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Abstract: In this paper an exponential chain ratio cum dual to ratiovegbr has been considered for estimating population méan o
the study variate using two auxiliary variables under dewdaimpling procedure, when the information on another iaddit auxiliary
variate is available along with the main auxiliary varigiee asymptotically optimum estimators (AOE) are identifietivo different
cases with their biases and variances. The optimum valué® dirst and second phase sample sizes have been obtairted fored
cost of survey. Theoretical and empirical studies have bémn done to demonstrate the efficiency of the proposed astirwith
respect to strategies which utilized the information on awiliary variables..
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1 Introduction

The use of auxiliary variable in the estimation of populatinean of the study variate has been a common phenomenon
in sampling theory of surveys. Auxiliary information may toeitfully utilized either at planning stage or at desigags

or at the information stage to arrive at improved estimatnpared to those, not utilizing auxiliary information. The
ratio method introduced by6] has been widely used when the correlation between the ctesrander study and the
auxiliary charactex is positive. If this correlation is negative, a productestior envisaged bylp] and [L1] may be used
instead of a ratio estimator. The use of ratio and produatesiies in survey sampling solely depends upon the knowledg
of population mearX of the auxiliary charactex. In many situations of practical importance, the poputatizeanX is

not known before the start of a survey. In such a situatiom ugual thing to do is to estimate it by the sample mean —
based on a preliminary sample of sizeof whichnis a subsamplén < n;). If the population mea# of another auxiliary
variatez, closely related to study variayeis known, it is advisable to estima¥ by X = x;Z/z, which would provide
better estimate ok thanx; to the terms of orde@(n‘l) if pxCx/Cz>1/2.

[5] and [27] proposed a technique of chaining the available infornmatia auxiliary characteristics with the main
characteristic. 9], [10], [23] also proposed some chain type ratio and regression estimbased on two auxiliary
variables. Using proper information on parameters of @nyilvariate, R4], [25], [8], [20], [13], [14], [2] defined two
classes of estimators @ by using prior information on parameters of one of the twoiléary variables under double

sampling scheme.l] gave some chain ratio-type as well as chain product typenagirs ofs\f under two-phase
sampling schemel1p] worked on ratio cum dual to ratio estimato23 proposed a chain ratio and regression type
estimators for median estimation. Using known coefficidrikwtosis of second auxiliary variable in double sampling,
[21] defined a chain-type estimator of population variance.

Consider a finite populatiod = (U1,Us, ...,Un) of N units,y be the study variate;andz are two auxiliary variates.
Let X is not known, bu#, the population mean of another cheaper auxiliary varielosely related ta but compared
to x remotely relatede ty (i.e.pyx > py,) is available. In this case5] defined the chain ratio estimatgfc = _3‘)71251
wherex andy are the sample meansxandy respectively based on the sample sizsut of the populatiomN units and
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x1=(1/ng) Ei”ilxi andz; = (1/m) i”ilz; denote the sample means basedhor n units of the auxiliary variatesand
i Using the transformatioxf = (NX—nx)/(N=n),i=1,23,...,N, [26] obtained dual to ratio estimator as
. xe
YR= yY
wherex? = (NX —nx) / (N—n).

[3] suggested the exponential ratio type estimator

X —
YRe_yexp(X_FA)

and the exponential product type estimator

X—X
Ype— yexp( +X>

for the population mea¥t

[22] suggested the modified exponential ratio and product estirs forY in double sampling respectively as

+ )
Yremd = YEX X—X
PeMd = YEXP X
[19] suggested exponential ratio cum dual to ratio estimatdomble sampling as
t =y< aex )G_— + Bex %
- P\rx P x*d+x

wherex™ = (14 ¢')x; — g’Xandg' =
[17] suggested exponential cha|n rat|o and product estimatwisr double sampling scheme as

xlé —X
= yexp| —2—
Xlz +X
il
~ X—X1
yexp( Zzl>
X+ X1 <

[18] again utililized the above estimators to a class of exptinknhain ratio-product type estimator in double

sampling scheme as
x_lél —X x—leZ1
Yde.= v |aexp > + Bexp
Xlz—f1 +X X-|-X1Z

wherea andf3 are unknown constants such tlat- 8 = 1

Motivated by fL9] and [18], we have proposed an exponential chain ratio cum dual fo egtimator in double
sampling for estimating finite population medhusing two auxiliary characters. The properties of the psepgo
estimator are studied in two cases. Numerical illustratiare also shown in support of the present study.

