probability distribution function defined an interval[a,b], then
f;’ f(x)dx= 1. The expected value of the variate is defined as the first mbafi¢he probability distribution about= 0
ie.,

b
ui:E(X):/ xF(X)dx (1.14)

and the rth moment about mean of the probability distribui® defined a€s(X — )", wherepu is the mean of the
distribution.

1.8 Moment generating function:

Let f(x) be the probability density function of a variatein the distribution, then the expected valueebf is called
moment generating function of the distribution abrut 0 and is denoted bilp(t) , wheret is a positive real number
independent of. Thus, for a continuous random varialleassuming all the values froaito b, them.g. f. is given by

Mo(t) = E(&X) = /a;betxf(x)dx (1.15)
Similarly, the moment generating function about assumeanAeand mearu respectively, are given by
Ma(t) = E(XA)) — /a " A £ (xdx (1.16)
and )
My (t) = E(&XH) = /a 0K £ (x)dx (1.17)

A link between the above moment generating functions isbéisted as
My(t) = e “Mo(t),  Ma(t) = e AMo(t). (1.18)

Note: The moment generating function of the sum of two independaridtes is equal to the product of their respective
moment generating functions.

1.9 Normal Distribution
A normal distribution is defined by the p.d.f. as
1
f(z) =
&= ovzn

whereu is the mean and is the standard deviation, the two parameters of the norisgilzltion, and it is usually
denoted byN(u, g?).

()2
e 202 for—o < z< o ,ando > 0, (2.19)
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1.10 Standardized Normal Distribution

The normal probability distribution which has zero mean ani variance is called the standardized normal distrdsuti
or unit normal distribution and is denoted by(0,1). The distribution function of the standard normal disttibn, is
given by

z

1 -z
6(2) = ELMe 5 dt. (1.20)

1.11 Chi-Square Distribution

LetZy,Z,,---,Z, be normally and independently distributed random varighligh zero mean and unit variances. Then
the random variable expressed by the quantity as

xX*= iZ?,
i=

is defined as chi-square random variable wittlegrees of freedom. That is x& random variable is defined as the sum
of squares of independent standard normal random variablésdensity function is defined as

1 x? x?)

f(x?) = 27 (D) (7)5*1? . 0<x?<w, (1.21)

The random variablg? having the above density function is said to possess thegunare distribution witim degrees of
freedom, denoted by?(n), where the parameteris a positive integer.

2 Main Results: Generalized Form of Chi-Square Distribution.

Here, we introduce the generalized form of chi-squareidigion with a new parametée > 0. Also, we prove some

properties of the distribution involving the said paramétdf k = 1, we get the classical results.

2.1 Definition

LetZy,Zok, -+, Znk (Wherek > 0) be normally and independently distributed random véeivith zero mean and unit
variances, then the random variables expressed by theityuast

n
2
Xi= ) Zix (2.1)
-5

and is called the generalized chi-square random varialite wilegrees of freedom. That is,)é random variable is
defined as the sum of squares of independent standard namadaim variables. Its density function is defined as;

1 2 n (XZ)k
Zrk(g)(&)?*le*‘gf; 0< x2 <w,k>0. (2.2)

2y _
Random variable;ﬂf having the above density function are said to possess thegctaire distributions with degrees of
freedom, denoted by2(n), where the parameter is a positive integer. Ax? distribution full fill the definition of
chi-square distribution, so the curve g will remain unchanged for each positive valuekafiven earlier.

Remarks: If k=1, thenz;,Z;,---,Z, are in the classical form of normally and independentlyriisted random
variables with zero mean and unit variances.
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2.2 Proposition:

The generalized chi-square distribution function defime@i2), with a new parametkr> 0, has the following properties:
() The mean of generalized chi-square distribution is étuthe number of degrees of freedom.

(ii)The variance of generalized chi-square distributi®equal to k.

Proof: Using the definition of expected values, we have

2\k

2 Xk Xk) 2
E(X?) = 2r(g)/< Aeyhe 5 ax? (2:3)
Substitutingy = |mpl|esdy_ 2“ the equation (2.3) gives
2 T on ¥ 2 _n
= 2¢ kdy= M=z +k
Mk ,_k(g)o/y iy k(5 1K)
2 n_.n
= ,_k(g)zrk(i):na

which shows the required result.

(ii): To find the variance, we proceed as

k
£(0) = gy [ 06 Fag 2.9
0

Puttingy = % X impliesdy = 2“ and equation (2.4) takes the form

4 T oo o 4 _ n
2\21 __ +1— _ _
E[(xi)] = ,.k(g)o/y2 e rdy= kG T
4 n.n n
= I_k(% §(§+k)l'k(§):n(n+2k)

Now, variance is given by

var(x?) = E(0)?) - (E0D)” = n(n-+ 20) - 2= 2nk

This implies that the variance q[f is equal to the twice of degrees of freedom multiplied by tbe parametek.

