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Abstract: In this paper, we consider the approximate solution of the partial integro-differential equation.
To solve this problem, we introduce a new nonstandard time discretization scheme. Then the fourth order
finite difference and collocation method is presented for the numerical solution of this type of partial
integro-differential equation (PIDE). A composite weighted trapezoidal rule is manipulated to handle the
numerical integrations which results in a closed-form difference scheme. The efficiency and accuracy of
the scheme is validated by its application to one test problem which have exact solutions. Numerical
results show that this fourth-order scheme has the expected accuracy. The most advantages of compact
finite difference method for PIDE are that it obtains high order of accuracy, while the time complexity to
solve the matrix equations after we use compact finite difference method on PIDE is O(N), and it can
solve very general case of PIDE.

Keywords: Compact finite difference method; PIDE; Time discretization; Partial integro-differential
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1. Introduction

Usually results in functional equations, e.g. partial differential equations, integral and integro-
differential equation, stochastic equations and others. Many mathematical formulations of physical
phenomena contain integro-differential equations. These equations arise in fluid dynamics, biological
models and chemical kinetics [8, 11]. Integro-differential equations are usually difficult to solve
analytically so it is required to obtain an efficient approximate solution. The principal aim of this paper is
to describe an approximate solution for a parabolic partial integro-differential equation representing heat
conduction in material with positive memory. Classically, a heat conduction phenomenon is represented by
a parabolic partial differential equation with an infinite heat propagation speed; this is a puzzling
contradiction to the physics. Indeed, the material property of the past influences on that of the present, and
therefore the heat propagation can be better understood if it is represented by an integro-differential
equation rather than it is modeled by the usual parabolic equations.

Solution of Integro-partial differential equations has recently attracted much attention of research.
The maotivation for such problems lies in different branches of physics, in rtheology, and especially in the
theory of parabolic type. There are several methods for solving integro-differential equations, in (1988) E.
G. Yanik and G. Fairweather use finite element methods for solving integro-differential equation of
parabolic type [3]. In (1989) M. N. Leroux and V. Thomée use Numerical solution of semilinear integro-
differential equations of parabolic type with non smooth data [9]. The stability of Ritz-Volterra projections
and error estimates for finite element methods for a class of integro-differential equations of parabolic type
is studied by Y. Lin and T. Zhang [10]. In (992), A. K. Pani, V. Thomee, and L.B. Wahlbin use Numerical
methods for hyperbolic and parabolic integro-differential equations [1]. Global and blow-up solutions of a
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class of semilinear integro-differential equation, by Cui Shang-bin and Ma Yu-lan in (1994) [2]. I. H.
Sloan and V. Thomee, use Time discretization of an integro-differential equation of parabolic type [6].

Our contribution in this paper is to use the analysis of [4, 5] to introduce numerical scheme for
solving partial integro-differential equations in one dimensional space with non-homogeneous Dirichlet
boundary conditions, by develop a new fourth order accurate scheme. The suggested numerical scheme
starts with the discretization in time by the 2-point Euler backward finite difference method. After that we
deal with a combination of the compact finite difference method and the trapezoidal rule for calculating the
integral term and then we use a collocation method to compute the unknown function and finally the
obtained system of algebraic equations is solved by iterative methods. Then we use modified variational
iteration method for solving partial integro-differential equations and make the comparison with fourth
order accurate scheme. The proposed techniques are programmed using Matlab ver. 7.8.0.347 (R2009a).

The paper is organized as follows: In Section 2, we give a brief introduction to a high accurate compact
finite difference formula for partial integro-differential equations with varying boundary conditions. In
Section 3, the proposed scheme is directly applicable to solve one numerical example to support the
efficiency of the suggested numerical scheme. Conclusions are drawn in Section 4.

2. Formulation of High-Order Compact Schemes

Compact Schemes are based on a fourth-order accurate approximation to the derivative calculated
from ordinary differential equation. To developed the scheme for one-dimensional uniform

Cartesian grids with spacing Ax =h, let us introduce the following notations [7]: If u; =u(x;)
, then we use notations
Ui,q—U;
souj=—"t o5 5 uj=Itop,
h ", h -, (2.1)
to denote the standard forward finite difference and backward finite difference schemes for first
derivative. Also,

Uj _uj—l

Uji1 —Ujg
2h (2.2)
is the first-order central finite difference with respect to x. The standard second-order central finite

difference is denoted as 5X2uj and is defined as

8o U :%(8+ Uj+3_ uj):

Uji1—2Uj+Ujq 5, -3

j = 2 =

h h 2.3)
By using the Taylor’s series expansion, a fourth orders accurate finite difference for the first and
second derivatives can be approximated by

