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Abstract: In the present paper ,we study when a noncommutative pringeamd semiprime ringR admitting a generalized @)-
derivationF satisfying any one of the properties: BYX)F (y) +xy € Z(R) for all x,ye I. (ii) F(X)F (y) Fyx € Z(R) for all x,ye . (iii)
F(xy) —xoy € Z(R) for all x,ye I.
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1 Introduction non-zero central ideal,L.Oukhtite and S.Saji proved,
let R be a 2-torsion frees -prime ring and letd be a

Over last few decades, several authors have investigatg®n-zero derivation.Ifd(x),x| € Z(R) for all x & R thenR
IS commutative , where if a prime rirfghas an involution

the relationship between the commutativity of the rRg . ) R

and certain specific types of derivations Rf The first O 'thenRis said to beg-prime if

result in this direction is due to Posnel] who proved aRb = aRo(b) = 0 implies a = 0 or
that if R is a prime ring and a nonzero derivation oR b = 0.Obviously,every prime ring equipped with an
such that[D(x),x] € Z(R) for all x € R, then R is involution o is o-prime,the converse need not be true in
commutative. In 2] M.N Daif, proved that, letR be a  general.M.A.Chaudhry and Allah-Bakhsh Thahee®h [
semiprime ring and d a derivation & with d® # 0.If proved,leta,B be epimorphisms of a semiprime ririg)
[d(x),d(y)] = Ofor all x,y € RthenR contains a non-zero such that f is centralizing .If d is a commuting
central ideal.H.E.Bell and W.S.Martindal II1B] proved  (a,)-derivation ofR ,ther[x,y]d(u) = 0 = d(u)[x,y] for
that the center of semiprime ring contains no non-zeraall X,y,uc R; in particular,d mapsR into its center,where
nilpotent elements.M.N.Daif and H.E.Beld][ proved leta, 3 be mappings oRinto itself. An additive mapping
that,letR be a semiprime ring admitting a derivation d for d of R into itself is called an(a,B) -derivation if
which eitherxy + d(xy) = yx+d(yx) for all x,y € R or  d(xy) = a(x)(y) +d(x)B(y) for all x,ye RA number of

xy —d(xy) = yx — d(yx) for all x,ye R;then R is authors have studied the commutativity theorems in prime
commutative.V.DeFilippis §] proved that,wherR be a  and semiprime rings admitting derivation and generalized
prime ring letd a non-zero derivation oR ,Us#(0) a  derivation the notion of a generalized derivation of a ring
two-sided ideal oR, such thad([x,y]) = [x,y] for all x,y =~ was introduced by Biaf [10] and Hvala L1]. They have

€ U ,then R is commutative.A.H.Majeed and Mehsin studied some properties of such derivations. An additive
Jabel B],them gave some results as,Rtbe a 2-torsion mapping g of R into itself is called a generalized
free semiprime ring andJ a non-zero ideal ofRR derivation ofR, with associated derivatio, if there is a
admitting a non-zero derivation d satisfying  derivationd of R such thatg(xy) = g(x)y+ xd(y) for all
([d(x),d(y)]) = [xy] for all x,ye U .If d acts as a x,ye RChang [LZ] introduced the notion of a generalized
homomorphism, theR contains a non-zero central ideal. (a,f)-derivation of a ringR and investigated some
Mehsin JabelT] proved ,leR be a semiprime ring and properties of such derivations. leet3 be mappings oR

be a non-zero ideal oR.If R admits a generalized into itself. An additive mapping of R into itself is called
derivationD associated with a non-zero derivatidrsuch ~ a generalizeda, 3) -derivation of R, with associated
that D(xy) — xy €Z(R) for all x,ye U , thenR contains a  (a,f3) -derivationd, if there exists ar{a,3) -derivation
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0 of Rsuch thaig(xy) = g(x)a(y) + B(x)d(y) for all x,y

