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Abstract: In this paper, we establish explicit forms and new recureamrtations satisfied by the single and product moments df dua
generalized order statistics from Weibull gamma distitu{WGD). The results include as particular cases theioglatfor moments

of reversed order statistics and lower records. We presemacterizations of WGD based on (i) recurrence relatiosifgyle moments,

(i) truncated moments of certain function of the variabhe &ii) hazrad function.

Keywords: Dual generalized order statistics, lower records, singdenents, product moments, recurrence relations, Weibutinga
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1 Introduction

Generalized order statistics (gos) includes imporatantepts that have been used in statistical reseach suchiaargrd
order statistics and record values, séeHamps (1995)]. 3, Burkschat et al. (2003)] introduced the concept of dual
generalized order statistics (dgos) as a model of descgiydindered random variables.
Letne N,k > 1, me R, be the parameters such that
% =k+(n—-r)(m+1)>0, forall1<r<n.

Let X'(1,n,m,k), X'(2,n,mK),---,X'(n,n,m,k) be the dgos from an absolutely continuous distribution fiond=(—)
with density functionf (—), so, the joint probability density function (pdf) is

n—-1 n—-1
k - FOO)I™F06) | [F )] (xn), 1)
<JI:I1VJ> <i|1[ (%)] (m))[ ()] F0xn)

F L) >x>x > >%>F 0.

for

The marginal pdf of r-th dgo’ (r,n,m k) is

b emmio ) = s (FOO 105 (F ). @
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The joint pdf ofX’(r, n,m,k) andX'(s, n,mk), 1<r <s<n,x>yisexpressed from (1) as

fX’ (r,n,mk), X’ (sn,mk) (x.y)

- Fry O g F ()
x [hm (F () = hm(F ()] [F(y)]* ™ £(y), 3)
where "
r = [u texp—
/
Cr 1= HM?
m+17 m# -1
Inx =-1
and

gm(X) = hm(X) — hm(1), x € [0,1).

SinceX'(O, n,mk) — 0 thenX/(njL ILnmk)=0.1fm=0k=1, thenX’(r, n,m, k) reduces to th¢n—r + 1) —th
reversed order statisticS{{_r+1n) from the sampleXy, Xp,--- , X, and whenm= —1, thenX/(r,n,m, k) reduces to the
k-lower record valuel4, Pawlas and Szynal (2001)].

[12, Kumer (2011)] established moments of lower generalizatbiostatistics from Frechet-type extreme value
distribution and its characterization. Recurrence refetifor single and product moments of dual generalized order
statistics from the inverse Weibull distribution are dedwy [L4, Pawlas and Szynal (2001)IL1, Khan et al. (2008)],

[8, Khan and Kumer (2010)],9 Khan and Kumer (2011a)] and.(, Khan and Kumer (2011b)] have established
recurrence relations for moments of dual generlized ortiistics from exponentiated Weibull, Pareto, gamma and
generalized exponential distribution&, Rhsanullah (2004)] and2[ Athar and Faizan (2011)] characterized the uniform
and power function distributions based on distributionalperties of dual generalized order statistics, respelgtiy7,
Kamps (1998)] investigated the importance of recurrenizdioms of order statistics in characterization.

In this paper, explicit expressions for single and produotmants of dgos from Weibull gamma distribution are
established. Results for reversed order statistics andrlogcord values can be deduced as special cases. We present
characterizations of WGD based on (i) recurrence relatosingle moments, (ii) truncated moments of certain fuorcti
of the variable and (iii) hazrad function.

A random variable&X is said to have Weibull gamma distribution if its pdf giver by

—(B+1)
f(x) = CB X l{l+§x} Xx>0,¢ B, 8>0, @)
and corresponding cummulative distribution function jcdf
1 17"
F(x):l—[1+3x°] %> 0. ®)
See [L3, Molenberghs and Verbeke (2011)].
Therefore, from (4) and (5), we have
1 Prlrig+1 1
- = (u—1)c+1
F(x) B Bx+u;< y )5ulx f(x), (6)

wheref3 is a positive integer
Remark: Forc =1 andd = 1, the distribution reduced to standard Pareto distribution.
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2 Explicit Expression for Single Moments of dgos for WGD

