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Abstract: Suppose tha6 is a finite group. The graph (G) is related to conjugacy classes @f Its vertices are the non-central

conjugacy classes @ and there is an edge between each two distinct verticE4@j, if and only if their class sizes have a common
prime divisor.

In this paper, some properties of graptiG) such as chromatic polynomial, chromatic number, clique lmemand independence

number are studied f&@ = SL,(F), whereF is a finite field.
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1 Introduction conjugacy classes @b by k(G). Let I" be a graph. The
degree of a vertex of I" denoted byd(v) and the number

Let G be a finite groupl (G) is the attached graph related Of Vertices of graph/” denoted by|V(I")|. Also the

to its conjugacy classes. The vertices /ofG) are the ~number of edges of gragh denoted byE(I")|. The girth
non-central conjugacy classes & and two distinct ©f @ graph with a cycle is the length of its shortest cycle.
vertices are connected by an edge, if their class sizes havg 9raph with no cycle has infinite girth. The diameter of
a common prime divisor. I" is the maximum distance between two vertices/ of
This graph has been widely studied. See, for instange [ @nd denoted byiam(I"). A complete graph is a graph in
5. In [1] Bertram, Herzog and Mann showed that Which every pair of distinct vertices are adjacent. An
n(r (G)) < 2 for all finite groups where(I" (G)) is the ~ independent set in a graph is a set of pairwise
number of the connected components ¢6). Also they nonadjacent vertices. The independence number of a
proved that, the graph is complete for all non-abeliandraph/ is the maximum size of an independent set of
finite simple groups. Results are proved for infinite Vertices and denoted ly(I"). A vertex cover of a graph
FC-groups. In ] the authors proved that, the symmetric | 1S @ seQ C V(I") that contains at least one endpoint of
group S, the dihedral groupDs, the three pairwise €Very edge,B(.I'.) is the minimum size of vertex cover.
non-isomorphic non-abelian groups of order 12, and the-€tk be a positive integer. A-vertex coloring of a graph
non-abelian groufiz; of order 21, are the complete list of [ IS an assignment df colors to the vertices of such

all G such that™ (G) contains no triangles. that no two adjacent vertices have the same color. The

The notation we use is standard. All groups considered in/€rtéx chromatic numbey (/") of a graphl, is the
this paper are finite. L be a finite groupx an element ~ Minimumk for which I" has ak-vertex coloring. A subset
of G. x¢ denotes the conjugacy class containipat is C of the vertices off is called a clique if the mduped
the set of all elements conjugatexdx®| denotes the size Subgraph oiC is a complete graph. The maximum size of
of x. A subgroupN of G is called a normal subgroupiifit @ clique in a graplf is called the clique number éf and
is invariant under conjugation. L& be a quotient group, denoted byw(I"). A Hamiltonian cycle is a path that
G ) visits each vertex of” exactly just once. A graph that
gN an element off. (gN)GN denotes the conjugacy glass contains a Hamiltonian cycle is called a Hamiltonian
containinggN and |(gN)~N| denotes the size ofgN)N. graph. A graph is Hamiltonian-connected if for every pair
We denote the center @& by Z(G), and the number of of verticesu,v there is a Hamiltonian path fromto v.
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In this paper, we consider the graph(G) for

G = 9 5(F), whereF is a finite field. We study some Let G = SL.,(q).

properties of this graph.

2 Preliminaries

We need the following lemmas which will be used later:

Lemma 2.1.[6] Let G be a non-abelian finite simple

group. Ther™ (G) is a complete graph.
Lemma 2.2. ([3], Theorem 1.1) Suppose that is a

graph, then:
V(r)]

Y dve) = 2[E(T).

e=1
Lemma 2.3.([8], Lemma 3.1.21) In a graph,SC V(")

is an independent set if and onlySf=V (") — Sis a vertex
cover and therefore:

a(F)+B(r) = V().

Lemma 2.4.[4] Let G be a finite group anill is a normal
subgroup. Then:

i) IgNI\IgGI ; geN.

. G

i) |(gN)® |16 ; g€ G.

Lemma 2.5.([8], Theorem 5.2.16) Everlg-critical graph

is (k— 1)-edge-connected.
Lemma 2.6.([8], Proposition 5.2.18) Ifi is k-critical,

then I has no cutset consisting of pairwise adjacentk

vertices.