€ R. Obviously this notion covers the notion of a
generalized derivation (in cage = 8 = 1), notion of a
derivation (in casg = d,a = B = 1), notion of a left
centralizer (in cased = 0, a = 1), notion of
(a,B)-derivation (in caseg = d) and the notion of left
a-centralizer (in case = 0). Thus it is interesting to

Proof: By assumption,we have

F(xy) —xy € Z(R) for all x,y € |. This can be written
asF(x)y +©(x)d(y) — xy € Z(R). Replacing y by yz,we
obtain

F(X)yz+0(x)d(y)z+0(x)0(y)d(z) —xyz€ Z(R), (3.1)

investigate properties of this general notion. Recently, for all x,y,z& I Thus,in particular

Mehsin Jabel 13] proved some results concerning

generalized derivations on prime and semiprime rings.In

[(FOXy+0(x)d(y)e(xy)z+0(x)O(y)d(2),Z =0 (3.2)

this paper we shall study and investigate some resultgy, 4 x y,z€ | Using (3.1) and (3.2),we get

concerning a generalized(1,0) -derivation on
noncommutative prime rindR , where 1 is an identity
automorphism oR ,we give some results about that.

2 Preliminaries

Let R be an associative ring with identity and center ©

Z(R).A ring R is said to be prime (resp.semiprime)if
aRb = 0 implies that eithera = 0 or b =0
(respaRa = Oimplies that a = 0).A prime ring is

()0 (y)d(2),4 =0 (3.3)
for all x,y,z € | Replacing x by rx in the above expression
we obtain [O(r),70(x)O(y)d(zg = 0 for all
x,y,z € I,r € R Now replace y by ty, to get
[O(r),ZO0(x)O(ty) d(z) = 0 for all x,y,z€ | ,t € R. Since

is an automorphism of R ,then
[O(r),70(x)0(1)O(y)(d(2)) =0 for all x,y,z€ I.t € R.
That is, [O©(r),70X)tO(y)(d(z)) = 0 for all
xy,z€ l,t € R [O(r),Z0(X)RO(y)(d(z)) = (0) for all

semiprime but the converse is not true in general.For any,y,z € |I. Thus,the primeness a® yields that for each

Xy €R we shall write]x,y] = Xy — yxandxoy = xy + yx.An
additive mappingd : R — R is called a derivation if
d(xy) = d(x)y +xd(y) for all x,y € Rand is said to be
n-centralizing on U (respn-commuting on U),if
[X",d(x)] € Z(R) holds for all xe U(resp[x",d(x)] =0
holds for all xeU , where n be a positive integer. Also,an
additive mappingd : R — R is called a left (right)
centralizer if d(xy) = d(x)y(d(xy) = xd(y)) for all
X,y € RLet ®@,0© be endomorphisms BfAn additive
mappingd : R — R is called a ,0)-derivation if
d(xy) =d(x)@(y) + O(x)d(y) for all x,y € R .An additive
mapping F : R - R is called a generalized
(®,0)-derivation on R if there exists af(,@)-derivation
d: R— Rsuch thaf (xy) = F(x)®(y) + ©(x)d(y) for all
x,y € RWe shall call a generalized®(1)-derivation a

generalized ®-derivation, where 1 is the identity
automorphism  of R.Similarly a  generalized
(1,0)-derivation will be called a generalized

