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Abstract: Soft set theory, proposed by Molodtsov, has been regarded asan effective mathematical tool to deal with uncertainties.In this
paper, we introduce and study soft semimodule and constructsome basic properties by using semimodules and Molodtsov’sdefinition
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introduce subsemimodule of a semimodule and some related properties about soft substructures of semimodules are investigated and
illustrated by many examples.
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1 Introduction

Molodtsov [18] introduced soft set theory in 1999 by for
dealing with uncertainties and it has not continued to
experience tremendous growth and diversification in the
mean of algebraic structures as in [1,2,4,8,9,10,11,12,
13,14,20,23,24,25,22,26] but also operations of soft sets
as in [3,15,21]. Furthermore, soft set relations and
functions [5] and soft mappings [17] with many related
concepts were discussed. The theory of soft set has also a
wide-ranging applications especially in soft decision
making as in the following studies: [6,?,?,?].

In this paper, we introduce a basic version of soft
semimodules, which extends the notion of semimodules
by including some algebraic structures in soft set theory.
A soft semimodule defined in this paper is actually a
parametrized family of subsemimodules and has some
properties similar to those of semimodules.

2 Preliminaries

A semiring Ris a structure consisting of a nonempty set
R together with two binary operation onR calledaddition
and

i)R together with addition is a semigroup,
ii)R together with multiplication is a semigroup,

iii) (a+ b)c = ac+ bc and a(b+ c) = ab+ ac for all
a,b,c∈ R.

A semiringR is said to beadditively commutativeif a+
b = b+ a for all a,b ∈ R. Throughout this paper,R will
always denote an additively commutative semiring. A zero
element of a semiringR is an element 0 such that 0.x =
x.0 = 0 and 0+ x= x+ 0= x for all x ∈ R. A nonempty
subsetI of a semiringR is called aleft (resp. right) ideal
of R if I is closed under addition andRI ⊆ I (resp.IR ⊆
I ). We say thatI is an ideal ofR, denoted byI ✁R, if it
is both a left and right ideal ofR. Given a semiringR, a
left R-semimodule Mis a nonempty set on which we have
operations of addition and multiplication by elements ofR
(on the left side) such that

i)Addition is associative and commutative and has a
neutral element, usually denoted by 0M,

ii) r(x+ y) = rx+ ry,
iii) (r + s)x= rx+ sx,
iv)(rs)x= r(sx),
v)0x= 0M = r0M and 1m= m.

for all r,s∈ R, x,y ∈ M. For example it is easy to see that
if R is a semiring andA is a nonempty set, then the setRA

of all functions fromA to R is a leftR-semimodule, with
scalar multiplication and addition being defined
elementwise. SimilarlyR itself is a (left) R-semimodule
by natural operations. SupposeM is a left R-module and
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N is a subset of M. ThenN is called asubsemimodule(or
R-subsemimodule, to be more explicit) if, for any
n,n

′
∈ N and anyr ∈ R, n+n

′
∈ N and the productrn is

in N.
Molodtsov [18] defined the soft set in the following

manner: LetU be an initial universe set,E be a set of
parameters,P(U) be the power set ofU andA⊆ E.

Definition 1.[18] A pair (F,A) is called a soft set over U,
where F is a mapping given by

F : A→ P(U).

In other words, a soft set overU is a parameterized family
of subsets of the universeU .

Definition 2.[3] Let (F,A) and (G,B) be two soft sets
over a common universe U such that A∩ B 6= /0. The
restricted intersection of(F,A) and (G,B) is denoted by
(F,A)⋓ (G,B), and is defined as(F,A)⋓ (G,B) = (H,C),
where C = A∩B and for all c∈C, H(c) = F(c)∩G(c).

Definition 3.[3] Let (F,A) and(G,B) be two soft sets over
a common universe U. The extended intersection of(F,A)
and(G,B) is defined to be the soft set(H,C), where C=
A∪B and for all e∈C,

H(e) =





F(e) if e∈ A\B,
G(e) if e∈ B\A,
F(e)∩G(e) if e∈ A∩B.

This relation is denoted by(F,A)⊓ε (G,B) = (H,C).

Definition 4.[15] Let (F,A) and (G,B) be two soft sets
over a common universe U. The union of(F,A) and
(G,B) is defined to be the soft set(H,C) satisfying the
following conditions: (i) C= A∪B; (ii) for all e ∈C,

H(e) =





F(e) if e∈ A\B,
G(e) if e∈ B\A,
F(e)∪G(e) if e∈ A∩B.

This relation is denoted by(F,A)∪̃(G,B) = (H,C).

Definition 5.[15] If (F,A) and(G,B) are two soft sets over
a common universe U, then ”(F,A) AND (G,B)” denoted
by(F,A)∧̃(G,B) is defined by(F,A)∧̃(G,B) = (H,A×B),
where H(x,y) = F(x)∩G(y) for all (x,y) ∈ A×B.