x|
x

?ReMd =yex P(

x|

x|

x
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2 The Proposed Estimator

In the use of two auxiliary variablesandz, we consider the population meXnas unknown and the population mean
Z of second auxiliary variable which has a positive correlation witt{i.e. px, > 0) as known. Further we assume that
Pyx > Pyz > 0. Letxy andz; be the sample meanswandzrespectively based on a priliminary sample sizerawn with
simple random sampling without replacement(SRSWOR)esisain order to get an estimate ¥f Then the proposed
estimator for estimatiny is

YRIR=Jlaly + (1 a)ly] (1)

wherea is unknown constant to be determined,
- M7 %
Iy = Y3 = exp| Z2——
Re P 2Z+X

vdc
IZZYEdR: exp| ——=——

and

To obtain the bias and MSE SRIR we write
o=-Y)/Y, ee=(X-X)/X, &=(4-X)/Xandes=(a-2)/Z

Expressind(RSRin terms ofe's, we have

YRIR=yTar (14 wi) + (1— o) (1+Wp)]
=Y (1+ep) [1+ W2+ a (Wy — Wo)]
=Y [1+eo+Wi + aWy)

YRIR Y =Y [ep + Wi + Vb 2)
where
1
wy =5 (4ep — der — des+36f — €5+ 365 — €167+ €163 — 26,63)
1
W, =2 (4ge; — 4ges — 4ge, — 6°f — g (4+0)& — 9’65 — 292+ g)eres+
29(2+9g)eier+29(2+g) exe3)
1
Wi =5 (4ge; — 4ges — 4ge — 0°el —g(4+0)6 —g°e5 — 29 (2+ Q) eres+
29(2+9)erex+29(2+ g) exes + 4geper — 4gepes — 4geper )
1
Wo=2(4(1-gle-4(1-ge-4(l-glet+ (3+0) &~ (1-4g-¢) &+
(3+0%) & — (2+49+20%) erer + (2+ 49+ 20°) eres — (2-+ 49+ 20%) exes+
4(1-g)eoer —4(1—g)epes —4(1—g)epey)
n
g_N—n

To find the bias and MSE d@gR, the following notations are used

C=S/Y° Ci=S/X* CI=5/Z% px=Sx/SS¢ Ppz=S5:/SS
,DZX:S(Z/SZS(

(© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

40 NS 2 B. K. Singh et. al. : Exponential Chain Ratio Cum Dual to R&stimator...

where

The following two cases will be considered separately:

Case I When the second phase sample of sizea subsample of the first phase of sige

Case II: When the second phase sample of sizedrawn independently of the first phase sample of size
The case where the second sample is drawn independently fifshwas considered by

3 Case |
3.1 Bias, MSE and Optimum of {?ggR}l

In case |, we have

E (e0) = E (e1) = E(e2) = E(e3) =0, E(e%)=1;nf03a E (&) :1;nfcf

1—f 1—f 1—f
E(&) = =570k E() = G Elme) = kG
E (ees) = oK Ch Eoes) = T KCE E(eres) = o
E (es63) = 1;1f1 KalCZ,  E(ez63) = 1;1f1 KxC2 ©)

wheref = f, f1 = §. K= 2%, Ky = 265 andicg = B2

Taking expectations in2j and using results from3f, we get the bias of the estimatt;,?gR to the first order of
approximation as

B(\?ggR)l :Vé My — My + a (Mg + My)] @)

where

_1—f* > o 4
My = o gCX<1+gny>

1 f*
Mz = . CZ{3+¢°—4(1-g)Ky}
1-f;

M= S2CE{ (3+ ) ~4(1- g K}

wheref* = .
Again from @), we have

VRIR_ v _ v 9 9. 9 l-g 1-g 1-g
Ye¢"-Y =Y |eo+ 3 Jes 2e1+a< 5 &5 & e (5)
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_Squaring both the sides ib) taking expectations and using the results fr@n e obtain the MSE of the estimator
YRIRto the first order of approximations, as

