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Abstract: A k-partition7 = {S,S,...,S} of V(G) is resolving if for every two distinct verticasandv of a connected grap,
there is a se§ in 1 so that the minimum distance betwaeand a vertex of is different from the minimum distance betweeand a
vertex ofS. A resolving partition7 is said to be connected if each subgrap > induced byS (1 <i < k) is connected ii&5. In this
paper, we investigate the minimum connected resolvingtjmans in unicyclic graphs. Also, modified sharp lower angepbounds
for the connected partition dimension of unicyclic graphes@rovided.
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1 Introduction

Partition dimension was firstly studied by Chartrand,
Salehi and Zhang irg 6] perhaps as a variation of metric

dimension. Resolving sets and resolving partitions have®

since been widely investigated, ,6,9,10,12,13/16,17,
18,19,20] and arise in many diverse areas including
network discovery and verificatiori]] strategies for the
Mastermind game 7,8], robot navigation 14 and
connected joins in graph&9].

For the verticess andv in a connected grapB, the
distance du,v) is the length of a shortest path betwaen
andv in G. For an ordered setV = {vi,Vp,...,w} of
vertices in a connected gra@hand a vertew of G, the
k-vector ow(v) = (d(v,v1),d(v,V2),...,d(V,%)) s
referred to as theodeof v with respect toN. The seW
is called aresolving setfor G if all the vertices of
V(G) \ W have distinct codes. A resolving set containing
a minimum number of vertices is called minimum
resolving setor a metric basisfor G. The number of
elements in a metric basis db is called themetric
dimensiorof G, and is denoted bgtim(G) [2,3].

For a setS of vertices ofG and a vertew of G, the
distance d(v,S) between v and S is defined as
d(v,S) =min{d(v,x) : x € S}. For an ordered-partition
Nn={s,%,...,.&%} of V(G) and a vectow of G, the
code ofv with respect tol1 is defined as thé-vector
cn(v) = (d(v,S1),d(v,S),...,d(v,S)). The partition/T
is called aresolving partitionfor G if the distinct vertices

of G have distinct codes with respectfib The minimum
k for which there is a resolving-partition ofV(G) is the
partition dimensiorof G, denoted bypd(G) [5, 6].

A resolving partition/T = {S;,S,, ..., &} of V(G) is
aid to be aonnected resolving partitioifi the subgraph
< S > induced by each subsgt(1 <i <k) is connected
in G. The minimumk for which there is a connected
resolvingk-partition of V(G) is the connected partition
dimension of G, denoted bycpd(G). A connected
resolving partition ofV(G) containingcpd(G) elements
is called aminimum connected resolving partitiofor
cr-partition) of V(G). If G is a non-trivial connected
graph withV(G) = {v1,V2,...,vp}, then then-partition
{5,%,...,S}, where§ = {v} for 1 <i<n, is a
connected resolving partition fo®. Thus, cpd(G) is
defined for every non-trivial connected gra@h Indeed,
every connected resolving partition of a connected graph
is a resolving partition. Thus, & is a connected graph of
ordern> 2, then

2 < pd(G) <cpdG) <n.

Moreover, pd(G) = cpd(G) if and only if G contains a
minimum resolving partition that is connecteb[17].
ForanySCV(G), if d(x,S) # d(y,S), then we say that
the setS separates two distinct verticasandy of G. If
a class of a partitiorfl separates two distinct vertices
andy, then we say thafl separates andy. From these
definitions, it can be observed that the property of a given
partition I1 of the vertices of a grap@ to be a resolving
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partition of G can be verified by investigating the pairs of Lemma2Llet G = G[G1,G,u,v] be an identification

vertices in the same class. Indeed, every vextex§ (1 <

i <K) is at distance 0O frorf, but is at a distance different
from zero from any other clasS; with j # i. It follows
thatx € § andy € S are separated either I, or by S
for everyi # j.

graph of type-1, where Gbe any non-trivial connected
graph and G is a path on n> 2 vertices. Then
cpd(G) = cpd(Gy).