2 43 2 42 2
o= B Y a1 | %o
X

d,.d_u

1 43 & 2 lday
dx 3! dx 6 dx“ ) dx 6 (2.4)
and
2 2 44 2 42 2 2
8§u:d—u+h—d—u: 1+h—d— d_u: 1+h—82 82u+0(h4)
dx? 12 gx* 12 dx? ) dx? 12 25)
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2.1 Compact finite difference method for solving partial integro-differential equations

where

Here, we use the fourth order compact finite difference method to solve problem
du du  du

———+a—=|_k(s)u(x,s)ds+ f(t,x), a<x<bh, te(0,T
o2 o~ lo KEUxds+ Tt 1) (0.7)

(2.1.1)
u(a,t) =0, u(b,t)=0, te(0,T) (2.1.2)
u(x,0) =Uug(x), asx<h. (2.1.3)

To construct a numerical solution, we first consider the nodal points ~ (X;,t;) defined in the
region [a,b]x[0,T] where

a=Xg <X <:<Xp_1<Xp =D, Xj1—Xj=h,

and

O=thp<fy<---<tj<---<T, tig-ti=1

In such a case we have

xj=a+jh j=0,1,2,....n ti:irforizo,l,Z,....

' and
The initial condition in equation (1.2) is approximated as follows:
u(x,0)=ug =u(x,ty), a<x<h. (2.1.4)

Next, the 2-point Euler backward differentiation formula is manipulated to approximate Ut given

| tisl o =012,

in equation (1.1), at the time-leve ** Therefore, we have

2
Uig () —Ui (%) _ d7uiya(X) fo d l:ji)fx) - E‘“ Ki g (S) u(x, s) ds+ f;,;(x),

T dx? (2.1.5)
where
fi+1(x) = f (X’ti+l) , ki+1(s) = k(ti+l’ S)
and
ui+1(x) = U(X1ti+1)-
Equivalently, we can rewrite equation (2.1.5) as
2, . _
g =7 U o M (8) U, 8) ds T ()
dx 0 (2.1.6)
u; () =T (x-ta) L)
Equation (2.1.6), rewrite as
) U1 (X)—u (X) (e
ur (0 = O o6y (e, 5) ds— 1,0,
T (2.1.8)

Putting *~ Xi* =Len-1 (2.1.3), then
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Ui, j =Ui+LT_Ui’j— :,Hlkm(s)u(xj, s)ds—fi,yj, i=0,...,n, 21
where 219
Uiy j =U"(XG 0 tis)s Uisg j UG L), UG =U(Xj1ti), fise i = T (X5t
A fourth-order accurate finite difference estimate for u”(x) is,
B5UiLg, j = Ul j + ;]2 udl ( +g82]82u +0(h%)

2.1.10)

Noting that O(h?) term is included in equation (2.1.10), because we want to approximate it in

order to constructan  O(h*) scheme. Applying o, o u";, we get
4 2 2

ulf) ;=85 ul.y, +O(h).

(2.1.11)

Substituting equation (2.1.11) into (2.1.10) yields
2
2 " h 2 14
OxUj 41, j=Uis, j t 12 (8 Ui, j +0(h ))"’ O(h4)

(2.1.12)
The fourth order accurate finite difference estimate for u"(x) is used from (2.1.12) to give

" h
8>2<ui+1,j =Ujg,j + ( 12 82}( i+1, J)+O(h4)

(2.1.13)
Then, a compact (implicit) approximation for u*(x) with fourth-order accuracy will be given as
2
u. .
Ui = %m(h“).
(1+128 ]
(2.1.14)

Using this estimate and considering the discrete solution of equation (2.1.9) which satisfies the
approximation, we get

h2 Usrj ot
1-—— |8Uj j— 2+ '+1kH4(s)u(XJ,s)ds—k I'+1khﬂjs)6 u(xj, s)ds =
127 T 0

2
uj h? ., h?
(2.1.15)
L L —2 5 S rtin
{h_z 121 }(u'“ jr1+lisg, J—l) {hz _a}”iﬂ,ﬁg,[o kisp(s)uj(s)ds+
1] ¢t
12 U 16U ds+ [ ka®)u; ﬂs)ds}
= e bt g (ot fa )G (2116

The later integral will be handled numerically using the composite weighted trapezoidal rule given
by:
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INSICLEE > It + @) f (t )]

m=0

=1 {W f(tg) +@-w) f(tig)+ ZI: f(tm)
m=1 (2.1.17)

