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Abstract: In this paper an exponential chain ratio cum dual to ratio estimator has been considered for estimating population mean of
the study variate using two auxiliary variables under double sampling procedure, when the information on another additional auxiliary
variate is available along with the main auxiliary variate.The asymptotically optimum estimators (AOE) are identifiedin two different
cases with their biases and variances. The optimum values ofthe first and second phase sample sizes have been obtained forthe fixed
cost of survey. Theoretical and empirical studies have alsobeen done to demonstrate the efficiency of the proposed estimator with
respect to strategies which utilized the information on twoauxiliary variables..
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1 Introduction

The use of auxiliary variable in the estimation of population mean of the study variate has been a common phenomenon
in sampling theory of surveys. Auxiliary information may befruitfully utilized either at planning stage or at design stage
or at the information stage to arrive at improved estimator compared to those, not utilizing auxiliary information. The
ratio method introduced by [6] has been widely used when the correlation between the character under studyy and the
auxiliary characterx is positive. If this correlation is negative, a product estimator envisaged by [15] and [11] may be used
instead of a ratio estimator. The use of ratio and product strategies in survey sampling solely depends upon the knowledge
of population mean̄X of the auxiliary characterx. In many situations of practical importance, the population meanX̄ is
not known before the start of a survey. In such a situation, the usual thing to do is to estimate it by the sample mean ¯x1
based on a preliminary sample of sizen1 of whichn is a subsample(n< n1). If the population mean̄Z of another auxiliary
variatez, closely related to study variatey is known, it is advisable to estimatēX by X̄ = x̄1Z̄/z̄1, which would provide
better estimate of̄X than ¯x1 to the terms of orderO(n−1) if ρxzCx/Cz > 1/2.

[5] and [27] proposed a technique of chaining the available information on auxiliary characteristics with the main
characteristic. [9], [10], [23] also proposed some chain type ratio and regression estimators based on two auxiliary
variables. Using proper information on parameters of auxiliary variate, [24], [25], [8], [20], [13], [14], [2] defined two
classes of estimators ofS2

y by using prior information on parameters of one of the two auxiliary variables under double
sampling scheme. [1] gave some chain ratio-type as well as chain product type estimators of S2

y under two-phase
sampling scheme. [16] worked on ratio cum dual to ratio estimator. [23] proposed a chain ratio and regression type
estimators for median estimation. Using known coefficient of kurtosis of second auxiliary variable in double sampling,
[21] defined a chain-type estimator of population variance.

Consider a finite populationU = (U1,U2, ...,UN) of N units,y be the study variate,x andz are two auxiliary variates.
Let X̄ is not known, but̄Z, the population mean of another cheaper auxiliary variatez is closely related tox but compared
to x remotely relatede toy (i.e.ρyx > ρyz) is available. In this case, [5] defined the chain ratio estimator ¯ydc

R = ȳ x̄1
x̄

Z̄
z̄1

,
wherex̄ andȳ are the sample means ofx andy respectively based on the sample sizen out of the populationN units and
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x̄1 = (1/n1)∑n1
i=1xi and ¯z1 = (1/n1)∑n1

i=1zi denote the sample means based onn1 > n units of the auxiliary variatesx and
z.

Using the transformation ¯xσ
i = (NX̄−nxi)/(N−n), i = 1,2,3, ...,N, [26] obtained dual to ratio estimator as

ȳR = ȳ
x̄σ

X̄

wherex̄σ = (NX̄−nx̄)/(N−n).

[3] suggested the exponential ratio type estimator

ˆ̄YRe= ȳexp

(

X̄− x̄
X̄+ x̄

)

and the exponential product type estimator

ˆ̄YPe= ȳexp

(

x̄− X̄
x̄+ X̄

)

for the population mean̄Y

[22] suggested the modified exponential ratio and product estimators forȲ in double sampling respectively as

ˆ̄YReMd= ȳexp

(

x̄
′ − x̄

x̄′ + x̄

)

ˆ̄YPeMd= ȳexp

(

x̄− x̄
′

x̄+ x̄′

)

