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Abstract: In the present paper we introduce some strongly almost sinerdéference sequence spaces using ideal convergence and
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1 Introduction and Preliminaries

Then the following functiory|-,--- || on X"~ defined
by

The concept of 2-normed spaces was initially developed

by Gahlerp] in the mid of 1960’s, while that of-normed
spaces one can see in MisiaK|. Since then, many others

have studied this concept and obtained various results, see

Gunawan (f,8]) and Gunawan and Mashad®][ and
references therein. Lete N andX be a linear space over
the field K, whereK is field of real or complex numbers
of dimensiond, whered > n > 2. A real valued function
[|-,--+,-]] on X" satisfying the following four conditions:

1||X1, %2, ,%n|| = O if and only if xq,x%2,---,X, are
linearly dependent iiX;

2.||X1, %2, -+ ,Xn|| is invariant under permutation;

3laxi, o, Xal| = |a| ||X1, %2, ,Xn|| foranya € K,
and

4'||X+X/5X27"' ,Xn” < ||X7X27"' 7Xn||+ ||X/7X25"' 7Xn||

is called an-norm on X, and the pair(X,||-,---,-||) is
called an-normed space over the fieldl.

For example, we may také=R" being equipped with
the Euclideam-norm ||X1,X2, -+ ,Xn||e = the volume of

the n-dimensional parallelopiped spanned by the vector

X1,X2,- -+ ,Xn Which may be given explicitly by the formula
||X17X27' o 7Xn||E = |del(xlj)|7

wherex; = (Xi1,Xi2, -+ ,Xin) € R" for eachi =1,2,--- ,n.
Let (X,||-,---,-||) be an-normed space of dimensiah>
n>2and{a;,ay, - ,an} belinearly independent set}

||X13X27 e 7Xn—1||°° =

maX{”Xl,XZ’--- 7Xn—17ai|| = 1727"' ,n}
defines an (n — 1)-norm on X with respect to
{a17a27 e ,an}

A sequencéx) in an-normed spacéX, ||-,--- ,-||) is

said to converge to sontee X if

lim ||Xk_L7217 7zn—1|| =0 for eVeryZ]_, yIn—1 € X.
k—>00

A sequencéxy) in an-normed spacéX, ||-,---,-||) is
said to be Cauchy if

lim |[X—Xp, 21, ,Zn-1|| =0 for everyz,---,z,_1 € X.

k.p-soo

If every cauchy sequence X converges to somk € X,

thenX is said to be complete with respect to th@orm.

gAny completen-normed space is said to beBanach
ace.

The notion of difference sequence spaces was

introduced by Kizmaz 0], who studied the difference
sequence spacés(A), c(A) andcy(A). The notion was
further generalized by Et. and Cola#] [by introducing
the spaces,(A"), c(A") andcy(A"). Let w be the space
of all complex or real sequences= (x) and letr be
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non-negative integers, then f& = |, c, ¢ we have
sequence spaces

Z(A") = {x= (%) e w: (A"x) € Z},
whereA"x = (A"x) = (A" 1x¢— A" Xy 1) andAO% = xi

for all k € N, which is equivalent to the following binomial
representation

Ay = vi)(—l)v (\r/) Xt

Takingr =1, we get the spaces which were introduced and

studied by KizmazJ0].

An Orlicz functionM : [0,00) — [0,0) is convex and
continuous such thaw(0) = 0, M(x) > 0 for x > 0.
Lindenstrauss and TzafririLB] used the idea of Orlicz
function to define the following sequence space,

v = {xe w: glM(h(Tk') < oo, for somep > O}

which is called as an Orlicz sequence space. Algds a
Banach space with the norm

|X|

IIX| :inf{p > O:kiM(?) < 1}.

Also, it was shown in 13 that every Orlicz sequence
spacely contains a subspace isomorphicdg(p > 1).
An Orlicz functionM satisfiesA,—condition if and only

if for any constant. > 1 there exists a constak{L) such
that M(Lu) < K(L)M(u) for all values ofu > 0. An
Orlicz function M can always be represented in the
following integral form

M(x) :/oxn(t)dt

where n is known as the kernel ofM, is right
differentiable for t > 0,n(0) = O,n(t) > 0, n is
non-decreasing angl(t) — o ast — .

