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Abstract: A k-partition Π = {S1,S2, . . . ,Sk} of V(G) is resolving if for every two distinct verticesu andv of a connected graphG,
there is a setSi in Π so that the minimum distance betweenu and a vertex ofSi is different from the minimum distance betweenv and a
vertex ofSi . A resolving partitionΠ is said to be connected if each subgraph< Si > induced bySi (1≤ i ≤ k) is connected inG. In this
paper, we investigate the minimum connected resolving partitions in unicyclic graphs. Also, modified sharp lower and upper bounds
for the connected partition dimension of unicyclic graphs are provided.
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1 Introduction

Partition dimension was firstly studied by Chartrand,
Salehi and Zhang in [5,6] perhaps as a variation of metric
dimension. Resolving sets and resolving partitions have
since been widely investigated [2,4,6,9,10,12,13,16,17,
18,19,20] and arise in many diverse areas including
network discovery and verification [1], strategies for the
Mastermind game [7,8], robot navigation [14] and
connected joins in graphs [19].

For the verticesu andv in a connected graphG, the
distance d(u,v) is the length of a shortest path betweenu
and v in G. For an ordered setW = {v1,v2, . . . ,vk} of
vertices in a connected graphG and a vertexv of G, the
k-vector cW(v) = (d(v,v1),d(v,v2), . . . ,d(v,vk)) is
referred to as thecodeof v with respect toW. The setW
is called a resolving set for G if all the vertices of
V(G) \W have distinct codes. A resolving set containing
a minimum number of vertices is called aminimum
resolving setor a metric basisfor G. The number of
elements in a metric basis ofG is called themetric
dimensionof G, and is denoted bydim(G) [2,3].

For a setS of vertices ofG and a vertexv of G, the
distance d(v,S) between v and S is defined as
d(v,S) = min{d(v,x) : x∈ S}. For an orderedk-partition
Π = {S1,S2, . . . ,Sk} of V(G) and a vectorv of G , the
code of v with respect toΠ is defined as thek-vector
cΠ (v) = (d(v,S1),d(v,S2), . . . ,d(v,Sk)). The partitionΠ
is called aresolving partitionfor G if the distinct vertices

of G have distinct codes with respect toΠ . The minimum
k for which there is a resolvingk-partition ofV(G) is the
partition dimensionof G, denoted bypd(G) [5,6].

A resolving partitionΠ = {S1,S2, . . . ,Sk} of V(G) is
said to be aconnected resolving partitionif the subgraph
< Si > induced by each subsetSi (1≤ i ≤ k) is connected
in G. The minimumk for which there is a connected
resolvingk-partition of V(G) is the connected partition
dimension of G, denoted by cpd(G). A connected
resolving partition ofV(G) containingcpd(G) elements
is called aminimum connected resolving partition(or
cr-partition) of V(G). If G is a non-trivial connected
graph withV(G) = {v1,v2, . . . ,vn}, then then-partition
{S1,S2, . . . ,Sn}, where Si = {vi} for 1 ≤ i ≤ n, is a
connected resolving partition forG. Thus, cpd(G) is
defined for every non-trivial connected graphG. Indeed,
every connected resolving partition of a connected graph
is a resolving partition. Thus, ifG is a connected graph of
ordern≥ 2, then

2≤ pd(G)≤ cpd(G)≤ n.

Moreover,pd(G) = cpd(G) if and only if G contains a
minimum resolving partition that is connected [16,17].

For anyS⊆V(G), if d(x,S) 6= d(y,S), then we say that
the setS separates two distinct verticesx andy of G. If
a class of a partitionΠ separates two distinct verticesx
andy, then we say thatΠ separatesx andy. From these
definitions, it can be observed that the property of a given
partitionΠ of the vertices of a graphG to be a resolving
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partition ofG can be verified by investigating the pairs of
vertices in the same class. Indeed, every vertexx∈ Si (1≤
i ≤ k) is at distance 0 fromSi , but is at a distance different
from zero from any other classSj with j 6= i. It follows
thatx ∈ Si andy ∈ Sj are separated either bySi , or by Sj
for everyi 6= j.