[19] suggested exponential ratio cum dual to ratio estimator indouble sampling as

t = ȳ

{

αexp

(

x̄1− x̄
x̄1+ x̄

)

+βexp

(

x̄∗d − x̄1

x̄∗d + x̄1

)}

wherex̄∗d = (1+g′) x̄1−g′x̄ andg′ = n
n1−n

[17] suggested exponential chain ratio and product estimatorsunder double sampling scheme as

ˆ̄Ydc
Re = ȳexp

(

x̄1
Z̄
z̄1
− x̄

x̄1
Z̄
z̄1
+ x̄

)

ˆ̄Ydc
Pe = ȳexp

(

x̄− x̄1
Z̄
z̄1

x̄+ x̄1
Z̄
z̄1

)

[18] again utililized the above estimators to a class of exponential chain ratio-product type estimator in double
sampling scheme as

ˆ̄Ydc
RPe= ȳ

[

αexp

(

x̄1
Z̄
z̄1
− x̄

x̄1
Z̄
z̄1
+ x̄

)

+βexp

(

x̄− x̄1
Z̄
z̄1

x̄+ x̄1
Z̄
z̄1

)]

whereα andβ are unknown constants such thatα +β = 1
Motivated by [19] and [18], we have proposed an exponential chain ratio cum dual to ratio estimator in double

sampling for estimating finite population mean̄Y using two auxiliary characters. The properties of the proposed
estimator are studied in two cases. Numerical illustrations are also shown in support of the present study.
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2 The Proposed Estimator

In the use of two auxiliary variablesx andz, we consider the population mean̄X as unknown and the population mean
Z̄ of second auxiliary variablez which has a positive correlation withx(i.e. ρxz > 0) as known. Further we assume that
ρyx> ρyz> 0. Letx̄1 and ¯z1 be the sample means ofx andz respectively based on a priliminary sample sizen1 drawn with
simple random sampling without replacement(SRSWOR) strategy in order to get an estimate of̄X. Then the proposed
estimator for estimatinḡY is

ˆ̄YRdR
EC = ȳ[αI1+(1−α) I2] (1)

whereα is unknown constant to be determined,

I1 = ˆ̄Ydc
Re = exp

( x̄1
z̄1

Z̄− x̄
x̄1
z̄1

Z̄+ x̄

)

and

I2 = ˆ̄Ydc
EdR= exp







N
x̄1
z̄1

Z̄−nx̄

N−n − x̄1
z̄1

Z̄

N
x̄1
z̄1

Z̄−nx̄

N−n + x̄1
z̄1

Z̄







To obtain the bias and MSE ofˆ̄YRdR
EC , we write

e0 = (ȳ− Ȳ)/Ȳ, e1 = (x̄− X̄)/X̄, e2 = (x̄1− X̄)/X̄ ande3 = (z̄1− Z̄)/Z̄

Expressinĝ̄YRdR
EC in terms ofe’s, we have

ˆ̄YRdR
EC =ȳ[α (1+w1)+ (1−α)(1+w2)]

=Ȳ (1+e0) [1+w2+α (w1−w2)]

=Ȳ [1+e0+W1+αW2]

ˆ̄YRdR
EC − Ȳ =Ȳ [e0+W1+αW2] (2)

where

w1 =
1
8

(

4e2−4e1−4e3+3e2
1−e2

2+3e2
3−2e1e2+e1e3−2e2e3

)

w2 =
1
8

(

4ge2−4ge3−4ge1−g2e2
1−g(4+g)e2

2−g2e2
3−2g(2+g)e1e3+

2g(2+g)e1e2+2g(2+g)e2e3)

W1 =
1
8

(

4ge2−4ge3−4ge1−g2e2
1−g(4+g)e2

2−g2e2
3−2g(2+g)e1e3+

2g(2+g)e1e2+2g(2+g)e2e3+4ge0e2−4ge0e3−4ge0e1)