ProofLet cpd(Gi) = k with connected resolving

A connected graph with exactly one cycle is called apartitions/; = {$S,...,S} of V(Gy). Since connected

unicyclic graph The metric dimension of unicyclic
graphs was studied by Poisson and Zhanglif.[We
adopt the terminology, used inl§, to study the

connected partition dimension of unicyclic graphs: Thesuch

graphG = G[Gy,Gp,u,Vv| obtained fromG; and G, by
identifying u and v is called anidentification graph
whereG; and G, are non-trivial connected graphs with
ueV(Gy) andv € V(Gp). Thereforeu =v in G and we
name the vertex = v, thejoint in G. Theidentification is
said to be of type-if an end vertex of a path is identified

partition dimension of a graph is 2 if and only if the graph
is a path 17], we havecpd(G,) = 2 with connected
resolving partitionT, = {U;,U,}. Letv be the joint inG
that v ¢ & and v € U Let
Nn={S,%,...,§ =SUV(G,)} be a partition o/ (G)

of cardinality cpd(G1) + cpd(Gz) — 2, then any two
distinct verticesv; and v, of V(G) have different codes
with respect td7 as shown in the following three cases:
Case Alf vi,v» € V(G1), then sincecq, (v1) # cr, (V2)
and d(vi,&) = d(v,§) for i = 1,2, we have

with a vertex of degree two of a cycle in a graph, or an¢n (V1) # cr (V2).
end vertex of a path is identified with a vertex of degree 1Case B.If vi,v2 € V(Gp), then vvi,v2 € § and

of a graph, otherwisglentification is said to be of type-2

Cn (Vi) = C”.l(v) + (d(Vi,V),d(Vi,V),

A unicyclic graph can be obtained by the addition of a---,0) for i = 1,2. Sinced(vi,v) # d(v2,v), we have
single edge between two vertices of a tree. Also aCri (Vi) # Cr(V2).

unicyclic graph that is not a cycle can be obtained from aCase C.f v; € V(G;) andv; € V(Gy), thenv, € §, and
cycle and one or more trees by identifying some specifiedve have the following two subcases:

vertices on the cycle and on the trees.
Unicyclic graphs first time, in the context of

Subcase ¢ If v is identified with a vertex of degree two
of a cycle inGy, then since the vertices of a cycle are

connected partition dimension, were considered by Javaidlivided into at least three classes, it is easy to seevthat
in [11]. Together with some basic results, he proved theandv; are at different distance from a class containing the

following major results for the partition dimension of
unicyclic graphs:

Lemma 1.[1]] Let G= G[G1,G2,u,V] be an identification
graph of type-2. Then ci§&) < cpd(G;) +cpd(Gg) — 1.

Theorem 1.[11] Let G be a unicyclic graph of type-2 with
unigue cycle C of order n. Then

k
4<cpd(G) <3+ zide(Ti) -k
i=
where Tiis a subtree of G rooted at the vertexu< i <k)

of the cycle C.

Theorem 2.[11] Let T be a tree which is not a path and e
is an edge. Then

cpd(T)—2<cpdT+e) <cpd(T)+1

We investigate that the bounds for the connected

vertices of the cycle, which implies theg (v1) # ¢ (v2).
Subcase & If v is identified with a vertex of degree one
of Gy, thend(v1S) < d(v,S) (1 <i < k—1), which
yields thatcr (v1) # ¢ (v2).

Thus, it is concluded thdf is a connected resolving
partition ofV(G) and hence

cpd(G) < cpd(Gy) +cpd(Gy) — 2.

Now, if cpd(G) #? cpd(G1) + cpd(Gy) — 2, then
cpd(G) < cpd(Gy) + cpd(Gy) — 2. Sincecpd(Gy) = 2,
this implies thatcpd(G) < cpd(G;) = k. This suggest
that there exists a connected resolving partitiol (& )
with cardinality less than the cardinality 6f;, which is a
contradiction. Therefore
cpd(G) > cpd(Gi) + cpd(Gz) — 2 and hence
cpd(G) = cpd(Gy).

The following result gives the sharp upper and lower

partition dimension of unicyclic graphs provided by pounds for the connected partition dimension of an
Javaid are not tight. In this paper, we reconsider thejgentification graph of type-2.

unicyclic graphs in the context of connected partition

dimension and, together with some basic results, we_emma3.Let G = G[G;,G,,u,V] be an identification
provide modified sharp bounds for the connected partitiongraph of type-2. Then

dimension of unicyclic graphs.