A connected graph with exactly one cycle is called a
unicyclic graph. The metric dimension of unicyclic
graphs was studied by Poisson and Zhang in [15]. We
adopt the terminology, used in [15], to study the
connected partition dimension of unicyclic graphs: The
graphG = G[G1,G2,u,v] obtained fromG1 and G2 by
identifying u and v is called an identification graph,
whereG1 and G2 are non-trivial connected graphs with
u ∈ V(G1) andv ∈ V(G2). Thereforeu = v in G and we
name the vertexu= v, thejoint in G. Theidentification is
said to be of type-1if an end vertex of a path is identified
with a vertex of degree two of a cycle in a graph, or an
end vertex of a path is identified with a vertex of degree 1
of a graph, otherwiseidentification is said to be of type-2.
A unicyclic graph can be obtained by the addition of a
single edge between two vertices of a tree. Also a
unicyclic graph that is not a cycle can be obtained from a
cycle and one or more trees by identifying some specified
vertices on the cycle and on the trees.

Unicyclic graphs first time, in the context of
connected partition dimension, were considered by Javaid
in [11]. Together with some basic results, he proved the
following major results for the partition dimension of
unicyclic graphs:

Lemma 1.[11] Let G= G[G1,G2,u,v] be an identification
graph of type-2. Then cpd(G)≤ cpd(G1)+ cpd(G2)−1.

Theorem 1.[11] Let G be a unicyclic graph of type-2 with
unique cycle C of order n. Then

4≤ cpd(G)≤ 3+
k

∑
i=1

cpd(Ti)− k,

where Ti is a subtree of G rooted at the vertex ui (1≤ i ≤ k)
of the cycle C.

Theorem 2.[11] Let T be a tree which is not a path and e
is an edge. Then

cpd(T)−2≤ cpd(T +e)≤ cpd(T)+1.

We investigate that the bounds for the connected
partition dimension of unicyclic graphs provided by
Javaid are not tight. In this paper, we reconsider the
unicyclic graphs in the context of connected partition
dimension and, together with some basic results, we
provide modified sharp bounds for the connected partition
dimension of unicyclic graphs.

2 Results

The following result gives the connected partition
dimension of an identification graph of type-1.

Lemma 2.Let G = G[G1,G2,u,v] be an identification
graph of type-1, where G1 be any non-trivial connected
graph and G2 is a path on n≥ 2 vertices. Then
cpd(G) = cpd(G1).

Proof.Let cpd(G1) = k with connected resolving
partitionsΠ1 = {S1S2, . . . ,Sk} of V(G1). Since connected
partition dimension of a graph is 2 if and only if the graph
is a path [17], we have cpd(G2) = 2 with connected
resolving partitionΠ2 = {U1,U2}. Let v be the joint inG
such that v ∈ Sk and v ∈ U1. Let
Π = {S1,S2, . . . ,S′k = Sk∪V(G2)} be a partition ofV(G)
of cardinality cpd(G1) + cpd(G2) − 2, then any two
distinct verticesv1 and v2 of V(G) have different codes
with respect toΠ as shown in the following three cases:
Case A.If v1,v2 ∈ V(G1), then sincecΠ1(v1) 6= cΠ1(v2)
and d(vi ,Sk) = d(vi ,S′k) for i = 1,2, we have
cΠ (v1) 6= cΠ (v2).
Case B. If v1,v2 ∈ V(G2), then v,v1,v2 ∈ S′k and
cΠ (vi) = cΠ1(v)+ (d(vi,v),d(vi ,v),
. . . ,0) for i = 1,2. Since d(v1,v) 6= d(v2,v), we have
cΠ (v1) 6= cΠ (v2).
Case C.If v1 ∈ V(G1) andv2 ∈ V(G2), thenv2 ∈ S′k and
we have the following two subcases:
Subcase C1. If v is identified with a vertex of degree two
of a cycle inG1, then since the vertices of a cycle are
divided into at least three classes, it is easy to see thatv1
andv2 are at different distance from a class containing the
vertices of the cycle, which implies thatcΠ (v1) 6= cΠ (v2).
Subcase C2. If v is identified with a vertex of degree one
of G1, then d(v1Si) < d(v2,Si) (1 ≤ i ≤ k− 1), which
yields thatcΠ (v1) 6= cΠ (v2).