1—f 1-g)%a?
MSE(\?ggR)l = Y2 (—n)c§+N1+N2+(1_g)a(N3+N4)+%N5 (6)
where
A-f)P2(, 9
(-1 o 2 g
No = o 5 (144
_(A=f)g9~2(,_ 2
_(A-f)g2(,_ 2
Ny = n 2CZ 1 gKyZ
1-—f* 1-f
oo A=) (-f)
n Ny
The MSE of¥R¢Ris minimum when
2 N3+Ng
=—— =q sa 7
(1_9) N5 opt ( ” ( )
Substituting the the value of)in (1) yields the 'asymptotically optimum estimator’ (AOE) as
vRdR v .
{YEC }I(Opt)_Y[al(opt)|l+(1 O (opt)) I2]

Thus, the resulting MSE o{@gR}l( . is given by
op

1—f N 2
MSE{\?EgR} — Y2 (—n)c3+N1+ N, — %

I(opt)

(8)

Remarks:
1. Fora =1the estimaton{YggR} in (1) boils down to the exponentional chain ratio estimafgf suggested byl[7]

in double sampling. The bias and MSE\?ﬁg can be obtained by putting = 1 in (4) and 6) respectively as

ofit) ¥[8 3 ) ()G )

MSE{?gg}I =2 [(%)C&—F (1_nf*> %3(1—4ny)
N (1— f1> ¢ (1_4ny)} 9)

ny 4

and

2. Fora =0, the estimaton{@gR} in (1) reduces to the exponential chain dual to ratio estim‘gg@;{ in double

sampling. The bias and MSE ®£S., can be obtained by puting = 0 in (4) and @) respectively as
pling dR y puting p y

B(?éng)l = —g [B1+ By
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where
o (5) (3.
oo (B et (1 5s)
and
MSE(\?ggR)I v Kl;nf>C§+Nl+Nz] (10)

4 Efficiency Comparisons in Case |

4.1 Comparison with sample mean per unit estimator

The variance of usual unbiased estimats given by

V()= (%f) o (11)
From (11) and @), we have

V(y) - MSE{\?EgR} S_— >0 12)

. 2
if Np+No < 7(N3E2‘4)

4.2 Comparison with chain ratio estimatfﬁ;lgjc

The MSE of chain ratio estimattﬁgC suggested bghand (1975) in double sampling is given by

MSE(\?S°)| =Y? [(%) C2+ (%) C2(1— 2Ky +

1-f
<—1> c2(1— 2Kyz)} (13)
n
From (13) and @), we have
Sdc) SRdR v  (Ng+Ng)?
MSE(YR )I MSE{YEC }Nopt) =V? | Kit Ko — 2= | >0 (14)
it Ky K > e
where
1—f i
o= (50 fer () - -amec]
1-f 2
o= (S {2 (1-§ ) - e ot
Ny 4
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4.3 Comparison with chain linear regression estima\?@g

The MSE of chain regression estima@g =Y+ byx[x1+ bx2(Z—71) — X,
wherebyy andby; are the regression coefficientsyodn x andx on z respectively suggested by( is given by

MSE(75) = V2 Kl;nf> (C-K2C2) + (1;1“) (K2C2+
KyxKxC2 (KyxKxz — 2Ky2)) |

(15)

(16)

From (15) and @), we have
2
(N3 +Ny) -0

vac) vRdR _ V2 .
MSE(Yreg)I MSE{YEC }I(opt) % [Kg Ka+No+ =2

2
if Kg+Np+ Pl > i,

where
K3 = nl {nyszCZ (KyXKXZ - 2Kyz)}

() (G ne)

4.4 Comparison with exponential chain ratio estimi—?@ﬁ

From () and 8), we have

Sde| SRR (N3 +Ns)
MSE{YRe}l MSE{YEC }l(opt) >0 (17)

—Y?2 [K5+K6+7
Ns

if Ks,Kg,Ns > 0 where

n 4

o= (20 [T g - vmoe)
o= (ST e - vpoe)

Ny 4

4.5 Comparison with chain dual to ratio estima@g{’

The MSE of chain dual to ratio estima@’g is given by

1

MSE(\Z;’FQ)I = Y2 l(% (18)

