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The poles of the S-matrix, which represent both resonances and bound states, are being
investigated numerically using the J-matrix approach in an infinite L2 basis set. These
poles are found to be stable against variations in all computational parameters. To test
the accuracy and validity of this approach we have implemented our scheme to find the
resonance and bound state energies for a well known test potential and compared our
results favorably with those obtained previously in the literature.
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The study of resonance energies associated with the scattering of a projectile by a target
is of fundamental importance for the understanding of both the structure of the target and
the nature of the interaction of the projectile-target system [1]. Hence different numerical
methods have been devised to compute the resonance energies which are complex in nature.
Complex rotation (CR) method has been one of the most successful methods for studying
resonances. It is based on the rigorous theoretical work of Aguilar-Balslev-Combes (ABC)
theorem [2]. This theorem states in essence that if the original Hamiltonian is transformed
under complex rotation r → reiθ, where θ is a real angular parameter, then the complex
eigenvalues associated with resonances will be isolated and remain unchanged under this
transformation while the continuous energy spectrum mimicked by the discrete spectrum
will be rotated by - 2θ in the complex energy plane. The key element of the complex ro-
tation method is the extension of the original Hamiltonian into the non-Hermitian domain.
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The associated eigenvalues of the resulting non-Hermitian Hamiltonian are complex in na-
ture, with the real part representing the position of the resonance, and the imaginary part
giving the inverse lifetime.

The most direct way to compute the resonances, however, is based on the more accurate
definition of the resonances as being the poles of the scattering S-matrix in the complex
energy plane.

One can show that each element of the S-matrix is singular at the complex resonance
energy E

S−1(E) = 0, E = ER ± i EI .

This condition is sufficient for obtaining the resonance position ER and width Γ = 2EI .
Several methods to find the complex resonance energies of a given scattering Hamilto-
nian are available. There are many techniques that enable us to evaluate the S-matrix, one
approach is to use the Jost function and its analytic properties [3-5], in another approach
Yamani & Abdelmonem [6] showed how to calculate the S-matrix at the Harris eigenvalues
and, subsequently analytically continue it in the complex energy plane and then extract the
required resonance information from the analytically continued S-matrix. In our present
work we will combine the analytical properties of the S-matrix, the complex rotation and
the J-matrix approach [7]. In our previous work [8] we have contented ourselves by us-
ing the complex rotation in a finite dimensional space spanned by L2 basis. Due to the
finiteness of the dimensional space the accuracy of our numerical results was limited, any
additional improvement request larger spaces and consequently more computational times.
Since the objective of all computational schemes is to increase the accuracy and to improve
the efficiency in locating the resonance positions and widths without extending the numeri-
cal computing resources we have opted in the present work to use the power of the J-matrix
approach which enables us to include an infinite tail reflecting the solution of the exactly
solvable part of the Hamiltonian, usually referred to as the H0 problem in the J-matrix
literature.

A direct study of resonances is usually done in the complex energy plane. As men-
tioned above, resonance energies are the subset of the poles of the S-matrix function which
are located in the lower half of the complex energy plane. One way to uncover these reso-
nances, which are “hidden” below the real line in the E-plane, is to use the complex scaling
(complex rotation) method [2]. This method exposes the resonance poles and makes their
study easier and manipulation simpler. The subset of eigenvalues that corresponds to res-
onance spectra remain stable against variations in all computational parameters (including
θ, as long as these poles are far enough from the cut “line”).