2 Results

The following result gives the connected partition ProofLet cpd(G;) = k with connected

dimension of an identification graph of type-1.

max{cpd(G1),cpd(G2)} <cpd(G) < cpd(Gy)+cpd(Gy).
Moreover, both bounds are sharp.

resolving
partitions1; = {S$S,..., S} of V(G1) andcpd(Gy) =1
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with connected resolving partitiofl, = {U1,Us, ...
of V(Gy). Then,
= {817827"'530U17U25"'7U|}
resolving  partiton of V(G)
cpd(Gy) + cpd(Gy).
For the lower bound, there is no loss of generality in
assuming that melepd(Gy),
cpd(Gy)} cpdGy) = I Now,
cpd(G) #? max{cpd(G;),cpd(Gy)}, then cpd(G) <
which implies that a connected partition ¥{G;) with
the partite sets fewer than the partite setglpfresolves
all the vertices of5,, which is a contradiction. Hence

Uk

clearly,
is a connected
of  cardinality

if

cpd(G) = max{cpd(Gy),cpd(Gy)}-

0—Q

®)
®

®

Go

Fig. 1: G;: The complete grapK, andG,: The treeT.

For sharpness, consider the gra@sandG, shown
in Figurel, which are the complete grajpty and the tree
T, respectively. Also consider a path onn > 2 vertices
with an end verteyy and a starS; 1 with the vertexz
adjacent ton — 1 verticesz;,z,...,z,_1 each of degree
one. Then, note thatcpd(Gi) = 4, with connected
resolving partition {{u},{v},{w},{x}}; cpd(G;) = 3
with a connected resolving partition, say
{{1,2,3,4},{5,6},{7}}; cpd(P,) = 2 with a connected
resolving partition, say {{y},V(R) \ {y}} and
cpd(sin-1) = n— 1 with a connected resolving partition,
say {{zzn},{z},....{zn-1}} [17. Now, if
G = G[G1,Ph,x,y] and G' = G'[G2,S10-1,5,2 are the

identification graphs of type-2, then one can easily seaooted at u,.

that the connected partitiodgu}, {v}, {w}, {x} UV(P)}
and {{1,2,3,4},{5 = 26} {7} {21} {z},.... {z0-1}}

of V(G) and V(G'), respectively, are the minimal
connected resolving partitions, which implies that
cpd(G) 4 max{cpd(G1),cpd(Py)} and
cpd(G') = n+2=cpd(Gy) + cpd(Stn-1).

Let G be a unicyclic graph with unique cycle. Let
ug,Up,...,Ux be the vertices of at which the subtrees of
Garerooted. LeT}, T;, ... ,TA'i be the subtrees @ rooted
atu;, whereA; denotes the number of subtrees rooteg) at
ThenG is said to be unicyclic graph of type-1 if and only
if Aj =1 for everyi andT, = Tj is a path. Otherwis& is
unicyclic graph of type-2. The following result was proved

for the connected partition dimension of unicyclic graphs

of type-1in [11].

Theorem 3.[1]1] Let G be a unicyclic graph of type-1, then
cpd(G) =

The following definitions, given in3], will be used in

the proof of next results. A vertex of degree at least three

in a graphG will be called amajor vertexof G. An end
vertexu of G is said to be aerminal vertexof a major
vertexv of G if d(u,v) < d(u,w) for every other major
vertexw of G. Theterminal degreef a major vertex is
the number of terminal vertices @fA major vertex ofG is
anexterior major vertexf it has positive terminal degree.
Let 0(G) denotes the sum of the terminal degrees of the
major vertices ofG, and letex G) denotes the number of
exterior major vertices db.

Theorem 4.Let G be a unicyclic graph of type-2 with
unique cycle C of order n. Then

k A ) ) k
4<cpd(G) <3+ (o(TH)—exTH)+ T A,

22Ty,
where A; is the number of subtreesli,'ﬂ'zi,...,T/\ii of G
rooted at each vertex 1 < i < k < n) of the cycle C.

ProofFor the upper bound, first we assume that 1.
Then there aré; subtreesTll,Tzl,...,TAl1 of G rooted at
up. LetGl = GL[C, T2, us, v} be an identification graph of
type-2, wherev! is a vertex of degree one ifit. Then,
sincecpd(C) = 3 [17], we havecpd(G}) < 3+cpd(T{),
by Lemma 3. Let G} = G}[G, T} up,v3] be an
identification graph of type-2, whem% is a vertex of
degree one inT21. Then, again by Lemm&, we have
cpd(G3) < 3+ cpd(T) + cpd(T4). Now, by continuing

this identification process A times, if
G1 =Gt} [G}1 17T,\ ,ul,vA ] is an identification graph of

type 2, Where//\1 is a vertex of degree one 'I’}\ll Then,
A
cpd(GL) <3+ 3 cpd(TH), by Lemma3.
=1
For k = 2, there are\, subtreesTf,Tzz,...,T/\z2 of G
Let G2 = GZ[G} ,T2,Uz,v2] be an

identification graph of type-2, whemﬁ is a vertex of
degree one in T2, Then,

cpd(G?) <3+ 2 cpd(T!) +cpd(T), by Lemma3. Let

G5 = GZ[GZ,T2 ,uz,vg] be an identification graph of
type—2, wherevs is a vertex of degree one . Then,
again by Lemma 3, we have