ze |, either [O(r),7 ©(x) =0 or O(y)d(z) = 0. Let
l1=z€1][O(r),6(x) =0, for all x € | andr € R and
I, =z€1|O(y)d(z) =0,for allx € |. Thenl, andl; are
two additive subgroups df whose union id. Therefore
eitherly =1 orly=1.1f I, =1 thenO(y)d(z) = O for all
y,z€ |. Replace y by [y,q] to geo(y),©(q)]d(z) = 0 for
all yzel,ge R Now replacing q by sq ,to get
[O(y),0(5q)]O(r)d(z) =0 for ally,ze€ |,q, s€ R. Since
] is an automorphism of R ,then
[O(y),0(s)0(q)]O(r)d(z) = 0 for all y,ze€ 1,q,s€ R
[O(y),0()]0(q)O(r)d(z) = 0 for all y,z€ I,q,s € R
Again since © is an automorphism of Rthen
[O(y),0(s)]gO(r)d(z) = 0 for all y,z € 1,q,s € R
i.e.[O(y),O(s)|Rd(z) = (0),for all y,z€ I,s € R Again
the primeness oR gives that eithef®(y),©(s)] = 0 or
d(z) = 0 for all y € I,s € R But according to our
hypothesisR is noncommutative.So,in the our hand
d(z) = 0 for all z€ I.,this implies thaid = 0 onR. Then

O-derivation. The following lemmas are necessary forfrom the main relation,we hav@ (x) — x)y € Z(R),which

this paper.

Lemma 2.1:[14:Lemma3.1] Let R be a semiprime ring
and a R some fixed element.If
a[x,y] = Oforallx,y € Rithen there exists an ided! of R
such that & U C Z(R) holds.

Lemma 2.2:[15,Lemma3] If a prime ring R contains a
nonzero commutative right idegthenR is commutative.

3 Themain results

Theorem 3.1: LetR be a noncommutative prime ring and
| a nonzero ideal oR.Suppose thad is an automorphism
ofRIf R admits a generalizedd-derivation F with
associate®-derivationd such thaf (xy) — xy € Z(R) for

all x,y € | ,thenF is commuting onl.

leads to[F (x),v] + [x,V]+ [y,v] =0 for all x,y € ve R
Replacing v and y by X, give (x),x] = 0 for all x € I.
Thus F is commuting onl,hence we get the required
result. One can note that IR admits a generalized
O-derivation F satisfying F(xy) + xy € Z(R) for all
X,y € l,then the generalize®-derivation (—F) also
satisfies(—F)(xy) —xy € Z(R) for all x,y € I. Hence in
view of Theorem 3.1 we conclude the following.
Corollary 3.2: Let R be a noncommutative prime ring
and | a nonzero ideal ofR. Suppose®© is an
automorphism of R If R admits a generalized®
-derivation F with associated®-derivation d such that
F(xy) +xy € Z(R) for all x,y € | ,thenF is commuting on
l.

Theorem 3.3: Let R be a noncommutative prime ring and
| a nonzero ideal oR. Suppos® is an automorphism of
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R. If F is a generalize®-derivation with associate®-
derivation d such thdt (xy) —yx € Z(R) for all x,y € | ,then

(Hd(R) =0. 1)
(i) F is left centralizer of .
Proof: (i)For anyx,y € |, we have= (xy) —yx € Z(R). This

can be written as (X)y + ©(x)d(y) —yx € Z(R) for all
X,y € |. Substituting xy for x,we obtain

F(X)yy+0(x)d(y)y+0(x)e(y)d(y)
forall x,y € I. In particular

[(F(¥)y+0(x)d(y)o(yx)y+0(x)e(y)d(y).y] = (()’3 5
forall x,y € . An application of (3.4) and (3.5) giveé

[©(x)O(y)d(y),y] =0 )

forallx,y € l,i.e.

O(x)e(y)[d(y),yI+oe([e(y),yld(y) +[O(x),y|e(y)d(y) ?3(;
for all x,y € I. Replacing x by z x in (3.6) and using
(3.6),we find that

[©(2),ylo(x)e(y)d(y) =0,

forall x,y,z€ |. Replacing x by x rin (3.7), we get
[0(2),y]0(x)O(r)O(y)d(y) =0forallx,y,ze l,r e R,
i.e. [0(2),y|JOo(x)RO(y)d(y) = (0) for all x,y,z€ |. Thus
the primeness of R gives that for each |, either
[©(2),y]0(x) =0 orO(y)d(y) =0 forally € I. The
sets y € | for which these two properties hold, are
additive subgroups of whose union isl. Then either
[©(2),y]0(x) = 0 or ©(y)d(y) = 0, for all x,y,z € I. If
O(y)d(y) =0, for all y € I, then linearization gives