We establish the explicit expression E)[Xj (r,n,m,K)]. Using (2), we have whem # —1

O

E{X (rnmk

\I

-5 O/ X (F(09)* () (F () . ™

By using binomial expansion, we can rewrite (7) as

0

E{xj(r,n,m,k)} mﬁ#gmr 1< ) |/XJ+C 1

0

1 \°R W (mD)i-1 1 1B+
1-— (1+ SXC> ‘| |:1+ SXC:| dX, (8)

X

using transformatiom=1— (1+ %XC)*B we get
1

E {xj (r,n,m,k)} (mg#mr 1< > /Zyr+ S

0
-1 ¢
X [(1—2) P 1} dz, 9)
and, after some simplifications, we arrive at

E {Xj (r,n,m, k)}

. 5%Cr—l le e r—1 (%a)(b) J iia
_mi;agot)zo( i )b! [vr+(m+1)ier]C(E""‘)(_l)+

. CCr 1 cle @ |ab)
= ) 2o o i+ (M DT (10)
where
(j—ca) N (’ﬁ )(Jga 1)...(b— 1+JE) b>0
cf3 1, b=0
and b j—ca r—1 Cj 1)+a
cian=g('57), (7 )edarv
Whenm= —1,
/ I Py a(;_ga)(b
E[x (r,n,—l,k)} = 5ok ZObZOC(E,a)(_l) i (11)

3 Recurrence relations for single moments of dgos from WGD

By using the following theorms ((3.1)-(3.3) below) given[itl, Khan et al. (2008)], we obtain new recurrence relations
for single moments of dgos from WGD as follows:
For2<r<nk=1,2,--

E {Xj (r,n,m, k)} —-E {Xj (r—1,n,m, k)}

_ —jC—1
yl(r)

[XHF 00 (F(9) dx (12)
0
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For2<r<nk=1,2,---
E[X (r—1nmk|-E[X (r-1n-1mK|]

MG [
= A= 0/ XL (F () ghy L (F() dx
For2<r<n k=1,2,---

E [Xj (r,n,m, k)} —-E [Xj (r—1n-— 1,m,k)}

i )
~wr(n O/X’ (F(x)¥ g 2 (F(x)) dx.

Relation 3.1 For WGD, 2<r<n,BeNandk=12,---
E [Xj (r—1,n,m, k)}

i B+l .

J B—l—l 1 j+(u-1)c
z ( )5u_1E [X (r,n,m, k)}

- By &\ U
+ [1+ L} E [x"' (rn.mk] .
Cy
Proof: From (6) and (12), we have
E [Xj (r,n,m, k)} —E [Xj(r—l,n,m,k)]

[ee]

:_JCrlijl wl
Byl J

x £ (x)gh * (F(x)) dx

—JCr 1
eyl

5 | [0 od ™ (F ) o
0

B+1 o
; ZZ <B + 1) 5u 1 \/XJJF(Ufl)C [F (X)]wfl f(X)g:T;]- (F(X))dx,] 7

and hence the result.

Relation 3.2 ForWGD, 2<r<n,BeNandk=1,2,---

E [x" (r— 1,n,m,k)} _E [x" (r—1,n— 1,m,k)}
~j(m+1) ;
= oy [E(X)(r,n,mk))

55,(0)%

Proof: Follows from (6) and (13).

E(XITU=De(r nm, k))] .

Relation 3.3 ForWGD, 2<r<n,feNandk=12---

E [Xj (r—1,n—1m, k)} — [1+ cLyl] E {Xj (r,n,m, k)}

LBl

T Bu s\ u

Proof : Follows from (6) and (14).

