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Abstract: In this paper, we study the nxn Hadamard exponential Hankel matrix of the form H_ =[e‘”lﬂfj{0.
We found ¢ norms, two upper bounds for spectral norm and eigenvalues of this matrix. Finally, we give an

application related Hadamard inverse, Hadamard product and eigenvalues of this matrix.
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1. Introduction

In [1], Reams proved that e* is positive semidefinite where AeR"™" be symmetric and positive semidefinite.

AcR™ be almost positive (semi) definite then e* is positive (semi) definite. Moreover, Reams gave some proofs
related Hadamard inverse and Hadamard square root of symetric matrices.
In [2], Solak and Bozkurt found an upper and lower bound of Cauchy-Hankel matrix in the form

H, =[1/@+(+ D]
where b =0, a and b are any numbers and a/b is not integer.

In [3], Solak and Bozkurt determined bounds for the spectral and ¢ norm of Cauchy-Hankel matrices of the
form

H, =[1/(g+h(i+ )], =[1/(@+kn)] . k=01 ..., n-1,

i,j=1"

where k is defined by i+ j =k (mod n).

In [4], Giingor found lower bounds for the spectral norm and Euclidean norm of Cauchy-Hankel matrix in the
form

H, =[1/(g+(i+ j)h)]:jzl.

In [5], Tirkmen and Bozkurt obtained an upper bounds for the spectral norm of the Cauchy-Hankel matrices of
the form

H, =[1/(g+ @i+ DHh)],
where g=1/k and h=1.

In [6], Nall1 studied the Hadamard exponential GCD matrices of the form

E- [e(i,j)]:jzl,

where (i, j) is the greatest common divisor of i and j. Nalli gave the structure theorem and calculated the

determinant, trace, inverse and determined upper bound for determinant of this matrix.



82 .
A. Ipek et al: Hadamard Exponential Hankel Matrix... %—f\_';:'s

A Hankel matrix isan nxn matrix

n-1
H, z[h‘vi]i, j=0 ' (1)
where h  =h_;, i.e., amatrix of the form
i hO hl h2 hn—l 1
h, h - h
Hn = hz h3 h4 hr|+1 . (2)
_hn—l hn hn+1 h2n—2_

Let A= (aij) isan mxn matrix, then Hadamard exponential and Hadamard inverse of the matrix A is defined by

eA=(e"’“’)

and

respectively [1].

Let A=(aij) isan mxn matrix, then transpose of the matrix A is nxm matrix and defined by A" = (@;)-

Let A=(aij) isan mxn complex matrix. The ¢ norm of Ais defined by
n n Up
p
LR ®
i=1l j=
If p=2 then ¢, norm is called Frobenius or Euclidean norm and showed by [|Al|. .

Let Abe mxn complex matrix. Then the spectral norm of the matrix A is defined by

A, = Jmax]4]. (4)

where A4 numbers are eigenvalues of the matrix AA" and the matrix A" is conjugate transpose of the matrix A .

The inequality, between the Frobenius norm and the spectral norm

1
Al <IAL <A ®)

is valid [7].
The spectral radius is known the maximum of the absolute values of the eigenvalues of a matrix. That is, for nxn

matrix A, the spectral radius of A is defined as p(A) = max|/11| where 4 are eigenvalues of the matrix A.

1<in
Let A:(a,.j) and B =(b;) isan mxn matrices. Then, the Hadamard product of A and B is entrywise product
and defined by
AoB=(a;b;) [
Define the maximum column length norm ¢, (-) and maximum row length norm r,(-) on mxn matrix A=(a;)

by

a(A=max, [3a [=max][a, T, -

and
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2 n
oA = S =2, ]|
J
Let A=(aij), B=(b;) and C=(c;) isan mxn matrices. If C=AcB then
ICll, < r.(A)c.(B)[8]. (6)

Let A= (aij) isan nxn matrix. The principal k - minors of matrix A are defined by

ilil iliZ ailik
A(IIIIZI ceer — det Qi &, &y
iy, ey oo
a. a a.

ek Iy I

where 1<i <i, <---<i, <n (I<k<n).

Let A=(a;) isan nxn matrix. The equation
det(Al—A)=2"+a,-A""+a,-A"*+---+a,,-A+a,=0 @)

is called the characteristic equation of the matrix A. Characteristic polynomial of matrix A is a monic polynomial
and coefficients of this polynomial can obtain using principal minors by

o gt ”

As a special, we can write

= (—D{A@* A@*“'* A[:j}

:_{a11+a22 +"""ann} =-tr(A)
and

wmcorafb )

[ O

= (=1)" - det(A).