Definition 6.[8] Let (Fi ,Ai)i∈I be a nonempty family of soft
sets over a common universeU. The union of these soft sets
is defined to be the soft set(G,B) such that B=

⋃
i∈I Ai and

for all x ∈ B, G(x) =
⋃

i∈I(x) Fi(x) where I(x) = {i ∈ I | x∈

Ai}. In this case we writẽ
⋃

i∈I (Fi ,Ai) = (G,B).

Definition 7.[8] Let (Fi ,Ai)i∈I be a nonempty family of
soft sets over a common universe set U. The AND-soft set∧̃

i∈I (Fi ,Ai) of these soft sets is defined to be the soft set
(H,B) such that B= ∏i∈I Ai and H(x) =

⋂
i∈I(x) Fi(x) for

all x = (xi)i∈I ∈ B.
Note that if Ai = A and Fi = F for all i ∈ I, then∧̃

i∈I (Fi ,Ai) is denoted by
∧̃

i∈I (F,A). In this case,
∏i∈I Ai = ∏i∈I A means the direct power AI .

Definition 8.Let (Fi ,Ai)i∈I be a nonempty family of soft
sets over a common universe set U. The restricted
intersection of these soft sets is defined to be the soft set
(G,B) such that B=

⋂
i∈I Ai 6= /0 and for all x ∈ B,

G(x) =
⋂

i∈I Fi(x). In this case we write
⋓i∈I (Fi ,Ai) = (G,B).

3 Soft semimodules

From now on, let R be a semiring,M be a left
R-semimodule andA be a nonempty set. For a soft set
(F,A), the setSupp(F,A) = {x ∈ A | F(x) 6= /0} is called
thesupportof the soft set(F,A). The null soft set is a soft
set with an empty support, and a soft set(F,A) is non-null
if Supp(F,A) 6= /0 [12]. Note that, if N is a
subsemimodule ofM, then we writeN ≤ M. Now we are
ready to give the definition of soft semimodule.

Definition 9.Let (F,A) be a non-null soft set over a
semimodule M. Then(F,A) is called asoft semimodule
over M if F(x) is a subsemimodule of M for all
x∈ Supp(F,A).

Example 31Let R= {0,a,b,c} be a semiring with the
operation tables given by the following tables.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

. 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c 0 a b c

Let M = R and the soft set(F,A) over M, where
A = {0,a,b} and F : A → P(M) is a set-valued function
defined by

F(x) = {y∈ M | y= xn f or some n∈ N}

for all x∈ A. Here, xn = xx...x means the n -fold product of
x and x0 = 0. Then F(0) = {0}, F(a) = {0,a} and F(b) =
{0,b} . Since F(x) are all subsemimodules of M for all x∈
Supp(F,A), (F,A) is a soft semimodule over M. Similarly,
if we define the soft set(G,B) over M, where B= {b,c}
and G: B→ P(M) is a set-valued function defined by

G(x) = {y∈ M | xy∈ {0,b}}

for all x ∈ B, then G(b) = {0,a,b,c} and G(c) = {0,b}.
Since G(x) are both subsemimodules of M for all
x∈ Supp(G,B), (G,B) is a soft semimodule over M.

Let R= {0,a,b,c} be a semiring with the operation
tables given by the following tables.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

. 0 a b c
0 0 0 0 0
a 0 a 0 b
b 0 0 0 0
c 0 b 0 a
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Let M = R and the soft set(H,C) over M, where
C = {0,a,b,c} and H : C → P(M) is a set-valued
function defined by

H(x) = {0}∪{y∈ M | x+ y= 0}

for all x ∈ C. Then H(0) = {0}, H(a) = {0,a}, H(b) =
{0,b} and H(c) = {0,c}. Since H(a) and H(c) are not
subsemimodules of M,(H,C) is not a soft semimodule over
M.

Theorem 32Let (F,A) and (G,B) be soft semimodules
over M. Then,

a)If it is non-null, then the soft set(F,A)∧̃(G,B) is a soft
semimodule over M.

b)If it is non-null, then the restricted intersection(F,A)⋓
(G,B) is a soft semimodule over M.

c)If it is non-null, then the soft set(F,A)⊓ε (G,B) is a
soft semimodule over M.

d)If A and B are disjoint, then(F,A)∪̃(G,B) is a soft
semimodule over M.

Proof.Let (F,A)∧̃(G,B) = (Q,A × B), where
Q(x,y) = F(x) ∩ G(y) for all (x,y) ∈ A× B. Then by
hypothesis,(Q,A× B) is a non-null soft set overM. If
(x,y) ∈ Supp(Q,A×B), thenQ(x,y) = F(x)∩G(y) 6= /0.
It follows that /0 6= F(x) and /0 6= G(y) are both
subsemimodules ofM. HenceQ(x,y) is a subsemimodule
of M for all (x,y) ∈ Supp(Q,A×B). Therefore(Q,A×B)
is a soft semimodule overM.