Frlrip+1\ 1
(u—1)c+1
w3 (7)) e

(13)

(14)

(15)

(16)

17)

(18)

(19)
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3.1 Remarks

(1) Form=0, k= 1in (15), we obtain a recurrence relation for single moménéwersed order statistics of the Weibull
gamma distribution in the form:

i . i1 +1 1 j+(u-1)c
E (XrJFrJrz:n) = m u; (B u ) 5u—1E (XrJF(rJrl):n)

+ [1+ m] E (Xoers1n)

(2) Form= —1, k= 1in (15), we get recurrence relation for single moment ofdovecord values from Weibull gamma
dustribution in the form:

j j Bt B+1 j+(u-1)c
E X y(n -1 } Z ( . )5u B 1)

i
+ [”E] E [xL(r)( 1, 1)} .
4 Explicit Expression for Product Moments of dgos of WGD

Employing (3) and the binomial expression, explicit exgpress for the product moments of dg¥$(r,n,m k) and
X! (s;n,mk),1 <r < s<ncan be obtained when+# —1 as

E {Xi (r,n,m k)X (s,;n,m, k)}

= ST TR T i)f( DL e

o 1 (M+1)(s—r+a—b)—1 —-(B+1)
<[t fimas 3o (1+5¢)  oax (20)
0
where (M+1)b-1
X _ g1 Yst(m+1)b— —
| 1 \B 1 1B+
X) = % / y-tet [1— (1+ 5y°> 1 [1+ 3y°] dy. (21)
0

Settingz=1— (1+ %yc)‘ﬁ and using binomial expansion for real numbers, we get

(J Cd)<>(_1)d (1—[1+%x0}—3)ys+<m+1)b+l

j
=Jc C 22
;m; Ys+ (M+1)b+1 (22)
Substituatind(x) above in (20), we obtain
E {Xi (r,n,mKk)X' (s,n,m, k)}
CBCS—15° r—1s—r—1 o ( )(_r_]_) J
_ C(=,d
S(m+1)s=2r (r aED bZO dzO (C’ :
(%)
% (_1)a+b+d )
= |;)|![Vs+(m+1)b+l]
0 . 1 73 Vs+(m+1)(s—r+a)+l—1 1 7(3“"1)
X/XI+C_1 1— <1+ SXC) |:1+ SXC:| dx. (23)
0
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LettingQ=1—(1+ %XC)_B, and after some simplifications, we arrive at
E [Xi (r,n,m, k)X’ (s,n,m, k)}

Co 15 ()) rlsirle @ @ @ /fr 1\ /s—r—1
~ (M+1)s2r(n)r(s—r) bZo == ( a >< b )

a=
o
_qyatbidt+hit ~ ) ! AU
x(=1) G I N i e m Do 1]
j—ch
( cp )(t)

et MiDG_r+ta) 114’ (24)
where .
(]—Ca) _JEREFE + (1 -1+ 57, 150
B/ 1, | =0,
and _
(j—Ca) B (%a)(%a—kl) (t 1+%a), t>0
cB /o |1, t=0,
Whenm= —1,
E [xi (r,n,—1,k)X (s, —1, k)}
B ks Y 1. 6] )
_mo/x {_m [1—(1+3x0) ” Fog 2090 (25)
where .
120 = [ YHINF (0~ InF I F W) fy)dy. (26)
0
Lettingz=InF(x) —InF(y), we have
o <) afa
2(x) = &¢ C(=,a)(-1)%( =
200 =3 5 5 olLal )(5)0)
I_(S—I’) k+1
W(F(X)) ; 27)
where
(3) _J@GE D (-14+5), 1>0
B/ |1, | =o0.
Substituatind2(x) above in (25) and simplifying, we arrive at
E [xi (r,n,—1,k)X (s n, 1, k)}
_ st s 53 3 ol ac by (1)
DI
a i—ch
" (5)(|>( B )(d) _ (28)
dl(k+1+d)" (k+1)
where _ _ _
(ﬂ:) &+ D). (d-1+58), d>0
cB /@ |1, d=0.
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5 Recurrence relations for product moments of dgos from WGD

By using Theorem 3 given byl[l, Khan et al. (2008)], we obtain new recurrence relationgpfoduct moments of dgos
from WGD as follows:
Relation 5.1 For WGD, 1<r <s<n—1 eNandk=1,2,---

E {Xi (r,n,m, k)Xj (s—1,n,m, k)}

p+1 |
+ {1+ CLVJ E [Xi (r,n,m k)X’ (s,n,m, k)} . (29)

Proof From the following relation11, Khan et al. (2008)],
E {Xi (r,n,mKk)X' (sn,m, k)} —E {Xi (r,n,mKk)X' (s—1,n,m, k)}

: B x
N _%//”yjl[F(X)]mf(X)qul[F(X)] ¢

x {hm([F (¥)] = hm[F (0] }*~~ [F (y)]* dydx,
and (6), Equation (29) is obtained.