N 2
>C§+L1+Lz+%

wherel = (£51) 6 (L 86) - Lo = (%51) 2 (1 )
From (18) and @), we have
MSE(%"F%)I - MSE{\?EgR

2
(N3 +Ny) (19)

L3+Lg+ —~—2 0
3+Lg+ N >

} %

I(opt)

if L37 L47 Ns > 0,
where
1-—f* 3
(55 (Gez- o)

Ly =
3 n

(157) (Goct-mscn)

n

Ls=
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4.6 Comparison with exponential chain dual to ratio estion Lng

From @0) and @), we have

2
A_dC . LRdR o —2(N3+N4)
MSE(YEdR)I MSE{YEC }|(0P0 =Y TN >0 (20)

if N5 >0
Now, we state the following theorem

5 Theoreml

To the first degree of approximation, the proposed stratagguthe optimality condition), is always more efficient than
v V7 v vz v » N3+Ng)2.
V (), MSE(Yg°) , MSE(V5) \MSE{¥ge|  MSE(Yg) andMSE(YE5s) under the conditions +N; < Mgl

2 2
Ky + Ko > Mol g 1 Np + (6N Ky Ks,Ke,Ns > 0; L, La,Ns > 05 and Ns > 0.

6 Case Il

6.1 Bias, MSE and Optimum of {\?ER(‘;’R}”

In this case Il, we have

E () = E(e1) = E(e) = E(e5) =0, E() =",

E(ef) = oGk E(e - TG E(e) =Tk

E (ege1) = 1;anyxC>%a E (e283) = 1;1f1 KylCZ,

E (e0€2) = E (eos) = E (e162) =E(&163) =0 (21)

Taking expectations in2f and using the results o), we get the bias of{@gR}” upto the first order of
approximations as

B{\?ggR}“ - g [—M'l+ M+ a (M;+M;)} (22)
where
()4
M; = (1;1“) {94+t + 07— 29(2+ 9 KulCE }
v = (20) {3+ )G -a-9cE)

M, = (1;1“) [(3+8)C2~ (1-49- ¢7) CF — (2+4g+209) K2 |

Squaring both the sides i) taking the expectations and using the result24aY,(we obtain the MSE of the estimator
{YggR}” to the first order of approximations as

MSE{ &R} = V2 Ki) G2+ Ny +No+ (1 - g (N +Ny) +

f
n
<1;9>2a2{(1;f)c3+wg}

(23)

(@© 2015 NSP
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where

/ —f 2

(0 (e e S
/ 1-f 2

Ny = (T) (%Cf—gnyCf>
/ —f

- (5) e
/ —f

N, = (1n1 1) (5c2+3c2 - grac?)
/ —f

Ng = (1n1 1) (C2+c2-2ka))

Differentiation of £3) with respect tax yields its optimum value as

2 N;+ N,
= <1—9> <(1;nf3C§jLNé> =Qjiopy (SAY (24)

Thus, the resulting optimum MSE @SR}” is given by

, N 2
MSE{\?ESR}”(OPU:VZ (1;nf>C§+N'l+N'2— ((N3+N4) (25)

1—f /
T)C§+N5

Remarks: 1. Fora =1, the esumatoﬁ’E RdRjn (1) boils down to the exponential chain ratio estlmat’@g [17] in
double sampling. Thus, puttirg= 1 in (23), we get the MSE ovgg to the first degree of approximation as

TG RETC R

2. Fora=0,the estimato{?gc‘m} in (1) reduces to the exponential chain dual to ratio estim‘gg@;{ in double

sampling. The MSE o‘?Eng can be obtained by puting = 0 in (23) respectively as

MSE(\?gg)”

wse(¥esy), 72 |1 (q+ Lok ) + f% %L a&ﬂ (27)

7 Efficiency Comparisons in Case Il

7.1 Comparison with sample mean per unit estimgtor

The variance of usual unbiased estimata given by

1-f
V®:(ﬁ¢)® (28)
From equationZ8) and 5), we have
V (y) — MSE{ YRS Ny + N 7(Né+N‘,‘) 0 29
(37)_ {EC }Il(opt) ( 1t 2)+ %C%—FN& ~ (29)
(N'+N’ 2
3TNy ’ /
g > (M)
(© 2015 NSP
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7.2 Comparison with chain ratio estimat%??ﬁ‘c}“