A
cpd(G3) < 3+ zl cpd(T{) 4 cpd(T?) + cpd(TF). Now,

by contlnumg th|s identification process, times, if
62 = G/\ [G,\z_l,TA2 uz,v,\z] is an identification graph of

type 2, wherelﬁ2 is a vertex of degree one TF)\ZZ. Then,

2 A
cpd(G3,) < 3+ jlecpd(le) + jilc pd(T?), by Lemma3.
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Similarly, by continuing this process up to thikh
stage, leG = Gﬁk = GKk[Gﬁk*l’
T)\kk, uk,v‘;k] be an identification graph of type-2, Whei};—;

is a vertex of degree one inTAkk. Then,

k—1 A ) A1

cpd(G) <3+ 3 3 cpd(T))+ 3 cpd(Tf)+cpd(Ty),
i=1j=1 =1

by Lemma 3. This implies that

kA )
cpd(G) <3+ 3 3 cpd(Tj). Since for any tred which
iZ1j=1
is not a pathcpd(T) = o(T) —ex(T) + 1 [17], we have

k A

, ok
cpd(G) <3+ Z Zl(o(Tj') —ex(Tj))+ _Z)\i.
i=1]= i=

terminal vertices of;. For each with 1 <i < p, let Sj be
the stem fow; in T forall 1 < j <k; and Ietxij be a vertex

in S, that is adjacent to;. Then letP! be thex; — u} path

in gj for all 1 <i<pand 1< j < k. Let

U = {vi,u},u?,...,ul} and letT; be the subtree of of
smallest size such th@j containdJ. LetUp =V(T1) and
Uj=V(P) forall 1 <i< pand 2< j < k. Define a
partiton r of V(T) by
n= {UO,UJ! ; 1<i<pand2<j<k}. Then is
connected and resolving as was shownlid [It is noted
that the vertices in one class are separated by more than
one class. Le€ denotes the unique cycle h+ e and let
e=uvin T + e, whereu andv are two distinct vertices of
T. We consider the following two cases:

Case 1If C contains at least two major vertices, then the

For the lower bound, it is a routine exercise to see thatconnected resolving partitiofl for T is also a connected

cpd(G) < 4 would be possible only & is a unicycle graph
of type-1 orG is not a unicyclic graph.

We call a path of orden > 2 rooted at a (an exterior)
major vertex, say, in a treea stem of the tree for.\The
following is a useful proposition, and may be is of
independent interest.

Proposition 1.Let T be a tree which is not a path and e is
an edge. Thetil) o(T +e) > o(T) —2 and (2) exT +
e) <exT)+2

ProoflLet u andv be two distinct non-adjacent vertices of
T suchthae=uvin T +e.

(1) One can easily see that(T +e) = o(T) — 2 if and
only if uandv are the terminal vertices. Otherwisg(T +

e >o(T)-2.

(2) ltis straightforward to see tha(T +e) = exT)+2

if and only if u andv are the non-terminal (non-major)
vertices belonging to two different sterfes) for the same
exterior major vertex having at least three stems(lor
for two distinct exterior major vertices having at least two
stems. OtherwiseX(T +¢e) <ex(T)+ 1.

In [17], it was shown that
cpd(G) > og(G) — exG) + 1 for any non-trivial
connected grapl®. The next result shows that how the

resolving partition foiT +e. Socpd(T +e) < cpd(T).

Case 2.If C contains only one major vertex, saythen
there are two subcases.

Subcase 1df u andv belong to two different stems fog
then the connected resolving partitioh for T is also a
connected resolving partition forT + e So
cpd(T +e) <cpd(T).

Subcase 1blf u and v are the non-terminal vertices
belonging to the same stem farhaving at least three
vertices, then we define a new partition by putting any
vertex of that stem other than the major vertex in a new
class. This will be a connected resolving partitions for
T+e SocpdT+e) <|M|+1<cpdT)+ 1. Hence, by
summarizing all the above discission, we have

cpd(T)—4<cpdT+e) <cpdT)+1
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