A sequence# = (M) of Orlicz functions is called a
Musielak-Orlicz function see 14,18]). A sequence/” =
(Nk) defined by

Nk(Vv) = sup{|vlu—Mg(u) :u> 0}, k=1,2,---

is called the complementary function of the
Musielak-Orlicz ~ function .#. For a given
Musielak-Orlicz function .#, the Musielak-Orlicz
sequence spadg, and its subspach , are defined as

follows

ty = {xe w:l 4(cX) < o for somec > O},

h,= {xe w:l 4(cx) <o forall c> O},

wherel , is a convex modular defined by

Mk (X)X = (%) €t z.
1

L (X) =
%

We considet , equipped with the Luxemburg norm

Xl :inf{k>o:|j,(£) <1}

or equipped with the Orlicz norm

||x||°:inf{%(1+|j,(kx)) k> o}.

A Musielak-Orlicz function (M) is said to satisfy
Ay-condition if there exist constanta,K > 0 and a
sequence = (¢)p_; € ¢* (the positive cone of') such
that the inequality

My (2u) < KM (u) + ¢k

holds for allk € N andu € R, wheneveiM(u) < a.
Let X be a linear metric space. A functign: X — R
is called paranorm, if

1.p(x) > 0forallx e X,

2.p(—x) = p(x) for all x € X,

3.p(x+y) < p(x)+ p(y) forall x,y € X,

4.if (An) is a sequence of scalars with — A asn —
o and(xn) is a sequence of vectors wigh{x, — X) —
0 asn — o, thenp(ApXn — AX) — 0 asn — co.

A paranormp for which p(x) = 0 impliesx = 0 is
called total paranorm and the pdiX, p) is called a total
paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see
[24, Theorem 10.4.2, pp. 183]). For more details about
sequence spaces (sek7,[19,20,21,22]) and reference
therein.

A sequence spadg is said to be solid(or normal) if
(x) € E implies (axx¢) € E for all sequences of scalars
(ak) with |ay| < 1 and for allk € N.

The notion of ideal convergence was introduced first
by P. Kostyrko 1] as a generalization of statistical
convergence which was further studied in topological
spaces (se€?]). More applications of ideals can be seen
in ([2,3]).

A linear functional.Z on /. is said to be a Banach
limit see [] if it has the properties :

1.Z(x) > 0if x> 0(i.exn > 0 for alln),
2.%(e)=1,wheree=(1,1,---),
3.4(Dx) = Z(x),

where the shift
(DXn) = (Xn+1)-

Let be the set of all Banach limits dia.. A sequence
xis said to be almost convergentto a numb#r.# (x) =L

operatorD is defined by
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for all .# € B. Lorentz [L2] has shown thak is almost Woo (A 1, P, A", ||+ ,-|]) =

convergent td if and only if {x (%) €SN-X):3K >0 such that
Xm+Xm+1+ +Xm+k

tkm = tiq — L ask — o, 10 tim(UKATX P
m m(X) = k+1 sup= [ (” km( Uk k),Zl,---,Zn,l||)] kSK
uniformly in m. neN Mo
Recently a lot of activities have started to study forsomep >0, andz,---,z, 1 € X},

sumability, sequence spaces and related topics in these
non linear spaces se&(P3J]). In particular Sahiner43]

combined these two concepts and investigated ideal W (A, u,p, A% || - |) =
sumability in these spaces and introduced certain e
sequence spaces using 2-norm. X=(x) € S(n—X):3K >0 such that{n eN:
We continue in this direction and introduce some I- n
; ; ; 1 tkm (UKA"xg) Pk
convergent generalized sequence spaces using Musielak-= Z { ( 7y, ,zn_1||)} > K} cl
Orlicz function ovem-normed spaces. n& P N

Let (X,]|.|]) be a normed space. Recall that a sequence
(xn)nen Of elements ok is called statistically convergent

to x € X if the setA(e) = {n e N |[[Xh—X|| > s} has

forsomep >0, andz,---,z, 1 € X}.

The following inequality will be used throughout the

natural density zero for eaeh> 0. paper. If 0< pyx < suppx = H, D = max(1,2" 1) then
A family .# ¢ 2" of subsets of a non empty Sétis
said to be an ideal i if |ay + b | P < D{[ay| P+ [by| Pk} 1)
loe s, for all k anday, by € C. Also |aP < max(1,|a]") for all

2ABe . imply AUBe ./;
3Ae 7,BC Aimply B € ., while an admissible ideal The main aim of this : -

- paper is to study some topological

~ of Y further satisfiesx} € .7 for eachx € Y (see properties and inclusion relations between the above

[6))- defined sequence spaces.
Given.# c 2N be a non trivial ideal ifN. A sequence
(Xn)nen In X is said to be I-convergenttoc X, if for each

€ > 0 the setA(g) = {n EN: X —X|| > e} belongsto 2 Main Results

acC.

