Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

A. İpek ${ }^{1}$ and M. Akbulak ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Art and Science, Mustafa Kemal University, Hatay, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Art and Science, Siirt University, Siirt, Turkey
*Corresponding author: e-mail: dr.ahmetipek@gmail.com

Abstract

In this paper, we study the $n \times n$ Hadamard exponential Hankel matrix of the form $H_{n}=\left[e^{i+j}\right]_{i, j=0}^{n-1}$. We found ℓ_{p} norms, two upper bounds for spectral norm and eigenvalues of this matrix. Finally, we give an application related Hadamard inverse, Hadamard product and eigenvalues of this matrix.

Keywords: Hankel matrix; Hadamard exponential; Hadamard product; norm; spectral norm; eigenvalue.

1. Introduction

In [1], Reams proved that $e^{o A}$ is positive semidefinite where $A \in \mathrm{R}^{n \times n}$ be symmetric and positive semidefinite. $A \in \mathrm{R}^{n \times n}$ be almost positive (semi) definite then $e^{\circ A}$ is positive (semi) definite. Moreover, Reams gave some proofs related Hadamard inverse and Hadamard square root of symetric matrices.

In [2], Solak and Bozkurt found an upper and lower bound of Cauchy-Hankel matrix in the form

$$
H_{n}=[1 /(a+(i+j) b)]_{i, j=1}^{n}
$$

where $b \neq 0, a$ and b are any numbers and a / b is not integer.
In [3], Solak and Bozkurt determined bounds for the spectral and ℓ_{p} norm of Cauchy-Hankel matrices of the form

$$
H_{n}=[1 /(g+h(i+j))]_{i, j=1}^{n} \equiv[1 /(g+k h)]_{i, j=1}^{n}, k=0,1, \ldots, n-1,
$$

where k is defined by $i+j=k(\bmod n)$.
In [4], Güngör found lower bounds for the spectral norm and Euclidean norm of Cauchy-Hankel matrix in the form

$$
H_{n}=[1 /(g+(i+j) h)]_{i, j=1}^{n} .
$$

In [5], Türkmen and Bozkurt obtained an upper bounds for the spectral norm of the Cauchy-Hankel matrices of the form

$$
H_{n}=[1 /(g+(i+j) h)],
$$

where $g=1 / k$ and $h=1$.
In [6], Nallı studied the Hadamard exponential GCD matrices of the form

$$
E=\left[e^{(i, j)}\right]_{i, j=1}^{n},
$$

where (i, j) is the greatest common divisor of i and j. Nallı gave the structure theorem and calculated the determinant, trace, inverse and determined upper bound for determinant of this matrix.

A Hankel matrix is an $n \times n$ matrix

$$
\begin{equation*}
H_{n}=\left[h_{i, j}\right]_{i, j=0}^{n-1} \tag{1}
\end{equation*}
$$

where $h_{i, j}=h_{i+j}$, i.e., a matrix of the form

$$
H_{n}=\left[\begin{array}{ccccc}
h_{0} & h_{1} & h_{2} & \cdots & h_{n-1} \tag{2}\\
h_{1} & h_{2} & h_{3} & \cdots & h_{n} \\
h_{2} & h_{3} & h_{4} & \cdots & h_{n+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
h_{n-1} & h_{n} & h_{n+1} & \cdots & h_{2 n-2}
\end{array}\right] .
$$

Let $A=\left(a_{i j}\right)$ is an $m \times n$ matrix, then Hadamard exponential and Hadamard inverse of the matrix A is defined by

$$
e^{o A}=\left(e^{a_{i j}}\right)
$$

and

$$
A^{o(-1)}=\left(\frac{1}{a_{i j}}\right),
$$

respectively [1].
Let $A=\left(a_{i j}\right)$ is an $m \times n$ matrix, then transpose of the matrix A is $n \times m$ matrix and defined by $A^{T}=\left(a_{j i}\right)$.
Let $A=\left(a_{i j}\right)$ is an $m \times n$ complex matrix. The ℓ_{p} norm of A is defined by

$$
\begin{equation*}
\|A\|_{p}=\left(\sum_{i=1}^{n} \sum_{j=1}^{n}\left|a_{i j}\right|^{p}\right)^{1 / p} . \tag{3}
\end{equation*}
$$