In the atomic units h̄ = m = e = 1, the one-particle wave equation for a spherically
symmetric potential V(r) in the presence of the Coulomb field reads as follows:

(H − E) χ =
[
−1

2
d2

dr2
+

`(` + 1)
2r2

+
Z

r
+ V (r)− E

]
χ = 0, (1)
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where χ(r) is the wavefunction which is parameterized by the potential parameters, `, Z

and E. The wavefunction χ will be expanded in an L2 complete basis set {φn} which is
chosen to make the matrix representation of the reference Hamiltonian:H0 (≡ H−V ) tridi-
agonal. We parameterize the basis by a positive length scale parameter λ as {φn(λr)}to
allow for more computational freedom. The following choice of the basis functions [9] is
compatible with the domain of the Hamiltonian and satisfies the desired boundary condi-
tions (vanishing of the wavefunction at r = 0 and as r →∞)

φn(x) = an xα e−x/2Lν
n(x); n = 0, 1, 2, . . . (2)

where x = λr, λ > 0, α > 0, ν > −1, Lν
n(x) is the Laguerre polynomial, and an

is the normalization constant
√

λΓ(n + 1)/Γ(n + ν + 1). We then require the reference
Hamiltonian matrix representation to be tridiagonal in this “Laguerre basis” [10]. This
requirement leads to the choice α = ` + 1 and ν = 2` + 1 and gives the following
tridiagonal matrix representation for H0 [11]

(H0)nm=〈ϕn(x)| − λ2

2
d2

dx2
+

λ2

2
`(` + 1)

x2
+

λZ

x
|ϕm(x)〉

=
λ2

8

(
2n + ν + 1 +

8Z

λ

)
δn,m +

λ2

8

√
n(n + ν)δn,m+1

+
λ2

8

√
(n + 1)(n + ν + 1)δn,m−1. (3)

In the manipulation, we used the differential equation, differential formula, three-term re-
cursion relation, and orthogonality formula of the Laguerre polynomials [10]. Now, the
only remaining quantity that is needed to perform the calculation is the matrix elements of
the effective potential V(r). This is obtained by evaluating the integral

Vnm =
∫ ∞

0

φn(λr)V (r)φm(λr)dr

= λ−1anam

∫ ∞

0

xνe−xLν
n(x)Lν

m(x) [xV (x/λ)] dx. (4)

The evaluation of such an integral for a general effective potential is almost always done
numerically. We use the Gauss quadrature approximation which gives [12]

Vnm
∼=

N−1∑

k=0

ΛnkΛmk [εk V (εk/λ)] , (5)

where εk and {Λnk}N−1
n=0 are the respective N eigenvalues and normalized eigenvectors of

the N×N tridiagonal overlap symmetric matrix 〈φn | φm〉, whose elements are

Kn,n = 2n + ν + 1, Kn,n+1 = −
√

(n + 1)(n + ν + 1) (6)
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The value of N in (5) is chosen in an optimal way to ensure a good sampling of the potential
without extending too much the computational time. Therefore, the reference Hamiltonian
H0 in this representation, which is at the heart of the J-matrix approach, is accounted for in
full and is handled analytically; not numerically. On the other hand, the effective potential
V is approximated by its matrix elements in an adequate subset of the basis.

The potential V is approximated by its representation in a subset of the basis, such that

Hnm
∼=

{
(H0)nm + Vnm, n, m ≤ N − 1;

(H0)nm, n, m > N − 1.
(7)

Such a representation is the fundamental underlying feature of the J-matrix [7] method.
As it is obvious from (7), the reference Hamiltonian is not truncated at all, this full account
of the reference Hamiltonian should result in a substantial improvement on the accuracy of
the results and this is the real power of the S-matrix approach we are proposing. The direct
method, we will be using, to find the resonances is based on the J-matrix. Bound states
are associated with negative real eigenvalues while resonances are associated with complex
eigenvalues which have positive real parts and negative imaginary parts. The S-matrix in
the J-matrix method is defined by [6]

S(E) = TN−1(E)
1 + gN−1,N−1(E)JN−1,N (E)R−N (E)
1 + gN−1,N−1(E)JN−1,N (E)R+

N (E)
,

Tn =
cn − isn

cn + isn
, R±n =

cn ± isn

cn−1 ± isn−1
,

gN−1,N−1(z) = DN
ν

N−1∑
n=0

Γ2
N−1,n

εn − z
= DN

ν

[
N−2∏
m=0

(ε̃m − z)

/
N−1∏
n=0

(εn − z)

]
,

DN
ν = N + ν. (8)

Here, gn,m is the inverse of the matrix(H0 + V − E), εi and ε′i are the eigenvalues of H
and the one truncated by removing the last row and last column, respectively. It should
be noted that our definition of R±N is the inverse of the conventional one adapted by the
founders of the J-matrix approach [7].