7 (see 1)), . |
Let | be an admissible ideal df,, .# = (M¢) be a  Theorem 2.1. Let .# = (My) be a Musielak-Orlicz
Musielak-Orlicz  function and (X,||-,---,-||) be a function, p = (px) be a bounded sequence of positive real

n-normed space. Lgd = (px) be a bounded sequence of numbers,u = (ux) be any sequence Qf strictly positive
positive real numbers and = (uy) be any sequence of real numbers and be an admissible ideal df. Then

strictly positive real numbers. B§(n — X) we denote the W (-2, U, p, A", [|-,--- -[)),  Wy(,u,p, A%, |-+ ),
space of all sequences defined oy ||-,---,-||). We — We(aZ,u, p,A", ||, ,-||)andw, (.7, u, p, A", | |-, ,-|])
define the following sequence spaces in this paper: are linear spaces over the complex fi€ld
Prgof. Letx= (x),Y = (Yk) €W (4, u,p,A",||-,-- ,-|])
. anda, 3 € C. So
\Nl('%aua paAr7||'7"'7'||): B
{x:(xk)eS(n—X):VE>O, {neN: {{neN;
1 ¢ tim(UkA "X — L) Pk 10 tim(UKA X — L) Pk
- L S N A >ebel - L >
”k=1[ (|| 5 1,0, Zn 1||)} > } = Z [ ( o .71, ,zn,1||)} 78} el
for somep >0, L € X and zl,---,zn,lex}, for somep; > 0, L € X and 21,---,Zn_1€X}
W r and
O(%vuvva 7||aa||):
{x:(xk)eS(n—X):V£>0, {neN: {{neN:
10 tkm (uA’ Xk) Pk 10 tkm(UA "y — L) Pk
= > = amee= R =/ >
nk;[ (P aall) [z e e 2 > M (P22 )| 2 e e
forsomep >0, and z,--- ,zn_lex}, forsomep, >0, Le Xand z,--- ,zn_lex}.
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Sincell-,--- ,-|| is an-norm, # = (M) be a Musielak- Let
Orlicz function and so by using inequality)( we have

5

1 tn(UA" (ax+Byi)—L) Pk 12 tim(UA" P
n [M"(”km oo 721,---,zn,1||)} sup= [MK(HM,ZL.--,anlH)} <1,
=1 ups > ‘
n
tom (LA X —L Px
SD%kzl[“""’l‘T‘ﬁ‘Pz M ([ 48D 7, - 7 o)) Va1 €X ),
n
L tmuAy L P
+0} 3 | et Mi (|14t 2y 2]

Y
[l

1

<OFE 3 [ 7 )] Y (I —
+DF%§1 [ (| nS D) 71 )] 7 Ve ae X},
where £ = max|L (ol ) (7o) | et < B )andpztkii% g e
From the above inequality, we get supy Z{ (|| D 7217"'7zn71||):|
n {neN: - ﬁsfp% él [Mk(||tkm(u;lAer)’zlv"' 7Zn—1||)}
2, (R e a2 et 8 e )
n - {”€N3 Thus, o
DF%kzl[ (||tkm UAXL) 7, ,Zn—llmpk > %} Slkjp% ki [Mk(”tkm(uﬁrf;:yk))’Zl"" 7an1||) P g
u{neN: and
DF1 z [ (||M 7, ,ZHHHPKZ %} n(X+y) < { p1+p2) ™ 1 pr € B(X), pzeB(y)}

Pn
{ 1 p1 € B(x }+inf{p§f:pzeB(y)}
Two sets on the right hand side belong Itcand this —gn( )+ gn(y).

completes the proof. Similarly, we can prove that

W (A ,u,p, A, ||, ), Voo (27,1, D, AT ||+ -|]) et o™ —+ o whereo, o™ e C and letgn(X™ —x) — 0 as
andwl, (., u,p,A",||-,-- ,-||) are linear spaces. m— 0. We have to show thag,(c™™ — g,) — 0 asm —
Theorem 2.2. Let .# = (My) be a Musielak-Orlicz . Let

function, p = (px) be a bounded sequence of positive real

numbers and = (ux) be any sequence of strictly positive B(x™) = {Pn%P : pm > 0,

real numbers. For any fixed n € N,

Weo (4, U, p, A, ||-,-+- ,-||) is & paranormed space with % i [ ( tkm(u;jrxm 71, ,Zn_1||)} Moy
gn(x):inf{p%? :p >0 issuchthat " VZl,---,zn_leX},
supg 3 (128 )< |