2.3 Theorem.
Fork > 0, the algebraic moments of orderof generalized chi-square distribution are given by
n.n n
M =2 (G5)(5+K) G+ - 1K) (25)
Proof: Using the definition of expected values, along with the galim¥d form of chi-square distribution, we get
2 Xe (X)X

ro_ k 2+r 1 K/ 42
Hix=E(OR) = 57 0/ (&) AL axg (2.6)
Lety= %‘3 =dy= d—)z(‘g. Thus, the right hand side of equation (2.6) becomes,

7B ¥ 2

o 2+r‘1e‘?d _ M= +rk

IJr,k I—k(%) b/y y rk(%) k(z )

By the properties ok-gamma function given in the relation (1.9), we get the dektheorem.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

124 NS 2 G. Rahman et. al. : Generalization of Chi-square Distrduti

2.4 Theorem.
The characteristic function, for the generalized chi-squlistribution withn degrees of freedom, is given by
@t)=(1—-2kt)"%;  t< z—lk,k>o. 2.7)

Proof: By the definition of expected values, we see that

a(t) = (eth _ /Xk gfle X (1-2k)(x2) de-
2I_k i
0
Settingy = (1_2kt)R gives dy = — O and above equation becomes
(1-2kt)k

1 7 n_q, ¥ d

Al = — [yt

2l (3)(1—2kt) =k (1— 2kt)k

1 ; n_l _)’k
= - - 2 *d
M- mm!m °

= (1— 2kt)"%; — k>0.

Remarks: If X andY(y are mdependemf random variables witin; andn, degrees of freedom respectively, then the

sumXy, + Yk is axlf—random variable witim; 4+ n, degrees of freedom. OR the sum of tw@variates is equal to,nf
variate.

Proof: The moment generating function of the sum of two independaridtes is equal to the product of their respective
moment generating functions. Thus, we have

M(Xi +Yiy) = M(X<k>)-M(Y(k))
— (1—2kt) P (1 2kt)

1+ 2)

= (1—2kt)" "%
which shows the desired result.

2.5 Theorem.

Thexlf-distribution tends to normal distribution as the numbededrees approaches infinity.

n 2
Proof: The moment generating function xxlf(n) is Mo(t) = (1— 2kt)~ . Let us consider thgZ standard variableé\/kﬁ'l.
Then its m.g.f. about mean is

nt
My (t) = & %Mo)
2kt

nt n
= e_\/ﬁ( 1— T2k,
( \/2nk)
Taking natural log, we have
nt n 2kt
nM,t) = ———-=—In(1- —
u® v2nk 2k ( \/2nk)

___m . n 2kt +}4k2t2+higherpowerso&}
v2nk  2kly/2nk 2 2nk n

2

t . 1
=3 + higher powers of o

2
Thus asn — o, then InM (t) — %2 so thatM(t) — ez which is the m.g.f. of standard normal variable. Hence the

2— . - . . . . .
random variabléf/kﬁ: tends to standard normal distribution and consequentlyfheistrlbutlon tends to normality as
approaches infinity.
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2.6 Theorem.

The curve of)(k2 distribution is positively skewed.

Proof: From the moment generating function)qﬁ distribution, we see that
Pk =N, Pz = n(n+ 2k),

ug,k =n(n+ 2k)(n+ 4k), ué’kk = n(n+ 2k)(n+ 4k)(n+ 6Kk).

Now, the moment about mean (central moments) are given by

Hik =0

Mok = Mz — (H1p)? = n(n+2k) —n? = 2nk

Mak = sk — 3o ki + 2(pg )° = 8niC

Hak = My — A5l + 615 (1 1)? — 3(py,)* = 12nké(n+ 4K)
and

(M3k)?® K
= 2 = — d = =
A (Hok)® n’ and £, (M2k)? 4n?k?
Remarks: As 3; # 0 implies that the distribution is not symmetrical. Algh,=> 3 implies that it is extremely skewed.
Actually, the curve ole distribution is positively skewed and the skewness deeeasi increases. Fan=1 andk =1,

we have

f(x) =

Hax 12004k o 1
=.

1 Xg
e 2

\/2mx? ’

the curve is extremely J-shaped.

2.7 Theorem.

Fork >0, the)(k2 distribution withn degrees of freedom , the central moments obey the relation
Pr1k = 2r (Hrk+ NHr-1k)- (2.8)
Proof: The rth moment oj(lf distribution about mean are given by
_ 3K n_
(X*—m)"e = (x*)2 Hd(x?).

0

1
Hrk = Zgl_k(%)/o
and
2)k

1 ® 2 r—1,- & 2\0-14/,,2
IR — — e X 275d(x9).
beak= oo [, 06 - (X3

Using ux = n, from the above equations, with some algebraic calculatadong with integration by parts, we can easily
conclude the required result.

Conclusion.In this paper, the authors conclude that

()The mean of the generalized chi-square remain the samedoh positive value ok and the variance of the
generalized chi-square will be multiplied with parameétdf k tends to 1 then the variance will tends to the variance
of chi-square.

(iThe m.g.f of the generalized chi-squarg Is— 2kt)%!?, if k=1 then it will be equal to the m.g.f of simple chi-square.

(i The moments of the generalized chi-squareisis equal ton for each value ok > 0 and the momentgy, Uz, - -
will change with the parametér if k tends to 1 then it will simply be the moments of chi-square.

(iv)The generalized chi-square tends to a standard noristailaition for each positive value &f
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