W2 =
1
8

(

4(1−g)e2−4(1−g)e3−4(1−g)e1+
(

3+g2)e2
1−
(

1−4g−g2)e2
2+

(

3+g2)e2
3−
(

2+4g+2g2)e1e2+
(

2+4g+2g2)e1e3−
(

2+4g+2g2)e2e3+

4(1−g)e0e2−4(1−g)e0e3−4(1−g)e0e1)

g=
n

N−n

To find the bias and MSE of̄̂YRdR
EC , the following notations are used

C2
y = S2

y/Ȳ
2, C2

x = S2
x/X̄2, C2

z = S2
z/Z̄2, ρyx = Syx/SySx, ρyz= Syz/SySz,

ρzx= Sxz/SzSx
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where

S2
x =

1
N−1

N

∑
i=1

(xi − X̄)
2
, S2

y =
1

N−1

N

∑
i=1

(yi − Ȳ)2
, S2

z =
1

N−1

N

∑
i=1

(zi − Z̄)2

Syx =
1

N−1

N

∑
i=1

(yi − Ȳ) (xi − X̄) , Syz=
1

N−1

N

∑
i=1

(yi − Ȳ)(zi − Z̄) and

Sxz=
1

N−1

N

∑
i=1

(xi − X̄)(zi − Z̄)

The following two cases will be considered separately:
Case I: When the second phase sample of sizen is a subsample of the first phase of sizen1
Case II: When the second phase sample of sizen is drawn independently of the first phase sample of sizen1
The case where the second sample is drawn independently of the first was considered by [4]

3 Case I

3.1 Bias, MSE and Optimumα of
{

ˆ̄YRdR
EC

}

I

In case I, we have

E (e0) = E (e1) = E (e2) = E (e3) = 0, E
(

e2
0

)

=
1− f

n
C2

y , E
(

e2
1

)

=
1− f

n
C2

x

E
(

e2
2

)

=
1− f1

n1
C2

x , E
(

e2
3

)

=
1− f1

n1
C2

z , E (e0e1) =
1− f

n
KyxC

2
x

E (e0e2) =
1− f1

n1
KyxC

2
x , E (e0e3) =

1− f1
n1

KyzC
2
z , E (e1e2) =

1− f1
n1

C2
x

E (e1e3) =
1− f1

n1
KxzC

2
z , E (e2e3) =

1− f1
n1

KxzC
2
z (3)

where f = n
N , f1 =

n1
N , Kyx =

ρyxCy
Cx

, Kyz=
ρyzCy

Cz
andKxz=

ρxzCx
CZ

Taking expectations in (2) and using results from (3), we get the bias of the estimatorˆ̄YRdR
EC to the first order of

approximation as

B
(

ˆ̄YRdR
EC

)

I
= Ȳ

1
8
[M1−M2+α (M3+M4)] (4)

where

M1 =
1− f ∗

n
g2C2

x

(

1+
4
g

Kyx

)

M2 =
1− f1

n1
g2C2

x

(

1+
4
g

Kyz

)

M3 =
1− f ∗

n
C2

x

{

3+g2−4(1−g)Kyx
}

M4 =
1− f1

n1
C2

z

{(

3+g2)−4(1−g)Kyz
}

where f ∗ = n
n1

.
Again from (2), we have

ˆ̄YRdR
EC − Ȳ = Ȳ

[

e0+
g
2
− g

2
e3−

g
2

e1+α
(

1−g
2

e2−
1−g

2
e3−

1−g
2

e1

)]

(5)
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Squaring both the sides in (5), taking expectations and using the results from (3), we obtain the MSE of the estimator
ˆ̄YRdR
EC to the first order of approximations, as

MSE
(

ˆ̄YRdR
EC

)

I
= Ȳ2

[

(1− f )
n

C2
y +N1+N2+(1−g)α (N3+N4)+

(1−g)2 α2

4
N5

]

(6)

where

N1 =
(1− f ∗)

n
g2

4
C2

x

(

1− g
4

Kyx

)

N2 =
(1− f1)

n1

g2

4
C2

z

(

1− g
4

Kyz

)

N3 =
(1− f ∗)

n
g
2

C2
x

(

1− 2
g

Kyx

)

N4 =
(1− f1)

n1

g
2

C2
z

(

1− 2
g

Kyz

)