Taking h_; =i+ jin (1) we get a Hankel matrix

o 1 2 .. n-1
1 2 3 - n

Ho=| 2 3 4 .. n+t (9)
n-1 n n+l .-~ 2n-2

and Hadamard exponential of this matrix is

1 e ¢° et
e e ¢ e"

e»an: ez es e4 en+1 . (10)
_en—l en en+1 eZn—Z_

It is known that
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%N = P)

n-1 n

_ X' -1
zx":1+x+x2+---+x“: :
k=0 x-1

Using this equality, it can be write

n

n-1

4 X"=X
Zxk:x+x2+~--+x”1: )
k=1 x-1

If we take the derivative of both side of equality (11)

4[] d [x-1
dx | dx | x-1

:”Z*llk.xk,l _(n-9-x" -n-x"'+1
k=1 (x-1)°
thus we get
nik oo )-x"—n-x"+x
k=1 (x-1?

(11)

(12)

In this paper, we investigate ¢, norm, spectral norm and eigenvalues of e’™ in (10). After, we give some results

for determinant and spectral radius of this matrix. Finally, we give an application related Hadamard product and

Hadamard inverse as a theorem.

2. Main Results
Theorem 2.1 Let e"™ as in (10). Then the ¢, norm of this matrix is

(e 1)

e
p

Proof. If we calculate pth power of ¢ norm of e i we get

"eHn P :Zn:|:k.(ek—l)p:|+nz_i|:(n_k).(en+k—1)p}
Pia k=1
:n-ep(”’”+e’p-E[k-(ep)k}
:—:11 K n-1 K
+n-ePD . (ep> —_gP(-D |:k,(ep) :l
k=1 k=1
:n.ep(n—1>+(e—p_ep<n—1>) H[k (ep)k}rn oP(-D ni(ep)k

Using (11) and (12) we get
()

(1)

If we take (1/ p) th power of the both-hand side we get

e

p
p

2/p

pn _1)

\ e
"eH"p==%;;jzymr-

Theorem 2.2 Let e ™ as in (10). Then, following inequalities for the spectral norm of e"™

2n
o], <5
2 e -1

(13)
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and
"1

el
Jn(e* 1)

e

2

are valid.

Proof. For p =2 in (13) we get the Frobenius norm of e ™ by

=
e e?-1’
Using inequality (5) we get

2n
o], <5
2 g1

and
2n
o], 2 Fr
I
Theorem 2.3 Le e as in (10). Then, second upper bound for the spectral norm of "™ is

\/(ea,n,a, _g?2 4 @2 _1)(e4n—2 _e2n—2)

W :
2 (e"-1
Proof. We can write
(1 e € 101 1 e" ]
e e* ¢ 11 e"
eH"= e2 e3 e4 Ol l en+1 =AOB.
en—l en en+1 e2n—2_ _l l 1 1 |

Then, using (11) we get

2n-2 S P _ |.2n-2 ezn_—l
r.(A) =\/e [1+;(e ) )—\/e (ez—l)

and

2n-2 o2k _ o[ €71
cl(B):J1+e (1+kzl:(e) j_\/1+e [ 71 J

~ Je4n4 _e2n72 +e2 _1

e’ -1

From (6) an upper bound is found by

n-2 +e2 _1)(e4n—2 _e2n—2)
-1

"e H, 2 < rl(A)cl(B) _ x/(e4nf4 _@?

Theorem 2.4 Let e ™ a Hankel matrix as in (10) and A, A4,, ..., A, are eigenvalues of e ™ . Then

A=y == Ay =0

and
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A, =1+e +e* +-..+e*2
Proof. Let characteristic equation of "™ is
det(Al —e"™)=A"+a1"™" +a,4" " +--+a, A +a, =0,
Now we can calculate the coefficients a,, a,, ..., a, using formula (8). It is seen that

a =-tre™)=—1+e*+e*+---+e*?).

1

Because of kthrow (2<k<n)of e is " multiple of the first row, every k xk subdeterminants of e

equal to 0. Thus we can say easily that
a=a,=..=4a, =0
Then
det(Al—e™ )= A" —(1+e” +e’ +---+e”?). A"
=AM (A-(1+e*+et +---+e" ) =0
and we can write
A=A==4,=0 4 =1+’ +e' +-..+e*"7.
Thus proof is completed.
Conclusion 2.5 The spectral radius of e is
1+e” +e*+. 4™
and
det(e™) =0.

Theorem 2.6 Let ™ a Hankel matrix as in (10). Then the eigenvalues of the matrix (e Hn ) et are

hy=dg ==y =0, 3 =n.

Proof. If we write the Hadamard inverse of e | it is easily seen that

1 e—l efz e—(n—l) ]
e—l e—2 e—3 e—n
Hy )P 2 3 4 ~(n+1)
(e™) =] e e e e
e—(n—l) e—n e—(n+1) e—(Zn—2)

If we write the Hadamard product of (&™) “and e™ , we get
111 1

111
B=(e") " oet =1 1 1

111 1
Let characteristic equation of B is
det(A1 —=B)=A"+b A"  +b,A" % +---+b ,A+b, =0,
If we calculate b, b,, ..., b, we see that immediately
b =—n=-r(B)

and
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from formula (8). Then, we get
det(A1 -B)=A"—n-A""
=A""(A-n)=0.
Thus

ﬂl :A? :”':Z’n—l :O' /,i’n =n
and proof is completed.
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