The MSE of chain ratio estimat r\?g°}|| in double sampling is given by

. 1-—f 1—f
MSE{YSC}” — Y2 [T (C24+C2(1-2Ky) + - ! (c§+c§(1—2sz))}
From equation30) and £5), we have
" " 2
N; +N
Sdcl SRAR v ( 3 4)
MSE{YR }” MSE{YEC }Il(opt)_Y Ky +Kp+ < )

if Ky, K, K3 > 0, where

() (oS (T
K;={<%+n—1l>c3+n—1lc§(1—zr<xz>}

7.3 Comparison with chain linear regression estima{&;‘é@}”

The MSE of the chain linear regression estima{tg,fgg}” in double sampling suggested 8} [s given by

-~ — [1—f 1-11
MSE{¥g| =2 {T (G —K3G) + =1 K (C - Kfchz)}
From equationd2) and £5), we have
/ ! 2
N; +N
Sde| “RAR e |-f e (3 4)
MSE{Ys| —MSE{¥ES }H(opt)_v S R

if K3, K5 > 0 andK, < 0

7.4 Comparison with exponential chain ratio estima{d?gg}

From equationZ6) and @5), we have

, N 2
o), (e, - |- (eor)- |
3

o2
- (NG+N
if ( o A > Kg + K5, where
3

>0

(30)

(31)

(32)

(33)

(34)

(@© 2015 NSP
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7.5 Comparison with chain dual to ratio estimat{)%dg}”

The MSE of chain dual to ratio estimat@?&’g}” is given by

MSE{\Z;’Fg}” =2 [1;nfc5+ 1;nfgch (1_ gny> L 1zh {92c3+gzc§ (1_ SKXZ) H (35)

n
From equation35) and @5), we have

!

|\/|SE{§Z§’F§}”—l\/ls;E{\?EF%*R}”(Om:Y7 Kg+K§+% ) (36)

if Kg, Kg,Kg > 0, where
/ 1-f)\3 4
Ke=(—)2g?C2(1- —K
o= (5wt (1 )

o= (15,2 3 Hct -2}

n

7.6 Comparison with exponential chain dual to ratio estimaﬁ\?Eng}”

From equationZ7) and @5), we have

, N2
MSE{\?E"C‘,’R}”—MSE{\?ESR}”(OF)U:VZ (N3+K7N4) >0 (37)
3

if Kg >0

8 Theorem Il

To the first order of approximations, the proposed strategleuoptimality conditionZ4) is always more efficient than
vV (¥), MSE(YFg‘C)”,
Y
- . . . Ny+N
dc dc dc dc it 3 4)
MSE(Yreg)” , MSE{YRE}” , MSE(YdR)” andMSE(YEdR)” under the conditions -

(N§+N;)2

7
K3

> (N4 N, ) s K, K Ky >

0; Ky, Kg > 0andK;, < 0; > Kg + K5; K, Kg, Kg > 0; andKg > 0.

9 Cost aspect

The different estimators reported in this paper have so éanlzompared with respect to their variances. In practical
applications, the cost aspect should also be taken intcuatcim the literature, therefore, convention is to fix th&ato
cost of the survey and then to find optimum sizes of prilimyreand final samples so that the variance of the estimator is
minimized. In most of the practical situations, total casailinear function of samples selected at first and secorgkegha

In this section, we shall consider the cost of the survey amttfie optimum sizes of the preliminary and second-phase
samples in Case | and Case |l separately.
Case I When we use one auxiliary variatghen the cost function is given = nC; + n;C,, whereC, C; andC; are

(© 2015 NSP
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the total cost, cost per unit of collecting information oe #tudy variate and the cost per unit of collecting information
on the auxiliary variate respectively of the survey.