N5 =
(1− f ∗)

n
C2

x +
(1− f1)

n1
C2

z

The MSE of ˆ̄YRdR
EC is minimum when

α =− 2
(1−g)

N3+N4

N5
= αopt (say) (7)

Substituting the the value of (7) in (1) yields the ’asymptotically optimum estimator’ (AOE) as
{

ˆ̄YRdR
EC

}

I(opt)
= Ȳ

[

αI(opt)I1+
(

1−αI(opt)

)

I2
]

Thus, the resulting MSE of
{

ˆ̄YRdR
EC

}

I(opt)
is given by

MSE
{

ˆ̄YRdR
EC

}

I(opt)
= Ȳ2

[

(1− f )
n

C2
y +N1+N2−

(N3+N4)
2

N5

]

(8)

Remarks:
1. For α = 1 the estimator

{

ˆ̄YRdR
EC

}

in (1) boils down to the exponentional chain ratio estimatorˆ̄Ydc
Re suggested by [17]

in double sampling. The bias and MSE ofˆ̄Ydc
Re can be obtained by puttingα = 1 in (4) and (6) respectively as

B
{

ˆ̄Ydc
Re

}

I
= Ȳ

[(

1− f ∗

n

)

C2
x

(

3
8
+

1
2

Kyx

)

+

(

1− f1
n1

)

C2
z

(

3
8
−Kyx

)]

and

MSE
{

ˆ̄Ydc
Re

}

I
= Ȳ2

[(

1− f
n

)

C2
y +

(

1− f ∗

n

)

C2
x

4
(1−4Kyx)

+

(

1− f1
n1

)

C2
z

4
(1−4Kyx)

]

(9)

2. For α = 0, the estimator
{

ˆ̄YRdR
EC

}

in (1) reduces to the exponential chain dual to ratio estimatorˆ̄Ydc
EdR in double

sampling. The bias and MSE ofˆ̄Ydc
EdR can be obtained by putingα = 0 in (4) and (6) respectively as

B
(

ˆ̄Ydc
EdR

)

I
=−Ȳ

8
[B1+B2]
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where

B1 =

(

1− f ∗

n

)

g2C2
x

(

1+
4
g

Kyx

)

,

B2 =

(

1− f1
n1

)

g2C2
z

(

1+
4
g

Kyz

)

and

MSE
(

ˆ̄Ydc
EdR

)

I
= Ȳ2

[(

1− f
n

)

C2
y +N1+N2

]

(10)

4 Efficiency Comparisons in Case I

4.1 Comparison with sample mean per unit estimatorȳ

The variance of usual unbiased estimator ¯y is given by

V (ȳ) =

(

1− f
n

)

C2
y (11)

From (11) and (8), we have

V (ȳ)−MSE
{

ˆ̄YRdR
EC

}

I(opt)
=−Ȳ2

[

N1+N2−
(N3+N4)

2

N5

]

> 0 (12)

if N1+N2 <
(N3+N4)

2

N5

4.2 Comparison with chain ratio estimatorˆ̄Ydc
R

The MSE of chain ratio estimatorˆ̄Ydc
R suggested byChand (1975) in double sampling is given by

MSE
(

ˆ̄Ydc
R

)

I
= Ȳ2

[(

1− f
n

)

C2
y +

(

1− f ∗

n

)

C2
x (1−2Kyx)+

(

1− f1
n1

)

C2
z (1−2Kyz)

]

(13)

From (13) and (8), we have

MSE
(

ˆ̄Ydc
R

)

I
−MSE

{

ˆ̄YRdR
EC

}

I(opt)
= Ȳ2

[

K1+K2−
(N3+N4)

2

N5

]

> 0 (14)

if K1+K2 >
(N3+N4)

2

N5
where

K1 =

(

1− f ∗

n

){

C2
x

(

1− g2

4

)

− (2−g)KyxC
2
x

}

K2 =

(

1− f1
n1

){

C2
z

(

1− g2

4

)

− (2−g)KyzC
2
z

}
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4.3 Comparison with chain linear regression estimatorˆ̄Ydc
reg

