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Abstract: In this paper, we state and prove a generalization of Ciric fixed point theorem[1] in generalized metric space by using a
quasi-contractive map. Result presented in this paper generalize and extend well known fundamental metrical fixed point theorems in
the literature (Banach [2], Kannan [3], Nadler [4], Reich [5], etc.) in the setting of generalized metric spaces.
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1 Introduction and Preliminaries

In 2006, Mustafa and Sims [6] introduced the concept of
G-metric spaces to overcome fundamental flaws in
Dhage’s theory of generalized metric spaces as follows:

Definition 1 Let X be a non-empty set, and let
G : X × X × X → R+ be a function satisfying the
following axioms: for allx, y, z, a ∈ X ,
(G1) G(x, y, z) = 0 if x = y = z;
(G2) G(x, x, y) > 0 withx 6= y;
(G3) G(x, x, y) ≤ G(x, y, z) with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ...;
(G5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z);
then the functionG is called a Generalized metric or
more specifically aG-metric onX and the pair (X,G) is
called aG-metric space.

Definition 2 [6] Let (X,G) be a G-metric space. A
sequence{xn} in X , is said to be aG-Cauchy sequence
if, for eachǫ > 0, there exists a positive integerN such
that G(xn, xm, xk) < ǫ, for all n,m, k ≥ N ; i.e., if
G(xn, xm, xk) → 0 asn,m, k → ∞.

Definition 3 (6) Let (X,G) be a G-metric space. A
sequence{xn} in X , is said to beG-convergent to a point
x ∈ X if limm,n→∞G(x, xn, xm) = 0, i.e., for each
ǫ > 0, there exists a positive integerN such that
G(x, xn, xm) < ǫ, for all n,m ≥ N .

Definition 4 (6) A G-metric space (X,G) is said to be
G-complete if everyG-Cauchy sequence in (X,G) is
G-convergent inX .

Definition 5 (6) A G-metric space (X,G) is called a
symmetricG-metric space ifG(x, y, y) = G(x, x, y), for
all x, y ∈ X.

Motivated by the work of Mustafa and Sims [6,7], various
researchers (see, e.g., [8-10]) have proved number of well
known results inG-metric spaces.

2 Main Result

In this section, we introduce quasi-contraction mappings
in G-metric spaces as follows:

Definition 6 A mappingT : X → X of aG-metric space
X into itself is said to be quasi-contraction iff there exists
a numberq, 0 ≤ q < 1 such that
G(Tx, T y, T y) ≤ q max{G(x, y, y), G(x, Tx, Tx),
G(y, T y, T y), G(x, T y, T y), G(y, Tx, Tx)}.

Definition 7 (1) LetT be a mapping ofG-metric spaceX
into itself. ForA ⊆ X , define
(i) δ(A) = sup{G(a, b, c) : a, b, c ∈ A} and
(ii) for eachx ∈ X,
O(x, n) = {x, Tx, T 2x, T 3x, ..., T nx}, n = 1, 2, 3, ...
andO(x,∞) = {x, Tx, T 2x, T 3x, ...}.
A space (X,G) is said to beT -orbitally complete iff every
Cauchy sequence which is contained inO(x,∞) for some
x ∈ X converges inX .
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Theorem 1Let (X,G) be aG-metric space. Suppose that
T : X → X is a quasi-contraction andX is T -orbitally
complete. Then we have
(i) T has a unique fixed point.
(ii) limn→∞T nx = z for all x ∈ X .
(iii)G(T nx, z, z) = qn

1−q
G(x, Tx, Tx) for all x ∈ X and

n ∈ N .

Proof.For eachx ∈ X and0 ≤ i ≤ n− 1, 0 ≤ j ≤ n, we
have
G(T ix, T jx, T jx) = G(TT i−1x, TT j−1x, TT j−1x)
≤ q max{G(T i−1x, T j−1x, T j−1x),
G(T i−1x, TT i−1x, TT i−1x),
G(T j−1x, TT j−1x, TT j−1x),
G(T i−1x, TT j−1x, TT j−1x),
G(T j−1x, TT i−1x, TT i−1x)}
= q max{G(T i−1x, T j−1x, T j−1x),
G(T i−1x, T ix, T ix), G(T j−1x, T jx, T jx),
G(T i−1x, T jx, T jx), G(T j−1x, T ix, T ix)}
≤ qδ[OT (x, n)]
where
δ[OT (x, n)] = max{G(T ix, T jx, T jx) : 0 ≤ i, j ≤ n}.
Since0 ≤ q < 1, there existshn(x) ≤ n such that
G(x, T hnxx, T hnxx) = δ[OT (x, n)].
Then we have
G(x, T hnxx, T hnxx) ≤
G(x, Tx, Tx) +G(Tx, T hnxx, T hnxx)
≤ G(x, Tx, Tx) + qδ[OT (x, n)]
= G(x, Tx, Tx) + qG(x, T hnxx, T hnxx).
It implies that
G(x, T hnxx, T hnxx) ≤ 1

1−q
G(x, Tx, Tx) ...(1)

For all n,m ≥ 1 andn < m, it follows from the quasi
contractive condition ofT and (1) that
G(T nx, Tmx, Tmx) =
G(TT n−1x, Tm−n+1T n−1x, Tm−n+1T n−1x)
≤ q.δ(OT (T

n−1x,m− n+ 1))
= q.G(T n−1x, Tm−n+1T n−1x, Tm−n+1T n−1x)
= q.G(TT n−2x, Tm−n+2T n−2x, Tm−n+2T n−2x)
≤ q2δ(OT (T

n−2x,m− n+ 2))
...
≤ qnδ[OT (x,m)]

≤ qn

1−q
G(x, Tx, Tx)...(A)

This gives{T nx} is a Cauchy sequence inX . SinceX is
T -orbitally complete, there existsz belongs toX such
thatlimn→∞T nx = z. ...(2)
By using the quasi contractive condition, we get
G(z, T z, T z) = 0
≤ G(z, T n+1x, T n+1x)
+q max{G(T nx, z, z), G(T nx, TT nx, TT nx),
G(z, T z, T z), G(T nx, T z, T z), G(z, TT nx, TT nx)}...(3)
Taking limit asn → ∞ in (3) and using (2), we get
G(z, T z, T z) ≤ qG(z, T z, T z).
Since0 ≤ q < 1, we obtainG(z, T z, T z) = 0. This
gives,T has a fixed pointz ∈ X .
To prove uniqueness of fixed point, letw be another fixed
point of T . Then by using quasi-contractive condition on
T , we have

G(z, w,w) = G(Tz, Tw, tw)
≤ q max{G(z, w,w), G(z, T z, T z), G(w, Tw, Tw),
G(z, Tw, Tw), G(w, Tz, T z)}
G(z, w,w) ≤ qG(z, w,w)
a contradiction, hencez = w. This proves uniqueness of
fixed point. Also, by taking limit asn → ∞ in (A), we
have
G(T nx, z, z) = qn

1−q
G(x, Tx, Tx).

Hence result follows.

3 Conclusion

Result presented in this paper generalize and extend well
known fundamental metrical fixed point theorems in the
literature (Banach [2], Kannan [3], Nadler [4], Reich [5],
etc.) in the setting of generalized metric spaces.
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