-yxyeZ(R),
(3.4)

(3.7)

O(x)d(y) +0O(y)d(x) =0, (3.8)
forall x,y € I. Replace y by zy to get
O(x)d(2y+0(x)0(z)d(y) +O(2)0(y)d(x) =0 (3.9)

for all x,y € I. Comparing (3.8) and (3.9),we get
O(x)d(2y + O(x)©(2)d(y) — ©(200(x)d(y) = 0 for
allx,y,ze |. Thatis,

@(X)d(Z)yr+[@(X),@(Z)]d(y)“r[@(X%@(Z)]@(y)tig)lg)o
for all x,y,z€ I, r € R An application of (3.9) in(é.lO)
yields that

0(x),0(2)]e(y)d(r) =0

forallx,y,zel,reR

(3.11)

Now replacey by y st
[O(x),0(2)]6(y)0(s)d () Oforallxy,zelrseR
i.e.[0(x),0(2)]RIRd(r) = (0) forall x,ze I,r e R.

Thus the primeness &® with noncommutative, lead
to RIRd(r) = (0) for all r € R. By using the priemness of
R and| is nonzero ideal, we obtaid(r) = 0 for all r €
R. Thus,we haved(R) = 0. (ii)Since F is a generalized
O-derivation with associate@-derivationd,then by using
the fact® is an automorphism dR and result in (i) , we
get the required result.

Arguing as above we can prove the following.
Theorem 3.4: Let Rbe a noncommutative prime ring and
| a nonzero ideal oR.Suppos® is an automorphism of
R. If F is a generalize®-derivation with associate®-
derivation d is such that (xy) + yx € Z(R) for all x,y €
I,then
()d(R) =0 (ii) F is left centralizer of I.

Theorem 3.5:

Let R be a noncommutative prime ring and a
nonzero ideal oR. Suppos® is an automorphism & If
R admits a generalize®-derivation F with associated
nonzero®-derivationd such thatF (x)F (y) — xy € Z(R)
for all x,y € I, then eithed(R) = 0 or F is commuting of
l.

Proof: By assumption we havie(x)F (y) —xy € Z(R) for
all x,y € I. Replacing y by yr, we find tha(IF (X)F(y) —
xy)r +F(x)0(y)d(r) € Z(R),for all x,y € I.,r € R (3.12)
This implies that

[F(x)O(y)d(r),r] =0, (3.13)
forall x,y € I,r € R This can be rewritten as
F)[O(y)d(r).r|+[F(x),rje(y)d(r) =0  (3.14)

for all x,y € I,r € R. Substituting(@~1(F(x))) y for y in
(3.14) and using (3.13), we find that

[F(x),r]F (x)O(y)d(r) =0, (3.15)

for all x,y € I,r € R That is, [F(x),r][F(X)RO(y)d(r) =
(0). Thus for eaclr € R the primeness oR forces that
either

[F(x),r]F(x) = 0 or ©(y)d(r) = 0. The sets of all
r € R for which these two properties hold form additive
subgroups of R whose union isl|. Hence either
[F(x),r]F(x) = 0 or ©(y)d(r) = 0 for all x,y € | and
rer