Lemma 2.7.[5] Let G be a non-abelian finite group. Then

I (G) is a graph without triangles, if and only & is
isomorphic to one of the following solvable groups:
the symmetric groufs;

the dihedral groupBs andDg;

the alternating group;

the grouply, of order 12 given by
Tio=(a,b:a®=1,b’>=a’ ba=a b);

the groupTl,; of order 21 given by

T = (ab:a®=b" =1 ba=ab?.

3 Main Results

Suppose thaG = SL,(F), F = GF(q) andq is a prime
power.

Theorem 3.1.Let G = SL,(q):
) If g=2"m> 1, thenk(G) = 2™+ 1, V(I (G))| = 2™.

i) If g= p™, wherep is an odd prime numbem > 1,
thenk(G) = p™+4, V(I (G))| = p™+2.

Proof.
Suppose thatC, is the number of
conjugacy classes iBLn(q). Now by [7] we have:

Cn:q”—(qa+qa*1+---+qb+l+qb)+---
1 1

a= [E(n_l)]ab: [gn]-
Thus forn= 0,1, 2 we have:
Co=1 Ci=g-1, C=¢ -1

Also by [7] the number of conjugacy classes in
Gx9,y(F)is:

K@) =(a-1" T ¢a(d)Cs (1)
di(2.9-1)
where
¢r(n) = nrnp\n(l_ p").

(product over the primes dividing).
Now for (i), since(2,q— 1) =1, thend = 1. If we put
d=1in (1), we have:

(G)=(a-1)"" 5 da(aC;
= (q—1)"Y(¢2(1)C) = 2"+ 1.

For (ii), qis a power of an odd prime number, thghq—
1) = 2, therefored = 1, 2.
So, we have:

G)=(q—1)"1 d)C:
(G)=(1q-1) d;72¢2() 2

=(q-1) Y(¢2(1)Ca+ $2(2)C1) = g+ 4= p"+ 4.

Z(G) = {AllA € F*A" = 1} and
|Z(G)| = (n,q— 1), thus for(i), we have|Z(G)| =1 and
then\V/(I"(G))| = k(G) — |Z(G)| = 2™,

Since

For (ii), |Z(G)| = 2 then
V(F(G)| =k(G) - [Z(G)| = p"+2.0

Theorem 3.2.Let G = SL»(q):

i)If g= 2, then the graph (G) is a non-complete graph,

[E(F(G))| =0,a(T'(G)) =2, B(I'(G)) =0.

ilf g=2"m> 2, then the graph (G) is a complete
graph |E(I(G))| = 2™ (2"~ 1),a(I(G)) =1,
B(r(G))=2"-1.

iilf g= p™, wherepis an odd prime numbem > 1,
then the graph/; (G) is a complete graph,
[E(F(G))|=2"1(p™+3p"+2),a(I (G)) =1,
B(r(G))=pm+1.

Proof.

i)lt is clear that ifg = 2, thenG = S3 and the proof
follows from Lemma 2.7.
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iiSince g = 2™(m > 2), then PSL,(2™M) = S ,(2M), Thus
therefore SL(2™M) is a non-abelian finite simple N @) s
group. Now by Lemma 2.1 the graph(G) is a P
complete graph. Thus for eagte V(I (G)), 2IE(r (G))] = Zl d(ve) = Zl(perl)
d(v) = V(T (G))| - 1=2"-1. (M 1) M o,
By Lemma 2.2 we have: =(P"+2)(p"+1)=pT+3p"+2.
V(T (©))] Also o
> dve) =2[E(r (G))]. [E(r(G)|=2""(p™"+3p"+2).
&=t Since ' (G) is a complete graph, therefore every
Thus independent set includes only one vertex.
Thus the independence number of grdpl@) equals
IV (r(G))| 2m . - 1. Thereforex (I (G)) = 1.
d(ve) =3 (2"-1)=2"(2"-1)=2[E(I'(G)).  On the other hand, by Lemma 2.3:
=1 e=1
o we have a(r (G))+B(r(G) = V(F (G))]-

[E(T(G))|=2™1(2"~1).

Since ' (G) is a complete graph, therefore every
independent set includes only one vertex.