b) Let (F,A) ⋓ (G,B) = (H,C), where
H(x) = F(x)∩G(x) for all x ∈ C = A∩B 6= /0. Suppose
that (H,C) is a non-null soft set overM. If
x∈ Supp(H,C), thenH(x) = F(x)∩G(x) 6= /0. It follows
that /0 6= F(x) and /06= G(x) are both subsemimodules of
M. Hence H(x) is a subsemimodule ofM for all
x ∈ Supp(H,C). Thus,(H,C) is a soft semimodule over
M.

c) Let (F,A)⊓ε (G,B) = (K,A∪B), where

K(x) =






F(x) if x∈ A\B,
G(x) if x∈ B\A,
F(x)∩G(x) if x∈ A∩B

for all x∈ A∪B. Suppose that(K,A∪B) is a non-null soft
set overM. Let x∈ Supp(K,A∪B). If x∈ A\B, then /06=
K(x) = F(x)≤ M. If x∈ B\A, then /06= K(x) = G(x)≤ M
and if x∈ A∩B, thenK(x) = F(x)∩G(x) 6= /0. Since /06=
F(x) ≤ M and /0 6= G(x) ≤ M, it follows that K(x) ≤ M
for all x ∈ Supp(K,A∪B). Therefore(F,A)⊓ε (G,B) =
(K,A∪B) is a soft semimodule overM.

d) We can write(F,A)∪̃(G,B) = (T,A∪B), where

T(x) =






F(x) if x∈ A\B,
G(x) if x∈ B\A,
F(x)∪G(x) if x∈ A∩B

for all x ∈ A∪B. SinceA∩B = /0, it follows that either
x ∈ A\B or x ∈ B\A for all x ∈ A∪B. If x ∈ A\B, then

T(x) =F(x) is a subsemimodule ofM and ifx∈B\A, then
T(x) = G(x) is a subsemimodule ofM. Thus,(T,A∪B) is
a soft semimodule overM.

Definition 10.Let (F,A) and (G,B) be two soft
semimodules over M1 and M2, respectively. The product
of soft semimodules(F,A) and (G,B) is defined as
(F,A) × (G,B) = (U,A × B), where
U(x,y) = F(x)×G(y) for all (x,y) ∈ A×B.

Proposition 33Let (F,A) and (G,B) be two soft
semimodules over M1 and M2, respectively. Then if it is
non-null, the product(F,A)× (G,B) is a soft semimodule
over M1×M2.

Proof.Let (F,A) × (G,B) = (U,A × B), where
U(x,y) = F(x) × G(y) for all (x,y) ∈ A× B. Then by
hypothesis,(U,A×B) is a non-null soft set overM1×M2.
If (x,y) ∈ Supp(U,A × B), then
U(x,y) = F(x) × G(y) 6= /0. Since /0 6= F(x) is a
subsemimodule ofM1 and /06= G(y) is a subsemimodule
of M2, it follows that U(x,y) is a subsemimodule of
M1 × M2 for all (x,y) ∈ Supp(U,A × B). Therefore
(U,A×B) is a soft semimodule overM1×M2.

It is worth nothing that if N1 and N2 are two
subsemimodules ofM, then the sum of these two
subsemimodules is defined as the following:
N1+N2 = {n1+n2 | n1 ∈ N1∧n2 ∈ N2}.

Definition 11.Let (F,N1) and (G,N2) be two
semimodules over M. If N1∩N2 = {0M}, then the sum of
soft semimodules(F,N1) and (G,N2) is defined as
(F,N1) + (G,N2) = (H,N1 + N2), where
H(x+ y) = F(x)+G(y) for all x+ y∈ N1+N2.

Proposition 34Let (F,N1) and (G,N2) be two soft
semimodules over M where N1 ∩N2 = {0M}. Then if it is
non-null, the sum(F,N1) + (G,N2) is a soft semimodule
over M.

Proof.Let (F,N1) + (G,N2) = (H,N1 + N2), where
H(x+ y) = F(x)+G(y) for all x+ y ∈ N1 +N2. Then by
hypothesis,(H,N1 +N2) is a non-null soft set overM. If
x + y ∈ Supp(H,N1 + N2), then
H(x+ y) = F(x) + G(y) 6= /0. It is seen thatH is well
defined becauseN1 ∩ N2 = {0M}. Since /06= F(x) is a
subsemimodule ofM and /06= G(y) is a subsemimodule of
M, it follows thatH(x+ y) is a subsemimodule ofM for
all x+ y∈ Supp(H,N1+N2). Therefore(H,N1+N2) is a
soft semimodule overM.

Example 35Let consider the soft semimodules(F,A) and
(G,B) in Example31. Let (F,A)∧̃(G,B) = (Q,A× B),
where Q(x,y) = F(x) ∩ G(y) for all
(x,y) ∈ A× B = {(0,b),(0,c),(a,b),(a,c),(b,b),(b,c)}.
Then Q(0,b) = Q(0,c) = Q(a,c) = {0}, Q(a,b) = {0,a}
and Q(b,b) = Q(b,c) = {0,b}. Since Q(x,y) is a
subsemimodule of M= R for all (x,y) ∈ Supp(Q,A×B),
(Q,A×B) is a soft semimodule over M.
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Let (F,A) ⋓ (G,B) = (T,C), where
H(x) = F(x)∩G(x) for all x ∈ C = A∩B = {b}. Since
T(b) = F(b) ∩ G(b) = {0,b} is a subsemimodule of
M = R,(T,C) is a soft semimodule over M.