The matrix Λ simultaneously diagonalizes H and the overlap matrix K where Knm =
〈ψn | ψm〉. Jm,n are the J-matrix elements defined by Jm,n = 〈φm|(H0 − E)|φn〉and
are represented by a tridiagonal matrix. The quantities sn and cn are just the expansion
coefficient of the sine-like and cosine-like functions which constitute the two independent
asymptotic solutions of the differential equation (H0 − E)ψ = 0. This terminology is
being used in the J-matrix approach where we denote the two independent solutions of the
reference Hamiltonian by

|S〉 =
∞∑

n=0

sn|ϕn〉, |C〉 =
∞∑

n=0

cn|ϕn〉 (9)
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To illustrate this resonance finding approach and demonstrate the ability and accuracy
of the proposed J-matrix approach, we use a well known potential which was used heavily
in the literature due to its simplicity and the richness of its spectra which includes both
shallow and deep resonances. We consider the Hamiltonian with the following potential
[3,4,6,13,14]

V (r) = 7.5 r2e−r, (10)

This potential has already been shown to support s-wave resonances even in the absence of
Coulomb potential. Also it can support bound states with negative charge, Z, as it will be
shown below. The above approach will be numerically implemented to the study and anal-
ysis of resonances for the potential V (r) in the complex E-plane to illustrate the accuracy
of this method and determine the advantage of this procedure compared to other numerical
approaches.

Before we discuss our numerical results, it is important to mention that the package of
MATHEMATICA (Version 5) [15] has been used extensively to perform our calculations.
To calculate the roots of S−1 matrix, one has to use the built in Newton–Raphson type of
iteration procedure. The accuracy of the S-matrix results crucially depends on the accuracy
of the seed that we use which originates from the complex rotation approach (CR). So, it
is important to use the most accurate seed, having this mind we have decided to use the
computational power of MATHEMATICA up to fifty digits while in the final results we
showed only the significant ones.

In the following we will give the recipe of our procedure for calculating the bound
and resonance energies of our test potential for different values of Z and `. For a given
choice of physical parameters, we investigate the stability of the calculated eigenvalues
that correspond to bound states and/or resonances as we vary the scaling parameter λ and
rotation angle θ until we reach a plateau in λ and θ, independently [8]. Then to improve
on the accuracy of the results, we select a values of λ and θ from within their respective
plateau and increase the dimension of the space N until the desired accuracy is reached.
The digits that are shown italic in the tables correspond to uncertain digits and are kept
only for comparison purposes.

Our strategy for calculating the resonances and bound states of the system is based on
the following procedure: First we use the CR [8,11] to calculate the bound and resonance
states for the given parameters. This step also gives the critical angle or the opening angle
for each resonance state, it is usually done using a large value of N, say 100, θ ≤ π/3, and
a suitable value of λ. This step is crucial in our approach since it gives the energies of the
bound states, the energies and the widths of the resonance states which constitute our seeds
for the S-matrix computations. We start our study by considering the S-wave uncharged
system which has been treated in the literature. First we study the range of parameter spaces
in λ and θ which ensure the stability of our computations; this phase has been named the
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State Our work [3] [4] [14]
R1 3.42639031014825046005