Using (2.1.17) we get

[ k(s u(x, 5) ds =

~T [W Ki1(0) g (X) + (1 — W) K1 (ti11) Ui (X) + Z Ki+1(tm) Uis1—m (X)J
m=1 (2.1.18)

The substitutions of this equation into equation (2.1.16) yields
1 1 -2 5
2 12¢ (Ui+1,j+1+ui+1,j—1)+ 2 6t Uiy, j +

51 i
"‘?{W Ki+1(0) Ug, j + (@ —wW) Kiq(tisq) Uisg j + Z Ki1(tm) Ui+1—m,j:|+
m=1

i
T
"‘E{W Ki+1(0) g, j1+@-W) kia(tiz) Uig ja + Z Ki+1(tm) Uis1—m, j+1:|+
m=1

. i
+E{W ki+1(0) Ug,j-1+ (—w) Ki;1(ti11) Ui+, j-1+ z Ki 1 (tm) Ui+1-m, j—1:| =
m=1
5)

5 . 1
(fi+1, jr1t fi j—1)—g fist -

(Ui*,j+1 + Ui*,j—l)_aui'j 12

127 (2.1.19)

Let U,(Xx) be afunction that approximates u(X;,t;) for the time-level t, =iz andisa linear
combination of n+1 shape functions which is expressed as:

n
Ui(x) = D Cmi ¢m(X)
m=0 (2.1.20)

Where (Cmi )"m:0 are the unknown real coefficients, to be evaluated, and the ¢, (X) are any

knowing basis functions .
The approximate solutions U, (x) for different time-levels are determined iteratively as follows.

Starting with the time-level t, =0 the value of Uo(X;),Up(X;,,)  and uy(x; ) for
J =12,....,n—1 are found from equation (1.2). Next, we will approximate the solution U, , for

I =0 in equation (2.1.16) by the shape functions U, as is given in equation (2.1.20). Hence
equation (2.1.16) is approximated by:

1 1 -2 5 51
(F_EJ Uy ja+U; j_1)+[F—a] Uy ; +E[w kg (0) g, +(L—w) ky (t)) Uy |+
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# W0 g 1+ A=W k() Uy | 5 ki) v g + - W) ki (8) Uy 4]
- 5 1

~ 1o+ (Uo J+1+Uo 1—1) ——Up, j 1

61 (fl,j+l+ fl,j—l)_g fl,j-

(2.1.21)

Replacing U, by the approximate solution given by equation (2.1.20) yields the following linear
system of n—1 equations

1 1
{F 12 }(Z le(PmJ+l+Zle(ijlj+{ __,chml(pmj

m=0

{(1 w) kq (t) Z Cm1 ®Pm J:| l:(l w) Ky () Z Cm1 Pm j+1:|+

m=0 m=0
_STWk O 5 *
+—{(1 w) Kk (t;) Z Cm1 Pm 1—1}—71()%,1 e N
m=0 T
Twk,(0) 1. .
—{1—21} (Uo,j+1+Uo,j—1)—E(Uo,j+1+uo,j—1)—
1 5
(gt )2
12(1’J+1 i) 6 2.1.22)
Where,

n n
Z Cn1 Pm j+1 = z Cm1 Pm (Xj+1)

m=0 m=0
Rewrite equation (2.1.22) as

n
Z le[al Om j+1+82 Pm j +3 P j—1}=

m=0

=agUy ; +a, (Ug j,1+Ug j1)+a5Ug j +8 (Ug jus +Ug j 1)+
+ag T(fi jutfiju)+ast i

(2.1.23)
where
) = h_lz_% é(l—W) ke (t) ay = h_ZZ_% 5—;(1—W) ki (t)
51wk (0) | Wi (0) |
Y ook
61 127
2.1.24) ’

The system (2.1.23) consists of (n—1) equation inthe (n+1) unknowns (le) .Togeta

solution of this system we need two additional conditions. These conditions are obtalned from the
boundary conditions (2.1.2)
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n
u(a"ti)= zcml (pm(a)zgl(ti)! i=0,...n
m=0 (2.1.25)
n
ub,t) = > Cm1@m(®) = g2 (k). i=0,...n
m=0 (2.1.26)

Since f and Y0 are known at every grid point, the right hand side of equation (2.1.23) is known for
all nodes. The system (2.1.23), equations (2.1.25) and (2.1.26) consist of (n—1) equations in

(n+1) unknowns; this system is of the form

AC =F. (2.1.27)
Upon solving the system (2.1.27), the function U, (x) is approximated by the sum:

n
Ul(XJ)Z Zcml([)m(xj), j:o’l, 2’”.’n.
m=0

(2.1.28)