Assume that(F,A)⊓ε (G,B) = (K,A∪B), where

K(x) =





F(x) if x∈ A\B= {0,a},
G(x) if x∈ B\A= {c},
F(x)∩G(x) if x∈ A∩B= {b}

for all x∈A∪B. Then, K(0) = {0}, K(a) = {0,a}, K(c) =
{0,b} and K(b) = {0,b}. Then, it is obvious that(K,A∪
B) is a semimodule over M.

Let (F,A) × (G,B) = (Z,A × B), where
Z(x,y) = F(x) × G(y) for all
(x,y) ∈ A× B = {(0,b),(0,c),(a,b),(a,c),(b,b),(b,c)}.
Then Z(0,b) = {(0,0),(0,a),(0,b),(0,c)},
Z(0,c) = {(0,0),(0,b)}, Z(a,b) = {(0,0),(0,a),
(0,b),(0,c),(a,0),(a,a),(a,b),(a,c)},
Z(a,c) = {(0,0),(0,b),(a,0),(a,b)}, Z(b,b) =
{(0,0),(0,a),(0,b),(0,c),(b,0),(b,a),(b,b),(b,c)} and
Z(b,c) = {(0,0),(0,b),(b,0),(b,b)}. Since Z(x,y) are all
subsemimodules of M×M for all (x,y) ∈ Supp(Z,A×B),
(Z,A×B) is a soft semimodule over M×M.

Definition 12.Let (F,A) and (G,B) be two soft
semimodules over M. Then(F,A) is called a soft
subsemimoduleof (G,B) if it satisfies:

i)A ⊆ B
ii)F (x) is a subsemimodule of G(x) for all

x∈ Supp(F,A).

Example 36Let R= Z∗ = Z+ ∪ {0} be the semiring
under ordinary addition and multiplication and
M = Z∗×Z∗ be the left R-semimodule of R with the usual
scalar multiplication. Let(F,A) be a soft set over M,
where A= Z∗ and F : A→ P(M) is a set-valued function
defined by F(x) = {0}×2xZ∗ for all x ∈ A. It is obvious
that (F,A) is a soft semimodule over M. Let(G,B) be a
soft set over M , where B= {0,1, ...40} ⊆ A and
G : B → P(M) is a set-valued function defined by
G(x) = {0}×4xZ∗ for all x ∈ B. It is obvious that G(x) is
a subsemimodule of F(x) for all x ∈ Supp(G,B).
Therefore,(G,B) is a soft subsemimodule of(F,A).

Theorem 37Let (F,A), (G,A) and (H,B) be soft
semimodules over M. Then we have the following:

a)If F(x) ⊆ G(x) for all x ∈ A, then (F,A) is a soft
subsemimodule(G,A).

b)(F,A)⋓(H,B) is a soft subsemimodule both(F,A) and
(H,B) if it is non-null.

c)(F,A)⊓ε (G,A) is a soft subsemimodule of both(F,A)
and(G,A) if it is non-null.

Proof.a) If F(x) ⊆ G(x) for all x∈ A, it is clear thatF(x)
is a subsemimoduleG(x). Therefore the result is obvious.

b) It is obvious thatA∩B ⊆ A (andA∩B ⊆ B). Let
(F,A) ⋓ (H,B) = (K,C), where C = A ∩ B and

K(x) = F(x) ∩ H(x) for all x ∈ C. Since
K(x) = F(x) ∩ H(x) ⊆ F(x) and
K(x) = F(x) ∩ H(x) ⊆ H(x) for all x ∈ C, the proof is
completed.

c) Let (F,A) ⊓ε (G,A) = (Q,A) where
Q(x) = F(x) ∩ G(x) for all x ∈ A. Since
Q(x) = F(x) ∩ G(x) ⊆ F(x) and
Q(x) = F(x) ∩ G(x) ⊆ G(x) for all x ∈ A, the proof is
completed.

Theorem 38Let (F,A) be a soft semimodule over M and
(Fi ,Ai)i∈I be a nonempty family of soft subsemimodules of
(F,A). Then we have the following:

a)⋓i∈I (Fi ,Ai) is a soft subsemimodule of(F,A), if it is
non-null.

b)
∧̃

i∈I (Fi ,Ai) is a soft subsemimodule of
∧̃

i∈I (F,A), if it
is non-null.

c)If {Ai | i ∈ I} are pairwise disjoint, i.e., i6= j implies
Ai ∩A j = /0, then

⋃̃
i∈I (Fi ,Ai) is a soft subsemimodule

of (F,A).