The MSE of chain regression estimatorˆ̄Ydc
reg = ȳ+byx[x̄1+bxz(Z̄− z̄1)− x̄],

wherebyx andbxz are the regression coefficients ofy onx andx onz respectively suggested by [10] is given by

MSE
(

ˆ̄Ydc
reg

)

I
= Ȳ2

[(

1− f
n

)

(

C2
y −K2

yxC
2
x

)

+

(

1− f1
n1

)

(

K2
yxC

2
x+

KyxKxzC
2
z (KyxKxz−2Kyz)

)]

(15)

From (15) and (8), we have

MSE
(

ˆ̄Ydc
reg

)

I
−MSE

{

ˆ̄YRdR
EC

}

I(opt)
= Ȳ2

[

K3−K4+N2+
(N3+N4)

2

N5

]

> 0 (16)

if K3+N2+
(N3+N4)

2

N5
> K4

where

K3 =

(

1− f1
n1

)

{

KyxKxzC
2
z (KyxKxz−2Kyz)

}

K4 =

(

1− f ∗

n1

)(

g2

C2
x
−gρyxCyCx+KyxC

2
x

)

4.4 Comparison with exponential chain ratio estimatorˆ̄Ydc
Re

From (9) and (8), we have

MSE
{

ˆ̄Ydc
Re

}

I
−MSE

{

ˆ̄YRdR
EC

}

I(opt)
= Ȳ2

[

K5+K6+
(N3+N4)

N5

]

> 0 (17)

if K5,K6,N5 > 0 where

K5 =

(

1− f ∗

n

){

(g2−1)
4

C2
x − (g−1)ρyxCyCx

}

K6 =

(

1− f1
n1

){

(g2−1)
4

C2
z − (g−1)ρyzCyCz

}

4.5 Comparison with chain dual to ratio estimatorˆ̄Ydc
dR

The MSE of chain dual to ratio estimatorˆ̄Ydc
dR is given by

MSE
(

ˆ̄Ydc
dR

)

I
= Ȳ2

[

(

1− f
n

)

C2
y +L1+L2+

(N3+N4)
2

N5

]

(18)

whereL1 =
(

1− f ∗
n

)

g2C2
x

(

1− 2
gKyx

)

, L2 =
(

1− f1
n1

)

g2C2
z

(

1− 2
gKyz

)

From (18) and (8), we have

MSE
(

ˆ̄Ydc
dR

)

I
−MSE

{

ˆ̄YRdR
EC

}

I(opt)
= Ȳ2

[

L3+L4+
(N3+N4)

2

N5

]

> 0 (19)

if L3,L4,N5 > 0,
where

L3 =

(

1− f ∗

n

)(

3
4

C2
x −gρyxCyCx

)

L4 =

(

1− f1
n1

)(

3
4

g2C2
x −gρyzCyCz

)
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4.6 Comparison with exponential chain dual to ratio estimator ˆ̄Ydc
EdR

From (10) and (8), we have

MSE
(

ˆ̄Ydc
EdR

)

I
−MSE

{

ˆ̄YRdR
EC

}

I(opt)
= Ȳ2 (N3+N4)

2

N5
> 0 (20)

if N5 > 0
Now, we state the following theorem

5 Theorem1

To the first degree of approximation, the proposed strategy under the optimality condition (7), is always more efficient than

V (ȳ), MSE
(

ˆ̄Ydc
R

)

I
, MSE

(

ˆ̄Ydc
reg

)

I
, MSE

{

ˆ̄Ydc
Re

}

I
, MSE

(

ˆ̄Ydc
dR

)

I
andMSE

(

ˆ̄Ydc
EdR

)

I
under the conditionsN1+N2 <

(N3+N4)
2

N5
;

K1+K2 >
(N3+N4)

2

N5
;, K3+N2+

(N3+N4)
2

N5
> K4; K5,K6,N5 > 0; L3,L4,N5 > 0 ; and N5 > 0.