Next, we find the approximate solution at time-levels b, recursively by solving the

following system for | =1 2 -+~

n

_1 * * ) 5 *
Cri (al Om jo1+82 O j +81 Oy j—1)zﬁ(ui,j+l+ui,j—l e
m=0 t T

1 5 57«
+agUg j+ay (Ug ju +u0,j—1)_E(fi+1,j+1 +fi ) "5 fiig 5 Z‘ikm(tm) Uigm,j —
m=

T™W i T™W i
Py Z ki+1(tm) Uia-m,j1 =75 Zk”l(tm) Uiva-m,j1
12 & 12 (5

(2.1.29)
where
1 1 T -2 5 571
& = F—EJFE@—W) Kiji(tiy) @ = F_E+E(1_W) Ki1 (tis1)
g =~ WK () a, = —*WKia ()
’ 6 , ! 12 (2.1.30)
n
u(@t) = D Cmi om(@) = g1(t;), i=0,...n
m=0 (2.1.31)
n -
u(b1ti): Zcmi (pm(b):g2(ti)’ IZO’"-n'
m=0 (2.1.32)

Numerical Experiment

In this section, we solve the integro-differential equation (2.1.1)-(2.1.3) in  (0,1) x (0,T) with
k(x, ) =™ * D f(x,t)=ane” cos(nx)—te™" sin(xx)

u(x,O):sin(ﬂx)’ 0<x<1 |

and g,(t)=g,(t)=0
The theoretical solution of this problem is
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u(x,t) =e " tsin(rx)
We employ a compact difference scheme for the space derivative so that we get a full
discretization scheme with error estimation O(h*) +O(z) We shall compare the results obtained

by the suggested approximation scheme with the exact solution.

Table 1. Comparison between exact and numerical solutions at t =0.02,« =1,7 =0.0001
t=0.01, « =1,7 =0.0001 respectively.

X t=0.02 a=1 t=0.0001 t=0.01 a=1 t=0.0001
Exact Suggested error Exact Suggested error
solution scheme solution scheme
0 |0.00 0.00 0.00 0.00 0.00 0.00
0.1 | 2.5366E-001 | 2.5384E-001 | 1.8136E-004 2.7998E-001 2.8017E-001 | 2.0064E-004
0.2 | 4.8249E-001 | 4.8263E-001 | 1.3926E-004 5.3254E-001 5.3269E-001 | 1.5461E-004
0.3 | 6.6409E-001 | 6.6419E-001 | 1.0135E-004 7.3298E-001 7.3309E-001 | 1.1309E-004
0.4 | 7.8069E-001 | 7.8074E-001 | 5.1969E-005 8.6167E-001 8.6173E-001 | 5.8807E-005
0.5 | 8.2087E-001 | 8.2087E-001 | 2.3644E-006 9.0602E-001 9.0602E-001 | 1.0883E-006
0.6 | 7.8069E-001 | 7.8064E-001 | 5.6463E-005 8.6167E-001 8.6161E-001 | 6.0876E-005
0.7 | 6.6409E-001 | 6.6399E-001 | 1.0516E-004 7.3298E-001 7.3287E-001 | 1.1485E-004
0.8 | 4.8249E-001 | 4.8235E-001 | 1.4202E-004 5.3254E-001 5.3239E-001 | 1.5587E-004
0.9 | 2.5366E-001 | 2.5348E-001 | 1.8278E-004 2.7998E-001 2.7977E-001 | 2.0129E-004
1 10.00 0.00 0.00 0.00 0.00 0.00

Table 2. Comparison between exact and numerical solutions at
t=0.5a =17 =0.01, respectively.

t=0.1,a=17=0.00001, and

X t=01 a=1 1t=0.00001 t=05 a=1 t=001
Exact Suggested error Exact Suggested error
solution scheme solution scheme
0 0 0 0 0 0 0
0.1 1.1517E-001 | 1.1518E-001 | 8.1966E-006 | 2.2224E-003 | 2.2839E-003 | 6.1571E-005
0.2 2.1907E-001 | 2.1907E-001 | 6.0145E-006 | 4.2273E-003 | 4.2925E-003 | 6.5201E-005
0.3 3.0153E-001 | 3.0153E-001 | 4.1968E-006 | 5.8184E-003 | 5.8618E-003 | 4.3436E-005
0.4 3.5447E-001 | 3.5447E-001 | 1.8736E-006 | 6.8399E-003 | 6.8504E-003 | 1.0561E-005
0.5 3.7271E-001 | 3.7271E-001 | 6.2373E-007 | 7.1919E-003 | 7.1663E-003 | 2.5542E-005
0.6 3.5446E-001 | 3.5446E-001 | 3.0599E-006 | 6.8399E-003 | 6.7808E-003 | 5.9095E-005
0.7 3.0152E-001 | 3.0152E-001 | 5.2060E-006 | 5.8184E-003 | 5.7337E-003 | 8.4579E-005
0.8 2.1907E-001 | 2.1907E-001 | 6.7475E-006 | 4.2273E-003 | 4.1324E-003 | 9.4883E-005
0.9 1.1517E-001 | 1.1516E-001 | 8.5817E-006 | 2.2224E-003 | 2.1454E-003 | 7.7000E-005
1 0 0 0 0 0 0