Ve X). B~ x) = { P : Py >0,
' | sup:—L i [ (”tkm(UkA (X _Xk)),Zl,--- 7Zn—1||)] Pk <1

Proof. I't is chear thatgn(X) = gn(—X). SinceM(0) =0, kN Prm

S ey R e}
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n tim(UKA" p
If pm € B(x™) andp}, € B(x™ —x) then we observe that =5 [M(((HM,ZL”' 7Zn—l||)} <ot
K=1

n tkm (U 0MA"™X — U TA"Xy)
I(Zl[ Pm|0™ — 0|+ ||
} i {Mk(Htkm (u@™MA™ — oA
NG Pml0™ — 0|+ pplo]|
tkm(UkOA"XY — UgTA X )
I o —oTrppgar 4l

m_ n tm Arm
< _lo"odlpm 1 Z { k(||%,zl7'" 7Zn—1||)}

prlo™—ol+pnlol N Ly

1
ﬁ 7217"'7anl||

4 PR ,Zn—1||

n
_ lolow 1 [ ( tan(UAX AT )}
+Pm\0m70\+PFn‘Cf\ nkzl Mic(ll P 2 Zeafl)f

From the above inequality, it follows that

SR

and consequently,

tkm (uo™A"X —
Pm|o™— 0|+ plo]

Pn
'Fr

0n(0™X"— ox) < inf {( /o™~ o+ prfa) " :
Pm € BOM), pp € BX™—X) |

<(Jo"- G|)%F inf{p%? IPpmE B(xm)}

+(|cr|)%0:P im‘{(pr’n)%F PmE B(xm—x)}—>0as m— co.

This completes the proof.

Theorem 23. Let .#,.#',.#" are Musielak-Orlicz
functions. Then we have

(I) WE)('///? u, varﬂ ||7 ' 7||)QWIO(/[O'///7 u, p7Ar7 ||7 ' 7||)
provided(py) is such thaHg = inf py > 0.

(”) \’NIO(%C u, vara ||v : '7'||)QWO(%/: u, paAra ||v )
WIO('///""//Haua paAr7||'7"' 7||)

Proof. (i) For givene > 0, first choosegy > 0 such that
max{ac')*,a('fo} < €. Since M is continuous for eaclk,
choose O< § < 1 such that 6< t < §, this implies that

{ES

Mk(t) < &. Let (Xk) € WO(%aua paAraH'v"' 7||) Now
from the definition

B(3) = {neN:
10 tim(UKA" %) Pk H
LS (1t 5 )] o

Thus ifn ¢ B(d) then

Z [ (Iltikm UZA X) 4. ,anl”)}pk < 8"

Z [ (||W,ZL'“ ,Zn71||)}pk < no"

OA"X Pk
)7217"'7Zn71||):| Sl

forall km=1,23,---

= 3 [ (e )] <6
forall km=12,3,---

Hence from above and using the continuity.af = (My)
we must have

o (5 ) <
vV km=1,23,.

which consequently implies that

n

> [ (e (A ) )]

1
<max{ell, ey}
<e.
Thus i k; {MK(M (HW;ZL'“ ,anl”))} P e

This shows that

{n eN
12 tkm(ukA Xk) Pk
2y M(M(IPE0 2 znall)) | 2
C B(9)
and so belongs th This proves the result.
(”) Let (Xk) € V’\\,IO(%Ivuv var7||'a"' a||) N

Wh(",u,p,A",||-,-+-,-||). Then the fact

%[(MHW)(HW,A,--- zoall) ]

[ (Htkm(ukA Xk)7 2, ,Zn71||)} P

(- C LA

P

gives the result.

Theorem 2.4, The sequence spaces
W (U, P, AT |-+ -]) and
W, (4" u,p,A", |-, ,-||) are solid.

Proof. Let (x) € Wh(.,u,p,A",||-,---,-|]), let (ax) be a
sequence of scalars such thag| < 1 for allk € N. Then
we have

fen:dy Mmoo oz )]} o
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