Proposition 39Let(F,A) be a soft semimodule over M and
(Fi ,Ai)i∈I be a nonempty family of soft subsemimodules of
(F,A). Then⋓i∈I (Fi,Ai) is a soft subsemimodule of(Fi ,Ai)
for each i∈ I, if it is non-null.

Proof.Let ⋓i∈I (Fi ,Ai) = (H,C), whereC =
⋂

i∈I Ai 6= /0
andH(x) =

⋂
i∈I Fi(x) for all x ∈ C. The parameter set of

the soft set⋓i∈I (Fi ,Ai), that is,
⋂

i∈I Ai is a subset of the
parameter set of the soft set(Fi ,Ai)i∈I for all i ∈ I .
Suppose that(H,C) is a non-null soft set overM. If
x ∈ Supp(H,C), then H(x) =

⋂
i∈I Fi(x) 6= /0. Thus

/0 6= Fi(x) are subsemimodules overM for all i ∈ I .
ThereforeH(x) =

⋂
i∈I Fi(x) is a subsemimodule overM.

Moreover, since
⋂

i∈I Fi(x) ⊆ Fi(x), for all i ∈ I and for all
x∈

⋂
i∈I Ai , the rest of the proof is obvious.

Proposition 310If (F,A) be a soft semimodule over M and
B⊂ A, then so is(F,B), whenever(F,B) is non-null.

Definition 13.Let (F,A) be a soft semimodule over M.
Then,

a)If M is a left R-semimodule with zero and if
F(x) = {0M} for all x ∈ Supp(F,A), then (F,A) is
called trivial.

b)(F,A) is said to be whole if F(x) = M for all
x∈ Supp(F,A).

Example 311Let R be the semiring in Example31with the
second operation tables. Let M= R and the soft set(Q,A)
over M, where A= {0,a,b,c} and Q: A→ P(M) is a set-
valued function defined by

Q(x) = {y∈ M | x0= y}

for all x ∈ A. Then Q(0) = Q(a) = Q(b) = Q(c) = {0}.
Since Q(x) = {0M} for all x ∈ Supp(Q,A), (Q,A) is a
trivial soft semimodule over M.

Let the soft set(T,B) over M, where B= {0,b} and
T : B→ P(M) is a set-valued function defined by

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 3, 235-242 (2015) /www.naturalspublishing.com/Journals.asp 239

T(x) = {y∈ M | xy= 0}

for all x∈ B. Then T(0) = T(b) = M. It follows that(T,B)
is a whole soft semimodule over M.

Proposition 312Let(F,A) and(G,B) be soft semimodules
over M. Then,

i)If (F,A) and (G,B) are trivial (resp., whole) soft
semimodules over M, then(F,A)⋓ (G,B) is a trivial
(resp., whole) soft semimodule over M.

ii)If (F,A) is a trivial soft semimodule over M and(G,A)
is a whole soft semimodule over M, then(F,A)⋓(G,B)
is a trivial soft semimodule over M.

iii)If (F,A) and (G,B) are trivial (resp., whole) soft
semimodules over M where A∩ B = {0M}, then
(F,A) + (G,B) is a trivial (resp., whole) soft
semimodule over M.

iv)If (F,A) is a trivial soft semimodule over M and
(G,B) is a whole soft semimodule over M where
A∩ B = {0M}, then (F,A) + (G,B) is a whole soft
semimodule over M.

Proposition 313Let (F,N1) and (G,N2) be two soft
semimodules over M1 and M2, respectively. Then,

i)If (F,N1) and (G,N2) are trivial soft semimodules
over N1 and N2, respectively, then(F,N1)× (G,N2) is
a trivial soft semimodule over M1×M2.

ii)If (F,N1) and(G,N2) are whole soft semimodules over
M1 and M2, respectively, then(F,N1)× (G,N2) is a
whole soft semimodule over M1×M2.

Let (F,A) be a soft semimodule overM and let
f : M1 → M2 be a mapping of semimodules. Then the soft
set( f (F),Supp(F,A)) overM2 can be defined, where

f (F) : Supp(F,A)→ P(M2)

is given by f (F)(x) = f (F(x)) for all x ∈ Supp(F,A). It
is also worth nothing that
Supp(F,A) = Supp( f (F),Supp(F,A)).

Proposition 314Let f : M1 → M2 be a semimodule
epimorphism. If(F,A) is a non-null soft semimodule over
M1 , then ( f (F),Supp(F,A)) is a non-null soft
semimodule over M2.

Proof.Note first that since(F,A) is is a non-null soft
semimodule overM1, then so is( f (F),Supp(F,A)) over
M2. We have f (F)(x) = f (F(x)) 6= /0 for all
x ∈ Supp( f (F),Supp(F,A)). Because of the fact that
(F,A) is a soft semimodule overM1, the nonempty set
F(x) is a subsemimodule ofM1. Thus, we can conclude
that its onto homomorphic imagef (F(x)) is a
subsemimodule overM2. So, f (F(x)) is a subsemimodule
overM2 for all x∈ Supp( f (F),Supp(F,A)). It means that
( f (F),Supp(F,A)) is a soft semimodule overM2.