Thus the independence number of grapi®) equals

1. Thereforex (I (G)) = 1.

On the other hand, by Lemma 2.3:

a(l(G)) +B(r(G)) = V(I (G))l.

So we have:
B(r(G)=2"-1

iii)Suppose thatp = 3 and m = 1, then the set of
conjugacy class sizes €fis
{1,1,4,4,4,4,6}.
According to the definition of grapif (G), it is a
complete graph with 5 vertices. Hence
a(l(G)) =1,B(r (G)) =4.
Now supposes = SL,(q) andN = Z(SL,(q)) where
g=p",q+# 3, pis an odd prime number amd > 1,
thenN < G and alsaPSL,(q) = % sincePSL,(q) is a

So we have:
B(r(G))=pm"+1.0

Corollary 3.3. Suppose thaG = SL.5(q), whereq # 2
and q is a prime power, then the graplt (G)
is([V(I (G))| — 1)-edge-connected and (G) has no
cutset consisting of pairwise adjacent vertices.

Proof. By Theorem 3.2, the graph(G) is a complete
graph. Thus the graph (G) is |V(I(G))|-critical,
therefore by Lemma 25 T (G) is
(IV(r(G))| — 1)-edge-connected and according to
Lemma 2.6/ (G) has no cutset consisting of pairwise
adjacent vertices.]

Proposition 3.4.Let G = SL»(Q):

DIf g= 2, thenx(r (G)) =1, w(r (G)) =1.
iNlf g=2"m> 2, thenx (I (G)) = w(I" (G)) =2™M.
ii)if q= p™, wherep is an odd prime numbem > 1,
thenx (I (G)) = w(l (G)) = p™+ 2.

In (ii) and (iii), the girth of graph equals 3 and it is a

non-abelian finite simple group, therefore by Lemma Hamiltonian-connected graph witham(I" (G)) = 1.
2.11'(%) is a complete graph. For every two arbitrary Proof. For the first case, by Theorem 3.2 the minimum
vertices of graph (&) like |(xN)¥ | and |(yN)K| as  number of colors needed to color the grapG) in

B G G which no two adjacent vertex have the same color equals
Xy €G—2(G), we have(|(xN)N|,|(ch);N|) 7 1and 1. Thereforex (I (G)) = 1 and since the graph(G) is
by Lemma 24 we have |(xN)N|’|xG| and

not connected, thew(I" (G)) = 1.
[ Since the grapli (G) is a complete graph for caséis
M) 81|y, thus(x®],y8]) # 1. graptf () plete grap &)
Then every pair of distinct vertices of graphG) is

and (iii) by Theorem 3.2, and)(I" (G)) is the maximum
size of a set of pairwise adjacent vertices(G), then
connected by an edge, so it is a complete graph. They(I (G)) = |V(I" (G))|.
we have the following relation for every arbitrary As x(I") is the minimum number of colors needed to
vertex of [ (G) like v color a graph™ (G) such that each two adjacent vertices
have different colors, thus
X(F(G) = V(I (G)| = w(I" (G)).
Now according to Theorem 3.1 we have:

div)=|V(r(G))|—1=p"+1.

By Lemma 2.2: X(I(G)) = (I (G)) = 2" for caselii),
V(F(©)| andx (I (G)) = w(l (G)) = p™+ 2 for caseiii).
Z d(Ve) = 2/E(T (G))| In both casesii) and(iii) the graph is connected because
& ¢ ' it is a complete graph and also it includes at least one
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ii)if q= p™, wherep is an odd prime numbem > 1,
then the chromatic polynomial of grapi{G) is of the
form:

C(r(Gj;uy=u(u—121)---(u—pm-1).

Proof. In the first cases = S3, thereforemy (I (G)) = 1,
mp( (G)) = 2 and by definition o€(I" (G); u) we have:

C(r (G);u) = 1.

Now according to Theorem 3.2Z,(G) is a complete graph

in caseqii) and(iii), thus each vertex of the graph G)

is adjacent by the others and its chromatic polynomial is
as following:

my (I (G)) =mp(l (G)) =+ = My(r@)-1(M(G)) =0,
My e (F(G))=1
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Now, according to Theorem 3.1 we have the following
relation for the second part of proposition

C(r(Gu)=u(u—1)---(u—2"+1).
For the third part:
C(r(Gju)=u(u—1)---(u—p"-1).0
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