If $p=2$ then ℓ_{2} norm is called Frobenius or Euclidean norm and showed by $\|A\|_{F}$.
Let A be $m \times n$ complex matrix. Then the spectral norm of the matrix A is defined by

$$
\begin{equation*}
\|A\|_{2}=\sqrt{\max _{1 \leq i \leq n}\left|\lambda_{i}\right|}, \tag{4}
\end{equation*}
$$

where λ_{i} numbers are eigenvalues of the matrix $A A^{H}$ and the matrix A^{H} is conjugate transpose of the matrix A.
The inequality, between the Frobenius norm and the spectral norm

$$
\begin{equation*}
\frac{1}{\sqrt{n}}\|A\|_{F} \leq\|A\|_{2} \leq\|A\|_{F} \tag{5}
\end{equation*}
$$

is valid [7].
The spectral radius is known the maximum of the absolute values of the eigenvalues of a matrix. That is, for $n \times n$ matrix A, the spectral radius of A is defined as $\rho(A)=\max _{1 \leq i \leq n}\left|\lambda_{i}\right|$ where λ_{i} are eigenvalues of the matrix A.

Let $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ is an $m \times n$ matrices. Then, the Hadamard product of A and B is entrywise product and defined by
$A \circ B=\left(a_{i j} b_{i j}\right)[1]$.
Define the maximum column length norm $c_{1}(\cdot)$ and maximum row length norm $r_{1}(\cdot)$ on $m \times n$ matrix $A=\left(a_{i j}\right)$ by

$$
c_{1}(A) \equiv \max _{j} \sqrt{\sum_{i}\left|a_{i j}\right|^{2}}=\max _{j}\left\|\left[a_{i j}\right]_{i=1}^{m}\right\|_{F}
$$

and

$$
r_{1}(A) \equiv \max _{i} \sqrt{\sum_{j}\left|a_{i j}\right|^{2}}=\max _{i}\left\|\left[a_{i j}\right]_{j=1}^{n}\right\|_{F} .
$$

Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right)$ and $C=\left(c_{i j}\right)$ is an $m \times n$ matrices. If $C=A \circ B$ then

$$
\begin{equation*}
\|C\|_{2} \leq r_{1}(A) c_{1}(B)[8] . \tag{6}
\end{equation*}
$$

Let $A=\left(a_{i j}\right)$ is an $n \times n$ matrix. The principal k-minors of matrix A are defined by

$$
\left.A\binom{i_{1}, i_{2}, \ldots, i_{k}}{i_{1}, i_{2}}=\operatorname{det}\left[\begin{array}{c}
k_{k}
\end{array}\right)=\operatorname{cccc} \begin{array}{cccc}
a_{i i_{1}} & a_{i i_{2}} & \cdots & a_{i i_{k}} \\
a_{i i_{1}} & a_{i i_{2}} & \cdots & a_{i i_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
a_{i, i_{1}} & a_{i k_{2}} & \cdots & a_{i, i_{k}}
\end{array}\right] \text {, }
$$

where $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n(1 \leq k \leq n)$.
Let $A=\left(a_{i j}\right)$ is an $n \times n$ matrix. The equation

$$
\begin{equation*}
\operatorname{det}(\lambda I-A)=\lambda^{n}+a_{1} \cdot \lambda^{n-1}+a_{2} \cdot \lambda^{n-2}+\cdots+a_{n-1} \cdot \lambda+a_{n}=0 \tag{7}
\end{equation*}
$$

is called the characteristic equation of the matrix A. Characteristic polynomial of matrix A is a monic polynomial and coefficients of this polynomial can obtain using principal minors by

$$
\begin{equation*}
a_{k}=(-1)^{k} \cdot \sum_{k=1}^{n} A\binom{i_{1}, i_{2}, \ldots, i_{k}}{i_{1}, i_{2}, \ldots, i_{k}} . \tag{8}
\end{equation*}
$$

As a special, we can write

$$
\begin{aligned}
a_{1} & =(-1) \cdot\left\{A\binom{1}{1}+A\binom{2}{2}+\cdots+A\binom{n}{n}\right\} \\
& =-\left\{a_{11}+a_{22}+\cdots+a_{n n}\right\}=-\operatorname{tr}(A)
\end{aligned}
$$

and

$$
\begin{aligned}
a_{n} & =(-1)^{n} \cdot A\binom{i_{1}, i_{2}, \ldots, i_{n}}{i_{1}, i_{2}, \ldots, i_{n}} \\
& =(-1)^{n} \cdot \operatorname{det}(A) .
\end{aligned}
$$