Theorem 315Let (F,A) be a soft semimodule over M1
and let f : M1 → M2 be a surjective homomorphism of
semimodules. Then

a)If F(x) = Ker f for all x ∈ Supp(F,A), then
( f (F),Supp(F,A)) is a trivial soft semimodule over
M2.

b)If (F,A) is whole, then( f (F),Supp(F,A)) is a whole
soft semimodule over M2.

Proof.a) Assume thatF(x) = Ker f for all x∈ Supp(F,A).
Then f (F)(x) = f (F(x)) = 0M for all x∈Supp(F,A). That
is to say( f (F),Supp(F,A)) is a trivial soft semimodule
overM2.

b) Suppose that(F,A) is whole. Then,F(x) = V for
all x ∈ Supp(F,A). It follows that
f (F)(x) = f (F(x)) = F(V) = W for all x ∈ Supp(F,A),
which means that( f (F),Supp(F,A)) is a whole soft
semimodule overM2.

Definition 14.Let (F,A) and (G,B) be soft semimodule
over M1 and M2, respectively. Let f: M1 → M2 and
g : A→ B be two mappings. Then the pair( f ,g) is called
a soft semimodule homomorphismif it satisfies the
conditions below:

i) f is an epimorphism.
ii)g is a surjective mapping.
iii) f (F(x)) = G(g(x)) for all x ∈ A.

If there exists a soft homomorphism between(F,A) and
(G,B), we mention that(F,A) is soft homomorphicto
(G,B), which is denoted by(F,A)∼ (G,B). Furthermore,
if f is an isomorphism of semimodules and g is a bijective
mapping, then( f ,g) is said to be asoft semimodule
isomorphism. In this case, we say that(F,A) is soft
isomorphic to (G,B), which is denoted by
(F,A)≃M (G,B).

Example 316Let the semiring R= Z∗ = {0} ∪ Z+ and
M = Z∗×Z∗ be the left R-semimodule of R with the usual
scalar multiplication. Let(F,A) be a soft set over M,
where A= Z∗ and F : A→ P(M) is a set-valued function
defined by F(x) = {0}×2xZ∗ for all x ∈ A. It is obvious
that (F,A) is a soft semimodule over M. Let the semiring
R

′
= Z∗ and M

′
= Z∗ be the left R

′
-semimodule of R

′
. Let

(G,B) be a soft set over M
′
, where B= Z∗ and

G : B → P(M
′
) is a set-valued function defined by

G(x) = 2xk (k∈ Z) for all x ∈ B. It is obvious that(G,B)
is a soft semimodule over M

′
. Let f : Z∗×Z∗ → Z∗ be the

mapping defined by f(x,y) = y. One can easily say that f
is an epimorphism of semimodules. Let g: Z∗ → Z∗ be
the mapping defined by g(x) = x for all x ∈ Z∗. Then one
can easily say that g is surjective. Since
f (F(x)) = f ({0} × 2xZ∗) = 2xZ∗ and
(G(g(x)) = G(x) = 2xk= 2xZ∗ is satisfied for all x∈ Z,
it follows that( f ,g) is a soft semimodule homomorphism
and(F,A)∼ (G,B).

4 Soft substructures of semimodules

Definition 15.Let N be a subsemimodule of M and let
(F,N) be a soft set over M. If for all x,y ∈ N and for all
r ∈ R,
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s1)F(x+ y)⊇ F(x)∩F(y) and
s2)F(rx)⊇ F(x),

then the soft set(F,N) is called a soft subsemimodule of
M and denoted by(F,N)<̃M or simply FN<̃M.

Example 41Let R be the semiring in Example31 with the
first operation tables. Let M= R be a left R-semimodule
and N1 = {0,a} be a subsemimodule of M. Let the soft
set(F,N1) over M, where F: N1 → P(M) is a set valued
function by F(0) = {0,a,b} and F(a)= {0,b}. Then it can
be easily seen that(F,N1)<̃M.

Let N2 = {0,b} < M and the soft set(G,N2) over M,
where G : N2 → P(M) is a set valued function by
G(0) = {0,b,c} and G(b) = {b}. Then(G,N2)<̃M, too.
However if we define the soft set(H,N2) over M such that
H(0) = {a,c} and H(b) = {0,b,c}, then
H(a.b) = H(0) = {a,c} + H(b) = {0,b,c}. Therefore,
(H,N2) is not a soft subsemimodule over M.

Theorem 42If FN1<̃M and GN2<̃M, then FN1 ⋓GN2<̃M.

Proof.SinceN1 andN2 are subsemimodules ofM,then it
follows thatN1∩N2 6= /0 andN1∩N2 is a subsemimodule
of M. Let FN1 ⋓GN2 = (F,N1)⋓ (G,N2) = (H,N1 ∩N2),
whereH(x) = F(x)∩G(x) for all x ∈ N1 ∩N2 6= /0. Then
for all x,y∈ N1∩N2 andr ∈ R,

s1)H(x + y) = F(x + y) ∩ G(x + y) ⊇
(F(x) ∩ F(y)) ∩ (G(x) ∩ G(y)) =
(F(x)∩G(x))∩ (F(y)∩G(y)) = H(x)∩H(y),

s2)H(rx) = F(rx)∩G(rx)⊇ F(x)∩G(x) = H(x).