-0.01277448059289562497 i

3.426390331 -
0.012774481 i

3.4263903101 -
0.012774481 i

3.426390310 -
0.012774481 i

R2 4.8348068410964 -
1.117876668867918 i

4.834806841-
1.117876669 i

4.8348068411 -
1.1178766688 i

4.834806841-
1.117876669 i

R3 5.277279863983998-
3.38905329525395 i

5.277279780 -
13.389053178 i

5.2772798640
-3.3890532952 i

5.277279864 -
13.389053295 i

R4 5. 0649296073802 -
5.97603478786563 i

5.064929 6074 -
5.9760347878 i

5.064929 608 -
5.976034788 i

R5 4.268860299262605 -
8.71690843394784491 i

4.2688602993 -
18.7169084339 i

4.268860299 -
8.716908434 i

R6 2.947781600328765 -
11.530514731260112 i

2.9477816003-
11.530514732 i

2.9477816003 -
11.530514731 i

R7 1.1471837382928 -
14.36900713709712 i

1.1471837383 -
14.3690071370 i

1.147183738-
14.369007137 i

R8 -1.096688978956-
17.2010217933 i

-1.0966889789 -
17.2010217933 i

-1.096688979 -
17.201021793 i

R9 -3.7541441226 -
20.0045074966 i

-3.7541441225 -
20.0045074967 i

-3.75414412 -
20.00450749 i

R10 -6.80030388 -
22.76315507 i

-6.800304 -
22.76315 i

R11 -10.2139610 -25.4644312 i -10.21 - 25.46 i

Table 1: The resonance energies associated with Z = 0 and ` =0, while λ is ranging from 8-18, θ

ranging from 0.5-1.2 and N is ranging from 50 to 70. Comparison with the available literature results
is also shown in the last three columns [3, 4, 14].

search for λ-plateau and θ-plateau, respectively, and was treated in details in our previous
work [8]. In Table 1 we show only the first eleven resonances associated with this potential.
For ease of discussion we refer to the resonances associated with this potential as R1, R2,
. . ., R11 starting from the shallow one, R1, to the deepest one, R11, all parameters values
were chosen within the corresponding plateau. The dimensional space parameter N was
taken to be 70 except for the resonances R1 and R2 for which it was taken to be 50. As
usual, to decide about the right number of significant digits we should keep for N =50, say,
we perform an additional computation with N = 51 (any higher number will do) and keep
only the digits that did not change when comparing the results with those with N = 50. It
is worth mentioning that, in general, the results for the deep resonance are relatively less
accurate than those of the shallow one. Comparison with the available literature results
is also shown in the last three columns [3, 4, 14] of Table 1. Our results using J-matrix
approach are found to be more accurate than those in the literature. We need to mention
here that similar calculations can be performed using the oscillator basis [7] for the case
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of Z = 0, however, we noticed that for this particular potential the results obtained using
the Laguerre basis are more accurate than those associated with the oscillator basis for the
same basis size N . As an example we mention that the resonance R2 in Table 1 is given
by R2 = 4.8348068 - 1.11787651 i in the oscillator basis using λ = 2 and θ = 0.5, hence
a reduction from 14 significant figures in the Laguerre basis to 8 significant figures in the
oscillator basis for the same value of N = 50. It is our conjecture that for potentials which
are much shorter in range compared to ours, we expect that the results obtained using the
oscillator basis might outperform those using the Laguerre basis.

State (λ, θ) Our work [3] [14]
R1(12,0.5) 1.78052453636230533 -

0.00004785969842869 i

1.780524536 -
0.000047859 i

1.780524536 -
0.0000478597 i

R2(12,0.5) 4.101494946209229 -
0.578627213765913 i

4.101494946 -
0.578627214 i

4.101494946 -
0.578627214 i

R3(12,0.8) 4.663461096660910 -
2.683200770291628 i

4.663461099 -
2.683200769 i

4.663461097 -
2.683200770 i

R4(15,1) 4.561151055148 -
5.206698021694 i

R5(15,1) 3.849197759911 -
7.908283499740 i

R6(15,1) 2.5933485088 -
10.6937408173 i

R7(15,1) 0.84464713 -
13.510954553 i

R8(15,1) -1.356846 -
16.3265018 i

R9(15,1) -3.978854 -
19.117065 i

R10(15,1) -6.9947 -
21.8654 i

Table 2: Values of the resonances energies obtained using S-matrix for N = 60, λ = 12, ` = 0, Z =
-1, θ = 0.5 (for R1 and R2) and θ = 0.8 ( for R3), all other resonances were obtained for θ = 1 and λ =
15. The last two columns show the numerical data available in the literature for comparison [3, 14].