Taking $h_{i+j}=i+j$ in (1) we get a Hankel matrix

$$
H_{n}=\left[\begin{array}{ccccc}
0 & 1 & 2 & \cdots & n-1 \tag{9}\\
1 & 2 & 3 & \cdots & n \\
2 & 3 & 4 & \cdots & n+1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
n-1 & n & n+1 & \cdots & 2 n-2
\end{array}\right]
$$

and Hadamard exponential of this matrix is

$$
e^{o H_{n}}=\left[\begin{array}{ccccc}
1 & e & e^{2} & \cdots & e^{n-1} \tag{10}\\
e & e^{2} & e^{3} & \cdots & e^{n} \\
e^{2} & e^{3} & e^{4} & \cdots & e^{n+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
e^{n-1} & e^{n} & e^{n+1} & \cdots & e^{2 n-2}
\end{array}\right] .
$$

It is known that

$$
\sum_{k=0}^{n-1} x^{k}=1+x+x^{2}+\cdots+x^{n-1}=\frac{x^{n}-1}{x-1}
$$

Using this equality, it can be write

$$
\begin{equation*}
\sum_{k=1}^{n-1} x^{k}=x+x^{2}+\cdots+x^{n-1}=\frac{x^{n}-x}{x-1} . \tag{11}
\end{equation*}
$$

If we take the derivative of both side of equality (11)

$$
\begin{aligned}
\frac{d}{d x}\left\{\sum_{k=1}^{n-1} x^{k}\right\} & =\frac{d}{d x}\left\{\frac{x^{n}-1}{x-1}\right\} \\
& =\sum_{k=1}^{n-1} k \cdot x^{k-1}=\frac{(n-1) \cdot x^{n}-n \cdot x^{n-1}+1}{(x-1)^{2}}
\end{aligned}
$$

thus we get

$$
\begin{equation*}
\sum_{k=1}^{n-1} k \cdot x^{k}=\frac{(n-1) \cdot x^{n+1}-n \cdot x^{n}+x}{(x-1)^{2}} . \tag{12}
\end{equation*}
$$

In this paper, we investigate ℓ_{p} norm, spectral norm and eigenvalues of $e^{\circ H_{n}}$ in (10). After, we give some results for determinant and spectral radius of this matrix. Finally, we give an application related Hadamard product and Hadamard inverse as a theorem.

2. Main Results

Theorem 2.1 Let $e^{\circ H_{n}}$ as in (10). Then the ℓ_{p} norm of this matrix is

$$
\left\|e^{o H_{n}}\right\|_{p}=\frac{\left(e^{p n}-1\right)^{2 / p}}{\left(e^{p}-1\right)^{2 / p}}
$$

Proof. If we calculate p th power of ℓ_{p} norm of $e^{\circ H_{n}}$ we get

$$
\begin{aligned}
\| e^{{ }^{\cdot H_{n}} \|_{p}^{p}=} \sum_{k=1}^{n} & {\left[k \cdot\left(e^{k-1}\right)^{p}\right]+\sum_{k=1}^{n-1}\left[(n-k) \cdot\left(e^{n+k-1}\right)^{p}\right] } \\
= & n \cdot e^{p(n-1)}+e^{-p} \cdot \sum_{k=1}^{n-1}\left[k \cdot\left(e^{p}\right)^{k}\right] \\
& +n \cdot e^{p(n-1)} \cdot \sum_{k=1}^{n-1}\left(e^{p}\right)^{k}-e^{p(n-1)} \cdot \sum_{k=1}^{n-1}\left[k \cdot\left(e^{p}\right)^{k}\right] \\
= & n \cdot e^{p(n-1)}+\left(e^{-p}-e^{p(n-1)}\right) \cdot \sum_{k=1}^{n-1}\left[k \cdot\left(e^{p}\right)^{k}\right]+n \cdot e^{p(n-1)} \cdot \sum_{k=1}^{n-1}\left(e^{p}\right)^{k} .
\end{aligned}
$$

Using (11) and (12) we get

$$
\left\|e^{\circ H_{n}}\right\|_{p}^{p}=\frac{\left(e^{p n}-1\right)^{2}}{\left(e^{p}-1\right)^{2}} .
$$

If we take $(1 / p)$ th power of the both-hand side we get

$$
\begin{equation*}
\left\|e^{o H_{n}}\right\|_{p}=\frac{\left(e^{p n}-1\right)^{2 / p}}{\left(e^{p}-1\right)^{2 / p}} . \tag{13}
\end{equation*}
$$