Thus, it is concluded thatΠ is a connected resolving
partition ofV(G) and hence

cpd(G)≤ cpd(G1)+ cpd(G2)−2.

Now, if cpd(G) 6≥ cpd(G1) + cpd(G2) − 2, then
cpd(G) < cpd(G1) + cpd(G2)− 2. Sincecpd(G2) = 2,
this implies thatcpd(G) < cpd(G1) = k. This suggest
that there exists a connected resolving partition ofV(G1)
with cardinality less than the cardinality ofΠ1, which is a
contradiction. Therefore
cpd(G) ≥ cpd(G1) + cpd(G2) − 2 and hence
cpd(G) = cpd(G1).

The following result gives the sharp upper and lower
bounds for the connected partition dimension of an
identification graph of type-2.

Lemma 3.Let G = G[G1,G2,u,v] be an identification
graph of type-2. Then

max{cpd(G1),cpd(G2)}≤ cpd(G)≤ cpd(G1)+cpd(G2).

Moreover, both bounds are sharp.

Proof.Let cpd(G1) = k with connected resolving
partitionsΠ1 = {S1S2, . . . ,Sk} of V(G1) andcpd(G2) = l
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with connected resolving partitionΠ2 = {U1,U2, . . . ,Ul}
of V(G2). Then, clearly,
Π = {S1,S2, . . . ,Sk,U1,U2, . . . ,Ul} is a connected
resolving partition of V(G) of cardinality
cpd(G1)+ cpd(G2).

For the lower bound, there is no loss of generality in
assuming that max{cpd(G1),
cpd(G2)} = cpd(G2) = l . Now, if
cpd(G) 6≥ max{cpd(G1),cpd(G2)}, then cpd(G) < l ,
which implies that a connected partition ofV(G2) with
the partite sets fewer than the partite sets ofΠ2 resolves
all the vertices ofG2, which is a contradiction. Hence

cpd(G)≥ max{cpd(G1),cpd(G2)}.

u

w
5 6

x
21 3 4

7v

G1 G2

Fig. 1: G1: The complete graphK4 andG2: The treeT.

For sharpness, consider the graphsG1 andG2 shown
in Figure1, which are the complete graphK4 and the tree
T, respectively. Also consider a pathPn on n≥ 2 vertices
with an end vertexy and a starS1,n−1 with the vertexz
adjacent ton− 1 verticesz1,z1, . . . ,zn−1 each of degree
one. Then, note that,cpd(G1) = 4, with connected
resolving partition {{u},{v},{w},{x}}; cpd(G2) = 3
with a connected resolving partition, say
{{1,2,3,4},{5,6},{7}}; cpd(Pn) = 2 with a connected
resolving partition, say {{y},V(Pn) \ {y}} and
cpd(s1,n−1) = n−1 with a connected resolving partition,
say {{z,z1},{z2}, . . . ,{zn−1}} [17]. Now, if
G = G[G1,Pn,x,y] and G′ = G′[G2,S1,n−1,5,z] are the
identification graphs of type-2, then one can easily see
that the connected partitions{{u},{v},{w},{x}∪V(Pn)}
and {{1,2,3,4},{5 = z,6},{7},{z1},{z2}, . . . ,{zn−1}}
of V(G) and V(G′), respectively, are the minimal
connected resolving partitions, which implies that
cpd(G) = 4 = max{cpd(G1),cpd(Pn)} and
cpd(G′) = n+2= cpd(G2)+ cpd(S1,n−1).

Let G be a unicyclic graph with unique cycleC. Let
u1,u2, . . . ,uk be the vertices ofC at which the subtrees of
G are rooted. LetT i

1,T
i
2, . . . ,T

i
λi

be the subtrees ofG rooted
atui , whereλi denotes the number of subtrees rooted atui .
ThenG is said to be unicyclic graph of type-1 if and only
if λi = 1 for everyi andT i

1 = Ti is a path. Otherwise,G is
unicyclic graph of type-2. The following result was proved
for the connected partition dimension of unicyclic graphs
of type-1 in [11].

Theorem 3.[11] Let G be a unicyclic graph of type-1, then
cpd(G) = 3.