6 Characterization

Characterizations of distributions are important to masearchers in the applied fields. An investigators will liallyi
interested to know if their model fits the requirements of gipalar distribution. To this end, one will depend on the
characterizations of this distribution which provide citiwths under which the underlying distribution is indeectth
particular distribution. Various characterizations adtdbutions have been established in many different doest In
this work, several characterizations of WGD are preseriikdse characterizations are based on: (i) recurrencéorelat
for single moments, (ii) truncated moments of certain figrcof the variable and (iii) hazard function.

6.1 Characterization of WGD based on a recurrence relation for single moments

Theorem 6.1.1.Let X be a non-negative random variable having an absolutelyraamis distribution functiofr (x) with
F(0) =0and O0< F(x) < 1 forallx> 0, then forB € N

. B+l
E[X/(r—1,nmKk)] = ﬁ i(ﬁjl) 5Ul,lE {XH(U_”C(E n,m, k)}
+ {1+l] E [X)(r,n,mk)] (31)

r
if and only if

1 1"
F(x)=1— {14— Exc} ,X=>0.

Proof The necessary part follows immediately from Equations (@) @ 2). On the other hand if the recurrence relation
in (31) is satisfied, then from (6), we have

o O/ X [F 0] ™ £ (X)gh 2 [F ()] cx

. [1+ l] % 0/ X1 [F (9] £ (x) gt L [F ()] dx. (32)
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Integrating the left hand side of Equation (32) by parts, weech

| = XJ Werf )9;{2 [F(X)] dx
=T
[ .
- vrrmo/ X OO g HF09] dx
G [ 1 .
+ NG o/ X THE O (0 gy L [F ()] dx, .
Gy PEL/BHIN 1T e
_kﬁwxm;;<u )&4!&”<”[H)wlm>%1[(ﬂm
L CLl r i w—1 r—1
gl T 0/ X F O] (0)ghy [F ()] dx,
which implies that
;?_r(rl) 0/ XL (O L gf L [F ()] o
B+1
c[ron-Ero0- 15 (21 ot o] o

Now applying a generalization of the Muntz-Szasz thedniHwang and Lin (1984)]

x, 1 ﬁ“(ﬁﬂ)

tB 2,

F(x)=1— [l+%x°] 73.

F(x)

X

(u 1)c+1]

from which we obtain

Remark 6.1.1. The above characterization is restrictedcee N. This restriction, however, will be removed in the
following two subsections.

6.2 Characterization based on truncated moments of functions of the random variable

In this subsection we employ a single functignof the random variabl& and characterize its distribution in terms of
the truncated moment af(X). The following propositions have already appeareddinHamedani (2013)] (Technical
Report, MSCS), so we will just state them here for the sakeofaeteness.

Proposition 6.2.1.Let X : Q — (a,b) be a continuous random variable wittf F . Let ¢/(x) be a differentiable
function on(a, b) with X|i_rT>1al,U(X) =1. Thenforé # 1,

E[WX) [ X>x =&Y(x), x€ (a,b),
if and only if

W) =(1-F(x) ™ xe (ab)

Proposition 6.2.2Let X : Q — (a,b) be a continuous random variable witlf F . Let;(x) be a differentiable function
on (a,b) with Iimbqjl(x) =1. Thenforé; # 1,
X—>

E[W(X) [ X <X =&1ya(x), x€ (a,b)
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if and only if
i
W) =(FX)a ', xe(ab)
Remarks 6.2.1.(a) Forg/(x) =1+ %xc, x € (0,00), Proposition 6.2.1 will give adf F(x) given by (5) foré = Ei_l, B#1

14
(b) For g (x) = {1 S } 0 x e (a,b),Proposition 6.2.2 will give adf F(x) given by (5).
We state below a more general characterization of WGD aralahrief proof for the sake of completeness.
Proposition 6.2.3. Let X : Q — (a,b) be a continuous random variable withf F . Let ¢/(x) andq(x) be two

differentiable functions 00, ) such thatff mm =o.Then
E[W(X)[X>X=q(x), a<x<h, (35)

implies

F(x):l—exp{—/ﬁ%dt},agxgb. (36)

Proof. If (35) holds, then
b
Jw010d = a1 F ).
X
Differentiating both sides of the above equation with respe X, we arrive at

(0 dm
T F® [ —wog) =X =P (37)

b /
Now, integrating (37) frona to x , we have, in view off W%dt = oo, acdf F given by (36).
a
B
Remarks 6.2.2. Taking, e.g.4/(x) = [1+ £x°] 2 andq(x) = 2y(x) for x € (0,), (36) givescdf of WGD. Clearly,
there are other appropriate pair of functiahsindq .