Theorem 2.2 Let $e^{\circ H_{n}}$ as in (10). Then, following inequalities for the spectral norm of $e^{\circ H_{n}}$

$$
\left\|e^{o H_{n}}\right\|_{2} \leq \frac{e^{2 n}-1}{e^{2}-1}
$$

and

$$
\left\|e^{e H_{n}}\right\|_{2} \geq \frac{e^{2 n}-1}{\sqrt{n}\left(e^{2}-1\right)}
$$

are valid.
Proof. For $p=2$ in (13) we get the Frobenius norm of $e^{\bullet T_{n}}$ by

$$
\left\|e^{s H_{n}}\right\|_{E}=\frac{e^{2 n}-1}{e^{2}-1} .
$$

Using inequality (5) we get

$$
\left\|e^{e H_{n}}\right\|_{2} \leq \frac{e^{2 n}-1}{e^{2}-1}
$$

and

$$
\left\|e^{\sigma H_{n}}\right\|_{2} \geq \frac{e^{2 n}-1}{\sqrt{n}\left(e^{2}-1\right)}
$$

Theorem 2.3 Le e $e^{\text {sH }} H_{n}$ as in (10). Then, second upper bound for the spectral norm of $e^{e H_{n}}$ is

$$
\left\|e^{e H_{n}}\right\|_{2} \leq \frac{\sqrt{\left(e^{4 n-4}-e^{2 n-2}+e^{2}-1\right)\left(e^{4 n-2}-e^{2 n-2}\right)}}{\left(e^{2}-1\right)} .
$$

Proof. We can write

$$
e^{\imath H_{n}}=\left[\begin{array}{ccccc}
1 & e & e^{2} & \cdots & 1 \\
e & e^{2} & e^{3} & \cdots & 1 \\
e^{2} & e^{3} & e^{4} & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
e^{n-1} & e^{n} & e^{n+1} & \cdots & e^{2 n-2}
\end{array}\right] \circ\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & e^{n-1} \\
1 & 1 & 1 & \cdots & e^{n} \\
1 & 1 & 1 & \cdots & e^{n+1} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{array}\right]=A \circ B .
$$

Then, using (11) we get

$$
\begin{aligned}
r_{1}(A) & =\sqrt{e^{2 n-2}\left(1+\sum_{k=1}^{n-1}\left(e^{2}\right)^{k}\right)}=\sqrt{e^{2 n-2}\left(\frac{e^{2 n}-1}{e^{2}-1}\right)} \\
& =\sqrt{\frac{e^{4 n-2}-e^{2 n-2}}{e^{2}-1}}
\end{aligned}
$$

and

$$
\begin{aligned}
c_{1}(B) & =\sqrt{1+e^{2 n-2}\left(1+\sum_{k=1}^{n-2}\left(e^{2}\right)^{k}\right)}=\sqrt{1+e^{2 n-2}\left(\frac{e^{2 n-2}-1}{e^{2}-1}\right)} \\
& =\sqrt{\frac{e^{4 n-4}-e^{2 n-2}+e^{2}-1}{e^{2}-1}} .
\end{aligned}
$$

From (6) an upper bound is found by

$$
\left\|e^{o H_{n}}\right\|_{2} \leq r_{1}(A) c_{1}(B)=\frac{\sqrt{\left(e^{4 n-4}-e^{2 n-2}+e^{2}-1\right)\left(e^{4 n-2}-e^{2 n-2}\right)}}{\left(e^{2}-1\right)} .
$$

Theorem 2.4 Let $e^{e H_{n}}$ a Hankel matrix as in (10) and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues of $e^{e H_{n}}$. Then

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0
$$

and

$$
\lambda_{n}=1+e^{2}+e^{4}+\cdots+e^{2 n-2} .
$$

Proof. Let characteristic equation of $e^{\circ H_{n}}$ is

$$
\operatorname{det}\left(\lambda I-e^{\circ H_{n}}\right)=\lambda^{n}+a_{1} \lambda^{n-1}+a_{2} \lambda^{n-2}+\cdots+a_{n-1} \lambda+a_{n}=0 .
$$

Now we can calculate the coefficients $a_{1}, a_{2}, \ldots, a_{n}$ using formula (8). It is seen that

$$
a_{1}=-\operatorname{tr}\left(e^{\circ H_{n}}\right)=-\left(1+e^{2}+e^{4}+\cdots+e^{2 n-2}\right) .
$$