ThereforeFN1 ⋓GN2 = HN1∩N2<̃M.

Definition 16.Let M1 and M2 be left R-subsemimodules
and let(F,N1) and(G,N2) be two soft subsemimodules of
M1 and M2, respectively. The product of soft
subsemimodules(F,N1) and (G,N2) is defined as
(F,N1) × (G,N2) = (Q,N1 × N2), where
Q(x,y) = F(x)×G(y) for all (x,y) ∈ N1×N2.

Theorem 43If FN1<̃M1 and GN2<̃M2, then
FN1 ×GN2<̃M1×M2.

Proof.SinceN1 andN2 are subsemimodules ofM1 andM2,
respectively, thenN1×N2 is a subsemimodule ofM1×M2.
Let FN1 ×GN2 = (F,N1)× (G,N2) = (Q,N1 ×N2), where
Q(x,y) = F(x)×G(y) for all (x,y) ∈ M1 ×M2. Then for
all (x1,y1),(x2,y2) ∈ M1×M2 andr ∈ R,

s1)Q((x1,y1) + (x2,y2)) = Q(x1 + x2,y1 + y2) =
F(x1+x2)×G(y1+y2)⊇ (F(x1)∩F(x2))× (G(y1)∩
G(y2)) = (F(x1) × G(y1)) ∩ (F(x2) × G(y2)) =
Q(x1,y1)∩Q(x2,y2),

s2)Q(r(x1,y1)) = Q(rx1, ry1) = F(rx1) × G(ry1) ⊇
F(x1)×G(y1) = Q(x1,y1).

HenceFN1 ×GN2 = QN1×N2<̃M1×M2.

Example 44Let (F,N1)<̃M and (G,N2)<̃M in Example
41. (F,N1) ⋓ (G,N2) = (T,N1 ∩ N2), where
T(x) = F(x) ∩ G(x) for all x ∈ N1 ∩ N2 = {0}. Then
T(0) = F(0) ∩ G(0) = {0,b}. It is obvious that
(T,N1∩N2)<̃M.

Let FN1 × GN2 = (F,N1) × (G,N2) = (Q,N1 × N2),
where Q(x,y) = F(x) × G(y) for all
(x,y) ∈ N1 × N2 = {(0,0),(0,b),(a,0),(a,b)}. Then it
can be easily seen that QN1×N2<̃Z10×Z10. We show the
operations for some elements of N1×N2:
Q((a,0)+(a,b)) = Q(a+a,0+b) = Q(0,b)

= F(0)×G(b) = {0,a,b}×{b}

= {(0,b),(a,b),(b,b)}

Q(a,0)∩Q(a,b) = (F(a)×G(0))∩ (F(a)×G(b))

= ({0,b}×{0,b,c})∩ ({0,b}×{b})

= {(0,b),(b,b)}

Q(a(a,b)) = Q(aa,ab) = Q(a,0)

= F(a)×G(0) = ({0,b}×{0,b,c})

= {(0,0),(0,b),(0,c),(b,0),(b,b),(b,c)}

It is seen that Q((a,0) + (a,b)) ⊇ Q(a,0)∩Q(a,b) and
Q(a(a,b))⊇ Q(a,b) = F(a)×G(b) = {(0,b),(b,b)}.

Definition 17.Let (F,N) and (G,K) be two soft
subsemimodules of M. If N∩K = {0M}, then the sum of
soft subsemimodules(F,N) and (G,K) is defined as
(F,N) + (G,K) = (T,N + K), where
T(x+ y) = F(x)+G(y) for all x+ y∈ N+K.

Theorem 45If FN<̃M and GK<̃M, where N∩K = {0M},
then FN +GM<̃M.

Proof.Since N and K are subsemimodules ofM, then
N + K is a subsemimodule of M. Let
FN + GK = (F,N) + (G,K) = (T,N + K), where
T(x) = F(x) + G(x) for all x ∈ N + K. Then for all
x1+ y1,x2+ y2 ∈ N+K andr ∈ R,

T((x1+ y1)+ (x2+ y2)) = T((x1+ x2)+ (y1+ y2))

= F(x1+ x2)+G(y1+ y2)

⊇ (F(x1)∩F(x2))+ (G(y1)∩G(y2))

= (F(x1)+G(y1))∩ (F(x2)+G(y2))

= T(x1+ y1)∩T(x2+ y2),

T(r(x1+ y1) = T(rx1+ ry1)

= F(rx1)+G(ry1)

⊇ F(x1)+G(y1)

= T(x1+ y1).

ThereforeFN +GK = TN+K<̃M.

