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1 Introduction

Many important classical differential equations has
connection with Lie theory. The interplay between
differential equations, special functions and Lie theory is
particularly play important role in mathematical physics.
Radulescu [1] has discussed some properties of Hermite
and Laguerre polynomials [2] using some operators
defined on a Lie algebra. Further Mandel [3] obtained
some properties of simple Bessel polynomials considered
by Krall and Frink [4]. Pathan and Khan [5] discussed
some properties of two variable Laguerre polynomials
studied by Dattoli and Torre [6,7].

The Modified Laguerre polynomials (McBride [8]),
defined as

f β
n (x) =

(β )n

n! 1F1

[

−n;
1−β −n; x

]

= (−1)n L−β−n
n (x) (1)

Then f β
n (x) satisfies the two independent differential

recurrence relations

d
dx

( f β
n (x)) = f β

n−1(x) (2)

and

x
d
dx

( f β
n (x)) = (x+n+β ) f β

n (x)− (n+1) f β
n+1(x) (3)

Also (5) and (6) determine the ordinary differential
equation

x
d2

dx2 ( f β
n (x))+(1−β −n−x)

d
dx

f β
n (x)+n fβ

n (x) = 0 (4)

2 Main Result

Let End V be the Lie algebra of endomorphisms of a
vector spaceV, endowed with the Lie bracket[·, ·] defined
by [A,B] = AB−BA, for everyA,B ∈ End V. The main
result of the paper is as follows.

Theorem 1.Let A,B∈ End V be such that[A,B]yn =−yn,
where the sequence(yn)n ⊂V is defined as follows: Ay0 =
0 and Byn = −(n+1)yn+1, for every n≥ 1. Then Ayn =
yn−1 and yn is an eigenvector of eigenvalue−n for BA, for
every n≥ 1.

Proof: First, we shall prove

Ayn = yn−1, for everyn≥ 1.

Forn= 1, this equality is evident, because

[A,B]y0 =−y0,
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A(By0)−B(Ay0) =−y0,

alsoAy0 = 0 andBy0 =−y1 and therefore,

Ay1 = y0

Now, suppose thatAyn = yn−1, then we have

[A,B]yn =−yn,

i. e.A(Byn)−B(Ayn) =−yn,

i. e. A(−(n+1)yn+1)−B(yn−1) =−yn,

i. e. − (n+1)A(yn+1)+nyn =−yn,

i. e.A(yn+1) =
−(n+1)
−(n+1)

yn,

i. e.A(yn+1) = yn.

Therefore by mathematical inductionAyn = yn−1, for every
n≥ 1. It immidiately follows thatBAyn =−nyn. Hence,yn
is an eigenvector of eigenvalue−n for BA, for everyn≥ 1.

3 A Concrete Application

Let V =C∞(R×R), we define the operatorsA,B∈ End V
as

Au(x,y) = y−1 ∂u
∂x

(5)

Bu(x,y) = xy
∂u
∂x

− y2 ∂u
∂y

− (x+β )yu (6)

for (x,y) ∈ R×R.
We claim that the operators (5) and (6) obey the

commutation relation[A,B]yn =−yn
Indeed,

[A,B]u(x,y) = A(Bu(x,y))−B(Au(x,y)) (7)

which gives

[A,B]u(x,y) =

(

y−1 ∂
∂x

)(

xy
∂u
∂x

− y2∂u
∂y

− (x+β )yu

)

−

(

xy
∂
∂x

− y2 ∂
∂y

− (x+β )y
)(

y−1 ∂u
∂x

)

=−u,
(8)

i.e.
[A,B]u(x,y) =−u(x,y).

Now, if u(x,y) assumes the form
yn(x,y) = fn(x)yn ∈C∞(R×R), then we have

[A,B]( fn(x)y
n) =− fn(x)y

n
,

and our claim is justified.
Now, the relationByn =−(n+1)yn+1 gives

(

xy ∂
∂x − y2 ∂

∂y − (x+β )y
)

( fn(x)yn) =−(n+1) fn+1(x)yn+1

i.e.

x
∂
∂x

( fn(x)) = (x+n+β ) fn(x)− (n+1) fn+1(x) (9)

Again, the relationAyn = yn−1 gives
(

y−1 ∂
∂x

)

( fn(x)y
n) = fn−1(x)y

n−1

i.e.
∂
∂x

( fn(x)) = fn−1(x) (10)

Finally, the relationBAyn =−nyn gives
(

xy ∂
∂x − y2 ∂

∂y − (x+β )y
)(

y−1 ∂
∂x

)

( fn(x)yn) =−n fn(x)yn

i.e.

x
∂ 2

∂x2 ( fn(x))+ (1−β −n− x)
∂
∂x

( fn(x))+n fn(x) = 0

(11)
Now, we observe that modified Laguerre polynomials

f β
n (x) is a solution of the differential equation (11).

Further we note that the relations (9) and (10) are
differential recurrence relations satisfied by modified
Laguerre polynomialsf β

n (x).
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