Table 3. Comparison between exact and numerical solutions at t =0.3, =0.4,7 =0.00005, , and
t=0.7,a =3,7=0.04 respectively.
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X t=03 a=04 7=0.00005 t=0.7 a=3 7=0.04

Exact Suggested Exact Suggested

; error . error

solution scheme solution scheme
0 0 0 0 0 0 0
0.1 1.5998E-002 | 1.6001E-002 | 1.9143E-006 | 3.0872E-004 | 3.1712E-004 | 8.4025E-006
0.2 3.0432E-002 | 3.0432E-002 | 1.0104E-006 | 5.8722E-004 | 5.8988E-004 | 2.6648E-006
0.3 4,1885E-002 | 4.1885E-002 | 2.5407E-007 | 8.0823E-004 | 7.9708E-004 | 1.1148E-005
0.4 4.9239E-002 | 4.9238E-002 | 5.5018E-007 | 9.5014E-004 | 9.2196E-004 | 2.8178E-005
0.5 5.1773E-002 | 5.1772E-002 | 1.2984E-006 | 9.9903E-004 | 9.5468E-004 | 4.4351E-005
0.6 4.9239E-002 | 4.9237E-002 | 1.9195E-006 | 9.5014E-004 | 8.9397E-004 | 5.6169E-005
0.7 4.1885E-002 | 4.1883E-002 | 2.3548E-006 | 8.0823E-004 | 7.4767E-004 | 6.0564E-005
0.8 3.0432E-002 | 3.0429E-002 | 2.5363E-006 | 5.8722E-004 | 5.3249E-004 | 5.4717E-005
0.9 1.5998E-002 | 1.5996E-002 | 2.7161E-006 | 3.0872E-004 | 2.7298E-004 | 3.5731E-005
1 0 0 0 0 0 0

4. Table 4. Comparison between exact and numerical solutions at t =0.008, =0.2,7 =0.00002,
,and t =0.03,, =0.1,7 =0.0005, respectively.

8.

t=0.008 o=0.2, 7=0.00002 t=003 =01 7=0.0005
X Exact Suggested Exact Suggested
. error . error
solution scheme solution scheme
0 |0 0 0 0 0 0
2.8555E- 8.2374E- | 22082E- | 2.2980E- | 7.4749E-
011 001 2.8556E-001 | 555 001 001 005
5.4316E- 6.1079E- | 43714E- | 4.3720E- | 5.8002E-
021 ho1 5.4316E-001 | 55¢ 001 001 005
7 47T50E- 4.4305E- | 6.0168E- | 6.0172E- | 3.8594E-
031 001 7.4760E-001 | 55¢ 001 001 005
8.7885E- 2.2335E- | 7.0732E- | 7.0733E- | L.5313E-
041 001 8.7885E-001 | g 001 001 005
9.2407E- 2.2395E- | 7.4372E- | 74371E- | 9.4272E-
051 ho1 9.2407E-001 | 57 001 001 006
8.7885E- 26581E- | 7.0732E- | 7.0728E- | 3.3165E-
06 | ho1 8.7884E-001 | ¢ 001 001 005
7.4750E- 48416E- | 6.0168E- | 6.0163E- | 5.3500E-
0.7 001 1.4759E-001 | 55¢ 001 001 005
5.4316E- 6.4590E- | 4.3714E- | 43708E- | 6.8301E-
08 1 ho1 5.4315E-001 | 55¢ 001 001 005
2.8555E- 83746E- | 2.2082E- | 2.2974E- | 7.9473E-
091 ho1 2.8554E-001 | ¢ 001 001 005
1 [0 0 0 0 0 0
Conclusion

A fourth-order accurate compact finite difference scheme for partial integro-differential problems

was developed. The method reduces the underlying problem to linear system of algebraic equations, which
can be solved successively to obtain a numerical solution at varied time-levels. Numerical experiments

which shown in the above scheme are good agreement with the exact ones. Moreover, the results in tables
(1-4) confirm that the numerical solutions can be refined when the time-step t is reduced, or the number of
nodes is increased.
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