6.3 Characterization of WGD based on hazard function

For the sake of completeness, we state the following defmitih what follows, we assume, when necessary, thatdfur
is twice differentiable.

Definition 6.3.1. Let F be absolutely continuous distribution with the correspogddf f. The hazard function
corresponding t& is denoted by and is defined by

hp(x):lj(ili(zx),xe&lppF, (38)

whereSupp F is the support oF.
It is obvious that the hazard function of twice different@afunction satisfies the first order differential equation

he (X)
he (x)

whereq(x) is an appropriate integrable function. Although this diffetial equation has an obvious form since

o he

fx)  he(x)

for many univariate continuous distributions (39) seentsetthe only differential equation in terms of the hazard fiomc
The goal of the characterization based on hazard functimestablish a differential equation in terms of hazard fiomg
which has as simple form as possible and is not of the trigahf(39). For some general families of distributions this

~he(x) = 4%,

— he(x), (39)
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may not be possible. Here, we present a characterization@D\Wased on a nontrivial differential equation in terms of
the hazard function.

Proposition 6.3.1.Let X : Q — (0, ) be a continuous random variable. Tpaf of X is (4) if and only if itshg (X)
satisfies the differential equation

’ -1 CZB y2(c-1) -
he (X) — (c—1)x “hg(x) = Sz X [14— XC} , 0< X< oo, (40)

with initial condition L
Bty el

h () = £ [1+ 5x°] |

Proof: If X haspdf (4), then clearly (40) holds. Now, if (40) holds, then

2 -2
X (I () = (6= X he (%) =~ X {“ %X] ’

from which we have

d 2B 1..]°
—(c-1) _ c-1 +.C
ix {x hp(x)} 52 {1—# 6X} . (41)
Integrating both sides of (41) from to x , and using the initial condition o= (x) , we arrive at
fx) _Beafy, Ll -
hr (X) = T-Fx) 35X 1+ 5%

Now, integrating both sides of the last equation from @ tave obtain

1 1B
1-F(x) = {1+3xc] , x> 0.

7 Special cases

(1) Form=0, k=1 in (10), the explicit formula for single moments of revetseder statistics of the Weibull gamma
distribution can be obtained as:

0\-—

j—ca .
Crnzzzoz)b' EH—2+|+1]<r_1)(:(1751)(—1)”&, (42)

n!
(r—'(n—r)t"
(2) Form= —1,k=1in (11), we deduce the explicit expression for the momehimveer record values for the Weibull
gamma distribution as:
)
= b/ (v)

E X (n-11)] =5 ZO D bl (43)

(3) The product moments of reversed order statistics cartzred by takingn=0, k=1 in (24) as follows:

E(Xr{ r+1: n

where

Cr:n -
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E |:xfi‘lfr+l:nx’(j|*5+l:n:|
j—cd i—ch
5k r—1s— f lo © o o ( )( r—1> X(_1)a+b+d+l+h+tc(lC’d)c(:_:’h)( cB )(I)( cp )(U

— 5eli+ilg
o 20 b=0 dzOI%hEOtZ) b t
X ! (44)
[Nn—s+b+I1+1n—r+a+l+t+1)’
where
n!
Cron = (r—=i(s—r+1)!(n—9’
(4) The product moments of lower record values can be olddiggakingk = 1,m= —1 in (28) as follows:
E [ X,y (n~1,1)X, )(n, ~1,1)]
=0y 3 C(2,aC(2,b) (-1
a=0b=01=0d=0
a i—ch
(/3 (|)(C )(d) (45)
Nl (k+1+d)" (k+1)
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