If ©(y)d(r) = 0 then replace y by y s,to obtain
Oy)O(s)d(r) =0 for all y el andrs e R, ie.
O(y)Rd(r)=(0) for allr € Randy € I. Sincel is a nonzero
ideal of R andR is prime, the above relation yields that
d(r) = 0 for all r € R Thus, we getd(R) = 0. If
[F(x),r][F(x) =0 forallx e | andr € R. Substituting r by
s r and using this we find th#E (x), r]RF (x) = (0) for all
x € | andr € R. The primeness dR implies that for each

x €1, F(x) =0, which gives
[F(x),x =0forallxel.ie.F is commuting or. or
[F(x),r] =0 forallx e I,r € R This meaning, we get the

required result. Using the same arguments we can prove

the following.
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Theorem 3.6 : Let R be a noncommutative prime ring
andl a nonzero ideal oR. Suppos&® is an automorphism
of RIf R admits a generalize®-derivation F with
associate®-derivation d such thd (X)F (y) +xy € Z(R)
forall x,y € I, thend(R) = 0 orF is commuting ofl .
Theorem 3.7: Let R be a noncommutative semiprime ring
and | a nonzero ideal ofR. Suppose th@& is an
automorphism of R If R admits a generalized
O-derivationF with associated-derivationd such that
F(xy) —xoy € Z(R) for all x,y € l,then R contains
nonzero central ideal.

Proof: By assumption, we have(xy) —xoy € Z(R) for all

X,y € |. This can be written aB (x)y + ©(x)d(y) — xoy €
Z(R). Replacing y by y z, we obtain
F(X)yz+0(x)d(y)z+ 0 (x)O(y)d(2) —xoyz € Z(R),
(3.16)
for all x,y,z € |. Replacing x by xy in (3.16),we obtain
F(xy)yz+O(xy)d(y)z+ ©(xy)O(y)d(z) — xyoyz€ Z(R)
(3.17)
,forallxy,zel.
Then form (3.17),we get
(FOy) —xy)yz+ ©(xy)d(y)z+ O(xy)O(y)d(z) — y2xy €
Z(R),for all x,y,z € I. Then (F(xy) — xy — Xy + Xy)yz+

O(xy)d(y)z + ©(xy)0(y)d(2)

x.y,zel.
(FOy)

O (xy)e(y)d(2)

(F(xy) -

—yxy € Z(R), for all
— (xoy) + xyyz + O(y)d(y)z +
—yzxy € Z(R), forall x,y,z€ 1.
xy)d(y)z+ 0 (xy)@(y)d(2) —yay € Z(R),

(3.18)
forall x,y,z € |. SinceF (xy) — xoy € Z(R) for all x,y € I,
then from above equation(3.18) ,we arrived at

(x0y))yz-+Xyyz+ O(

yz(F(xy) — xy)d(y)z+O(xy)O(y)d(2) — yzxy € Z(R),

(3.19)
for all x,y,z € |. Subtracting (3.19) and(3.18),we obtain

(xay)) +xyyz+ O(

[F(xy) — (xoy),yz] =0 forallx,y,z€ . Then
[F(xy),yZ —[(x0y).yz =0 for alix,y,z€ I. [F(x)y+
O(x)d(y),yZ — [(xoy),yz] = 0forallx,y,z< |. Replacing y

and z by x,we gefF (X)x+ 0 (x)d(x), x|
I

=0forallx,y,ze

[F (x),]x+ 0 (X)[d(x), %] + [@(x),x7]d(x) = 0 (3.20)
forallxel.
From the relatiorF (xy) — xoy € Z( 2 for all x,yel,
after replacing r and y by x,we géf (x =0 for all

x € |. Replacing x byx? in above equatlon (3.20),with
using the relatioriF (x?),x?] = 0 for all x € I, we obtain
X2[d(x®), x| =0 (3.21)

forallxel.
Right-multiplying (3.21) by [s,t],we arrived to

Apply Lemma 2.1,we g& contains nonzero central ideal.
This meaning, we get the required result. By using the
result in Theorem(3.7) with apply Lemma(2.2),we can
prove the following theorem.

Theorem 3.8: Let Rbe a noncommutative prime ring ahd
anonzeroideal & Suppose tha® is an automorphism of
R.If Radmits a generalize@-derivationF with associated
O-derivation d such thdt (xy) —xoy € Z(R)forall x,y € 1,
thenRis commutative ring.
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