Because of k th row $(2 \leq k \leq n)$ of $e^{\circ H_{n}}$ is e^{k-1} multiple of the first row, every $k \times k$ subdeterminants of $e^{\circ H_{n}}$ equal to 0 . Thus we can say easily that

$$
a_{2}=a_{3}=\ldots=a_{n}=0
$$

Then

$$
\begin{aligned}
\operatorname{det}\left(\lambda I-e^{\circ H_{n}}\right) & =\lambda^{n}-\left(1+e^{2}+e^{4}+\cdots+e^{2 n-2}\right) \cdot \lambda^{n-1} \\
& =\lambda^{n-1}\left(\lambda-\left(1+e^{2}+e^{4}+\cdots+e^{2 n-2}\right)\right)=0
\end{aligned}
$$

and we can write

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0, \lambda_{n}=1+e^{2}+e^{4}+\cdots+e^{2 n-2} .
$$

Thus proof is completed.
Conclusion 2.5 The spectral radius of $e^{\circ H_{n}}$ is

$$
1+e^{2}+e^{4}+\cdots+e^{2 n-2}
$$

and

$$
\operatorname{det}\left(e^{\circ H_{n}}\right)=0 .
$$

Theorem 2.6 Let $e^{\circ H_{n}}$ a Hankel matrix as in (10). Then the eigenvalues of the matrix $\left(e^{\circ H_{n}}\right)^{\circ(-1)} \circ e^{\circ H_{n}}$ are

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0, \lambda_{n}=n .
$$

Proof. If we write the Hadamard inverse of $e^{\circ H_{n}}$, it is easily seen that

$$
\left(e^{o H_{n}}\right)^{(-1)}=\left[\begin{array}{ccccc}
1 & e^{-1} & e^{-2} & \cdots & e^{-(n-1)} \\
e^{-1} & e^{-2} & e^{-3} & \cdots & e^{-n} \\
e^{-2} & e^{-3} & e^{-4} & \cdots & e^{-(n+1)} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
e^{-(n-1)} & e^{-n} & e^{-(n+1)} & \cdots & e^{-(2 n-2)}
\end{array}\right] .
$$

If we write the Hadamard product of $\left(e^{o H_{n}}\right)^{\circ(-1)}$ and $e^{o H_{n}}$, we get

$$
B=\left(e^{\circ H_{n}}\right)^{\circ(-1)} \circ e^{\circ H_{n}}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
1 & 1 & 1 & \cdots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{array}\right]
$$

Let characteristic equation of B is

$$
\operatorname{det}(\lambda I-B)=\lambda^{n}+b_{1} \lambda^{n-1}+b_{2} \lambda^{n-2}+\cdots+b_{n-1} \lambda+b_{n}=0 .
$$

If we calculate $b_{1}, b_{2}, \ldots, b_{n}$ we see that immediately

$$
b_{1}=-n=-\operatorname{tr}(B)
$$

and

$$
b_{2}=b_{3}=\cdots=b_{n}=0
$$

from formula (8). Then, we get

$$
\begin{aligned}
\operatorname{det}(\lambda I-B) & =\lambda^{n}-n \cdot \lambda^{n-1} \\
& =\lambda^{n-1}(\lambda-n)=0 .
\end{aligned}
$$

Thus

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n-1}=0, \lambda_{n}=n
$$

and proof is completed.

References

[1] R. Reams, Hadamard inverses, square roots and products of almost semidefinite matrices, Linear Algebra and its Applications, 288 (1999), 35-43.
[2] S. Solak, D. Bozkurt, On the spectral norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computation, 140 (2003), 231-238.
[3] S. Solak, D. Bozkurt, A note on bound for norms of Cauchy-Hankel matrices, Numerical Linear Algebra with Applications, 10 (2003), 377-382.
[4] A. D. Güngör, Lower bounds for the norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computation, 157 (2004), 599-604.
[5] R. Türkmen, D. Bozkurt, On the bounds for the norms of Cauchy-Toeplitz and Cauchy-Hankel matrices, Applied Mathematics and Computation, 132 (2002), 633-642.
[6] A. Nall, On the Hadamard exponential GCD matrices, Selcuk Journal of Applied Mathematics, 7(1) (2006), 63-68.
[7] G. Zielke, Some remarks on matrix norms, condition numbers and error estimates for linear equations, Linear Algebra and Its Applications, 110 (1988), 29-41.
[8] R. Mathias, The spectral norm of nonnegative matrix, Linear Algebra and Its Applications, 131 (1990), 269-284.