We consider now the effect of the charge through the Coulomb potential Z/r, thus we
add to the test potential (10) a Coulomb term Z/r. In this case to obtain bound states we
need to have negative Z, however large values will generate more bound states and fewer
resonances. Here we consider the moderate case with Z = −1 and `= 0, which was treated
in the literature [3, 14]. Table 2 shows the resonances generated by this potential, we see
that our results agree with those in the literature [3,14] and outperform them at high values
of N with more significant figures.
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a)

N Ground state energy
λ = 5, θ = 0

15 -4.47399521(9582)
20 -4.4739952221(02)
25 -4.473995222133
26 -4.473995222133

b)

N E (shallow resonance) E (deep resonance)
λ = 5, θ = 0.3 λ = 14, θ = 0.8

30 0.69283206(84321) -
0.0116652519(68029) i

1.842585521(154557) -
1.113181443(3889586) i

40 0.69283206794(35) -
0.01166525198(0639) i

1.84258552122810(2) -
1.1131814432139(644) i

50 0.6928320679440 -
0.011665251982125 i

1.842585521228104 -
1.1131814432139194 i

51 0.6928320679440 -
0.011665251982125 i

1.842585521228104 -
1.1131814432139194 i

Table 3: The energy for the ground state (a) and two of the resonances (b) with Z = −7 and ` = 1

for different values of N.

Finally, we would like to study the effect of the orbital centrifugal term `(` + 1)/2r2

together with the Coulomb term Z/r, the values `= 1 and Z = −7 are being chosen. In
this case, 22 bound states and two resonance states have been found. Following the above
procedure one can study the variations of the ground state in Table 3a and the two resonance
states in Table 3b as a function of the dimensional parameter N. The effect of changing `, at
fixed Z, could be clearly understood from the comparison of results in Table 4. From this
table it can be observed that the ground state energy decreases drastically with increasing
`. However, the effect of changing ` on the values of the first two resonances state energies
is less pronounced.

In summary, we presented the computation of the bound and resonance energy states
as being the poles of the S-matrix using the J-matrix technique which includes partial
contributions of the Hamiltonian from the infinite dimensional space. To test the validity
and accuracy of our approach we have implemented it for a typical short-range scattering
potential V (r) = 7.5 r2e−rwhich was widely used in the literature. More accurate results
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` =0
(λ = 12, θ = 0.7)

` =1
(λ = 5, θ = 0.4)

` =2
(λ = 3, θ = 0.4)

Ground state
N = 30

B1 - 24.179134460556 - 4.473995222134 - 0.575903594988

Resonances
N = 40

R1 0.801994445339-
0.036277959631i

0.692832067944-
0.011665251982 i

0.405958975050-
0.000501309145 i

R2 1.712768600246-
1.341289175693 i

1.842586470829-
1.113189558416 i

2.074374194936-
0.727438733704 i

Table 4: The energy for the ground state and the first two resonances for Z = −7 and different values
of l. The values of θ are indicated for the resonances while for bound states it is set to θ = 0.

for the bound and resonant state energies of this test potential were generated and compared
favorably with the most recent results in the literature [4,14] for different values for the
parameters Zand `. Our approach could easily be generalized to handle other short-range
potentials such as the Morse potential, the Yukawa potential and the Hulthen potential, to
mention only few. The present approach can easily handle non-analytic potentials which,
usually, cannot be handled with great accuracy using other numerical approaches.
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