Proposition 46Let M be an R-semimodule such that
(M,+) is a group. If FN<̃M, then F(0M) ⊇ F(x) for all
x∈ N.

Proof.Since(F,N) is a soft subsemimodule ofM, then for
all x,y ∈ N, F(x+ y) ⊇ F(x) ∩ F(y). Since(M,+) is a
group, if we take y = −x then
F(x− x) = F(0M)⊇ F(x)∩F(x) = F(x) for all x∈ N.
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Proposition 47Let M be an R-semimodule such that
(M,+) is a group. If FN<̃M, then
NF = {x∈ N | F(x) = F(0M)} is a subsemimodule of N.

Proof.We need to show thatx+ y ∈ NF andnx∈ NF for
all x,y ∈ NF and n ∈ N, which means that
F(x + y) = F(0M) and F(nx) = F(0M) have to be
satisfied. Sincex,y ∈ NF , then F(x) = F(y) = F(0M).
Since (F,N) is a soft subsemimodule ofM, then
F(x + y) ⊇ F(x) ∩ F(y) = F(0M) and
F(nx) ⊇ F(x) = F(0M) for all x,y ∈ NF and andn ∈ N.
Moreover, F(0M) ⊇ F(x + y) and F(0M) ⊇ F(nx).
ThereforeNF is a subsemimodule ofN.

Definition 18.Let (F,N) be a soft subsemimodule of M.
Then,

i)If M is a left R-semimodule with zero0M and if F(x) =
{0M} for all x ∈ N, then(F,A) is called trivial.

ii)(F,N) is said to be whole if F(x) = M for all x ∈ N.

Proposition 48Let (F,N1) and (G,N2) be soft
subsemimodules of M. Then,

i)If (F,N1) and (G,N2) are trivial (resp., whole) soft
subsemimodules of M, then(F,N1) ⋓ (G,N2) is a
trivial (resp., whole) soft subsemimodule of M.

ii)If (F,N1) is a trivial soft subsemimodule of M and
(G,N2) is a whole soft subsemimodule of M, then
(F,N1)⋓ (G,N2) is a trivial soft subsemimodule of M.

iv)If (F,N1) and (G,N2) are trivial (resp., whole) soft
subsemimodules of M where N1 ∩ N2 = {0M}, then
(F,N1) + (G,N2) is a trivial (resp., whole) soft
subsemimodule of M.

v)If (F,N1) is a trivial soft subsemimodule of M and
(G,N2) is a whole soft subsemimodule of M where
N1∩N2 = {0M}, then(F,N1)+(G,N2) is a whole soft
subsemimodule of M.

Proposition 49Let (F,N1) and (G,N2) be two soft
subsemimodules of M1 and M2, respectively. Then,

i)If (F,N1) and (G,N2) are trivial soft subsemimodules
of M1 and M2, respectively, then(F,N1)× (G,N2) is a
trivial soft subsemimodule of M1×M2.

ii)If (F,N1) and (G,N2) are whole soft subsemimodules
of M1 and M2, respectively, then(F,N1)× (G,N2) is a
whole soft subsemimodule of M1×M2.

Theorem 410Let M1 be a R-semimodules with zero0M1

and M2 be a R-semimodules with zero0M2, (F1,N1)<̃M1,
(F2,N2)<̃M2. If f : N1 → N2 is a semimodule
homomorphism, then

a)If f is an epimorphism, then(F1, f−1(N2))<̃M1,
b)(F2, f (N1))<̃M2,
c)(F1,Ker f)<̃M1.

Proof.a) SinceN1 < M1, N2 < M2 and f : N1 → N2 is a
semimodule epimorphism, then it is clear thatf−1(N2) <
M1. Since(F1,N1)<̃M1 and f−1(N2) ⊆ N1, F1(x+ y) ⊇

F1(x)∩F1(y) andF1(rx)⊇ F1(x) for all x,y∈ f−1(N2) and
r ∈ R. Hence(F1, f−1(N2))<̃M1.

b) Since N1 < M1, N2 < M2 and f : N1 → N2 is a
semimodule homomorphism, thenf (N1) < M2. Since
f (N1)⊆ N2, the result is obvious.

c) SinceKer f < M1 and Ker f ⊆ N1, the rest of the
proof is clear.

Corollary 411Let (F1,N1)<̃M1, (F2,N2)<̃M2 and
f : N1 → N2 is a semimodule homomorphism, then
(F2,{0N2})<̃M2.

Proof.Since (F1,Ker f)<̃M1. Then
(F2, f (Ker f)) = (F2,{0N2})<̃M2.

5 Conclusion

Throughout this paper, in a semimodule structure, we
have studied the algebraic properties of soft sets which
were introduced by Molodtsov as a new mathematical
tool for dealing with uncertainty. This work bears soft
semimodule, soft subsemimodule and soft semimodule
homomorphism. Moreover, we deal with the algebraic
soft substructures of a semimodule. We have introduced
soft subsemimodule of a semimodule and study its related
properties with some examples. To extend this work, one
could study the soft substructures of other algebraic
structures.
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