The following definitions, given in [3], will be used in
the proof of next results. A vertex of degree at least three
in a graphG will be called amajor vertexof G. An end
vertexu of G is said to be aterminal vertexof a major
vertex v of G if d(u,v) < d(u,w) for every other major
vertexw of G. Theterminal degreeof a major vertexv is
the number of terminal vertices ofv. A major vertex ofG is
anexterior major vertexif it has positive terminal degree.
Let σ(G) denotes the sum of the terminal degrees of the
major vertices ofG, and letex(G) denotes the number of
exterior major vertices ofG.

Theorem 4.Let G be a unicyclic graph of type-2 with
unique cycle C of order n. Then

4≤ cpd(G)≤ 3+
k

∑
i=1

λi

∑
j=1

(σ(T i
j )−ex(T i

j ))+
k

∑
i=1

λi,

where λi is the number of subtrees Ti
1,T

i
2, . . . ,T

i
λi

of G
rooted at each vertex ui (1≤ i ≤ k≤ n) of the cycle C.

Proof.For the upper bound, first we assume thatk = 1.
Then there areλ1 subtreesT1

1 ,T
1
2 , . . . ,T

1
λ1

of G rooted at

u1. Let G1
1 = G1

1[C,T
1
1 ,u1,v1

1] be an identification graph of
type-2, wherev1

1 is a vertex of degree one inT1
1 . Then,

sincecpd(C) = 3 [17], we havecpd(G1
1) ≤ 3+ cpd(T1

1 ),
by Lemma 3. Let G1

2 = G1
2[G

1
1,T

1
2 ,u1,v1

2] be an
identification graph of type-2, wherev1

2 is a vertex of
degree one inT1

2 . Then, again by Lemma3, we have
cpd(G1

2) ≤ 3+ cpd(T1
1 ) + cpd(T1

2 ). Now, by continuing
this identification process λ1 times, if
G1

λ1
= G1

λ1
[G1

λ1−1,T
1

λ1
,u1,v1

λ1
] is an identification graph of

type-2, wherev1
λ1

is a vertex of degree one inT1
λ1

. Then,

cpd(G1
λ1
)≤ 3+

λ1

∑
j=1

cpd(T1
j ), by Lemma3.

For k = 2, there areλ2 subtreesT2
1 ,T

2
2 , . . . ,T

2
λ2

of G

rooted at u2. Let G2
1 = G2

1[G
1
λ1
,T2

1 ,u2,v2
1] be an

identification graph of type-2, wherev2
1 is a vertex of

degree one in T2
1 . Then,

cpd(G2
1) ≤ 3+

λ1

∑
j=1

cpd(T1
j )+ cpd(T2

1 ), by Lemma3. Let

G2
2 = G2

2[G
2
1,T

2
2 ,u2,v2

2] be an identification graph of
type-2, wherev2

2 is a vertex of degree one inT2
2 . Then,

again by Lemma 3, we have

cpd(G2
2) ≤ 3+

λ1

∑
j=1

cpd(T1
j ) + cpd(T2

1 ) + cpd(T2
2 ). Now,

by continuing this identification processλ2 times, if
G2

λ2
= G2

λ2
[G2

λ2−1,T
2

λ2
,u2,v2

λ2
] is an identification graph of

type-2, wherev2
λ2

is a vertex of degree one inT2
λ2

. Then,

cpd(G2
λ2
)≤ 3+

λ1

∑
j=1

cpd(T1
j )+

λ2

∑
j=1

cpd(T2
j ), by Lemma3.
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Similarly, by continuing this process up to thekth
stage, letG= Gk

λk
= Gk

λk
[Gk

λk−1,

Tk
λk
,uk,vk

λk
] be an identification graph of type-2, wherevk

λk

is a vertex of degree one in Tk
λk

. Then,

cpd(G) ≤ 3+
k−1
∑

i=1

λi

∑
j=1

cpd(T i
j )+

λk−1
∑
j=1

cpd(Tk
j )+ cpd(Tk

λk
),

by Lemma 3. This implies that

cpd(G) ≤ 3+
k
∑

i=1

λi

∑
j=1

cpd(T i
j ). Since for any treeT which

is not a path,cpd(T) = σ(T)−ex(T)+1 [17], we have

cpd(G)≤ 3+
k

∑
i=1

λi

∑
j=1

(σ(T i
j )−ex(T i

j ))+
k

∑
i=1

λi .