When we use additional auxiliary variatéo estimaté?EgR, then the cost function is given by
C=nC +n1(C+C3) (38)

whereCs is the cost per unit collecting information on auxiliary ede z.
Ignoring FPC, the MSE ofRdRin (6) can be expressed as
1 1
MSE{?EgR} = Vit =V,
| n ny

2

2 2 _ —q)2
Vo= ~§CE (1K) +§CF (1 §Ke) — S2%aCE (1 2Kye) + B850 (C2-C) + §CE (1K)
It is assumed that; > C, > Cs. The optimum values af andn; for fixed costC = Cy which minimizes the MSE of
YRIRin (6) under cost function are given by

Co/M1/C1
VWG + V2 (G +G)

— Co/V2/(C2+C3)
P WG+ Wa /G 1 Cy

Thus the resulting MSE O?ERgRis given by

MSE{\?EgR}

Nopt =

1 2
om0 = G {\/vlcl + B (Cart c3)} (39)

If all the resources were diverted towards the study vayiately, then we would have optimum sample size as below
n“ = C/Cl

Thus, the variance of sample meafor a given fixed cost = Cy in case of large population is given by

Vo (9] = &S (40)

From (39 and @0), the proposed sampling strategy would be profitable asdsng

MSE{ &R} < Vo (7]

or equivalently,

“a <[]

Case II: We assume that measured om units, andx andz are measured omy units. We consider a simple cost
function

C=nCi+m (Cp+C3) (41)

whereC, andC; denote cost per unit of observingindz values respectively.
The MSE of{YERgR}” in (23) can be written as

VRARl _ } i
MSE{VES }” = Vit Vs (42)

(@© 2015 NSP
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whereV; = {9742 + U9, —<1_49)2 az} {C24+C2(1-2Kyp) }
To obtain the optimum allocation of sample between phasesafdixed costC = Cy, we minimized 23) with
condition @1). It is easily found that this minimum is attained for

oot — Co/V1/C1
opt =
WWICL +4/V2 (C5 4 Cy)
Coy/Va/ (C+Cy)

VVICL + V2, /Cy 4+ Cy

Thus, the optimum MSE corresponding to these optimum valtiesandn; are given by

MSE{\?RdR}”(Opt {J\E+ Vo (cz+q)} (43)

From @0) and @3), it is obtained that the proposed estimaf’égRyields less variance than that of sample mgéar the
same fixed cost if

Niopt =

o

10 Empirical Study

To examine the merits of the proposed estimator, we havddenes! three natural population data sets. The description
of the population are given as follows:
Population 1[7]
Y: Number of placebo children
X: Number of paralytic polio cases in the placebo group.
Z: Number of paralytic polio cases in the notinoculated gsoup
N=234,n=15 ms5 Y =492, X =259, Z =291, pyx = 0.7326, py; = 0.6430, py; = O.6837,C§ = 1.0248,
C2=1.5175,C2 = 1.1492

Population 11:[27]
Y:Apples trees of bearing age in 1964.
X:Bushels of apples harvested in 1964.
Z:Bushels of apples harvested in 1959.
N = 200, n = 20, n; = 30, Y = 0.103182X10%, X = 0.293458 10", Z = 0.36514X 10* pyx = 0.93, p,; = 0.77,
pxz=0.84, Cy 2.55280,C2 = 4.02504,C2 = 2.09379

Population Il [12]
Y:Area under wheat in 1964.
X:Area under wheat in 1963.
Z: Cultivated area in 1961.
N=34,n=7,n; = 10,Y = 19944 acre X = 20889acreZ = 747.59 acre pyx = 0.9801,py, = 0.9043,px, = 0.9097,
Cy 0.5673 Cf 0.5191 CZ2 0.3527
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Table 1: Percent relative efficiencies of different estimatorstw.r.

Estimators | Population || Population Il | Population 11l
Case |
y 100 100 100
{Ygey, 136.91 279.93 730.78
{Ydey, 185.53 326.33 778.93
Yoy, 184.35 150.97 259.55
{vsiey 174.26 * *
{YSSh 136.82 * 102.30
{YBIRY opt 230.17 322.94 763.29
Case ll
y 100 100 100
{Ydey * 182.67 730.78
ey 162.83 338.50 701.87
Yoy, 207.03 574.91 454.36
{Ydey, * 130.93 171.75
e * 113.69 130.42
{\?ggR}”(Opt) 196.16 362.61 735.15

* Data is not applicable

11 Conclusion

Tablel clearly indicates that there is a substantial gaiefi'miency by using the proposed estima@"cR over the
conventional estimatay, TYS¢}, {Yrgg} {Ygg} (Y41 and{YZS.} in both the cases with respect to all sets of data except
Y,‘ég for population Il and Il in Case | amqgcmr population I and Il in case II.
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