For the lower bound, it is a routine exercise to see that
cpd(G)< 4 would be possible only ifG is a unicycle graph
of type-1 orG is not a unicyclic graph.

We call a path of ordern≥ 2 rooted at a (an exterior)
major vertex, sayv, in a tree,a stem of the tree for v. The
following is a useful proposition, and may be is of
independent interest.

Proposition 1.Let T be a tree which is not a path and e is
an edge. Then(1) σ(T + e) ≥ σ(T)− 2 and (2) ex(T +
e)≤ ex(T)+2.

Proof.Let u andv be two distinct non-adjacent vertices of
T such thate= uv in T +e.
(1) One can easily see thatσ(T + e) = σ(T)− 2 if and
only if u andv are the terminal vertices. Otherwise,σ(T+
e)> σ(T)−2.
(2) It is straightforward to see thatex(T +e) = ex(T)+2
if and only if u and v are the non-terminal (non-major)
vertices belonging to two different stems(a) for the same
exterior major vertex having at least three stems, or(b)
for two distinct exterior major vertices having at least two
stems. Otherwise,ex(T +e)≤ ex(T)+1.

In [17], it was shown that
cpd(G) ≥ σ(G) − ex(G) + 1 for any non-trivial
connected graphG. The next result shows that how the
connected partition dimension is changed when a single
edge is added to a treeT.

Theorem 5.Let T be a tree which is not a path and e is an
edge. Then

cpd(T)−4≤ cpd(T +e)≤ cpd(T)+1.

Proof.Since cpd(G) ≥ σ(G) − ex(G) + 1 and
cpd(T) = σ(T)−ex(T)+1 [17], so by Proposition1, we
have
cpd(T +e)≥ σ(T +e)−ex(T+e)+1≥ cpd(T)−4.

For the upper bound, suppose thatT contains p
exterior major verticesv1,v2, . . . ,

vp. For eachi with 1 ≤ i ≤ p, let ui
1,u

i
2, . . . ,u

i
ki

be the

terminal vertices ofvi . For eachi with 1≤ i ≤ p, let Si
j be

the stem forvi in T for all 1≤ j ≤ ki and letxi
j be a vertex

in Si
j that is adjacent tovi . Then letPi

j be thexi
j −ui

j path
in Si

j for all 1 ≤ i ≤ p and 1 ≤ j ≤ ki . Let

U = {v1,u1
1,u

2
1, . . . ,u

p
1} and letT1 be the subtree ofT of

smallest size such thatT1 containsU . LetU0 =V(T1) and
U i

j = V(Pi
j) for all 1 ≤ i ≤ p and 2≤ j ≤ ki . Define a

partition Π of V(T) by
Π = {U0,U i

j ; 1 ≤ i ≤ p and 2≤ j ≤ ki}. Then Π is
connected and resolving as was shown in [17]. It is noted
that the vertices in one class are separated by more than
one class. LetC denotes the unique cycle inT +e and let
e= uv in T +e, whereu andv are two distinct vertices of
T. We consider the following two cases:
Case 1.If C contains at least two major vertices, then the
connected resolving partitionΠ for T is also a connected
resolving partition forT +e. Socpd(T +e)≤ cpd(T).
Case 2.If C contains only one major vertex, sayx, then
there are two subcases.
Subcase 1a.If u andv belong to two different stems forx,
then the connected resolving partitionΠ for T is also a
connected resolving partition for T + e. So
cpd(T +e)≤ cpd(T).
Subcase 1b.If u and v are the non-terminal vertices
belonging to the same stem forx having at least three
vertices, then we define a new partition by putting any
vertex of that stem other than the major vertex in a new
class. This will be a connected resolving partitions for
T +e. Socpd(T +e)≤ |Π |+1≤ cpd(T)+1. Hence, by
summarizing all the above discission, we have

cpd(T)−4≤ cpd(T +e)≤ cpd(T)+1.
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