6 Case II

6.1 Bias, MSE and Optimumα of
{

ˆ̄YRdR
EC

}

II

In this case II, we have

E (e0) = E (e1) = E (e2) = E (e3) = 0, E
(

e2
0

)

=
1− f

n
C2

y ,

E
(

e2
1

)

=
1− f

n
C2

x , E
(

e2
2

)

=
1− f1

n1
C2

x , E
(

e3
3

)

=
1− f1

n1
C2

z ,

E (e0e1) =
1− f

n
KyxC

2
x , E (e2e3) =

1− f1
n1

KxzC
2
z ,

E (e0e2) = E (e0e3) = E (e1e2) = E (e1e3) = 0 (21)

Taking expectations in (2) and using the results of (21), we get the bias of
{

ˆ̄YRdR
EC

}

II
upto the first order of

approximations as

B
{

ˆ̄YRdR
EC

}

II
=

Ȳ
8

[

−M
′
1+M

′
2+α

(

M
′
3+M

′
4

)]

(22)

where

M
′
1 =

(

1− f
n

)

g2C2
x

(

1+
4
g

Kyx

)

M
′
2 =

(

1− f1
n1

)

{

g(4+g)C2
x +g2C2

z −2g(2+g)KxzC
2
z

}

M
′
3 =

(

1− f
n

)

{

(

3+g2)C2
x −4(1−g)KyxC

2
x

}

M
′
4 =

(

1− f1
n1

)

{

(

3+g2)C2
z −
(

1−4g−g2)C2
x −
(

2+4g+2g2)KxzC
2
z

}

Squaring both the sides in (2), taking the expectations and using the results of (21), we obtain the MSE of the estimator
{

ˆ̄YRdR
EC

}

II
to the first order of approximations as

MSE
{

ˆ̄YRdR
EC

}

II
= Ȳ2

[(

1− f
n

)

C2
y +N

′
1+N

′
2+(1−g)α

(

N
′
3+N

′
4

)

+

(1−g)2

4
α2
{(

1− f
n

)

C2
x +N

′
5

}

]

(23)
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where

N
′
1 =

(

1− f1
n1

)(

g2

4
C2

x +
g2

4
C2

z −
g2

2
KxzC

2
z

)

N
′
2 =

(

1− f
n

)(

g2

4
C2

x −gKyxC
2
x

)

N
′
3 =

(

1− f
n

)

(g
2

C2
x −KyxC

2
x

)

N
′
4 =

(

1− f1
n1

)

(g
2

C2
x +

g
2

C2
z −gKxzC

2
z

)

N
′
5 =

(

1− f1
n1

)

(

C2
x +C2

z (1−2Kxz)
)

Differentiation of (23) with respect toα yields its optimum value as

α =−
(

2
1−g

)

(

N
′
3+N

′
4

(

1− f
n

)

C2
x +N

′
5

)

= αII (opt) (say) (24)

Thus, the resulting optimum MSE of
{

ˆ̄YRdR
EC

}

II
is given by

MSE
{

ˆ̄YRdR
EC

}

II (opt)
= Ȳ2







(

1− f
n

)

C2
y +N

′
1+N

′
2−

(

N
′
3+N

′
4

)2

(

1− f
n

)

C2
x +N

′
5






(25)

Remarks: 1. For α = 1, the estimator̂̄YRdR
EC in (1) boils down to the exponential chain ratio estimatorˆ̄Ydc

Re [17] in

double sampling. Thus, puttingα = 1 in (23), we get the MSE of̂̄Ydc
Re to the first degree of approximation as

MSE
(

ˆ̄Ydc
Re

)

II
= Ȳ2

[

1− f
n

(

C2
y +

C2
x

4
−KyxC

2
x

)

+
1− f1

n1

(

C2
x

4
− KxzC2

z

2

)]

(26)

2. For α = 0, the estimator
{

ˆ̄YRdR
EC

}

in (1) reduces to the exponential chain dual to ratio estimatorˆ̄Ydc
EdR in double

sampling. The MSE of̂̄Ydc
EdR can be obtained by putingα = 0 in (23) respectively as

MSE
(

ˆ̄Ydc
EdR

)

II
= Ȳ2

[

1− f
n

(

C2
y +

g2

4
C2

x −gKyxC
2
x

)

+
1− f1

n1

(

g2

4
C2

x +
g2

4
C2

z −
g2

2
KxzC

2
z

)]

(27)

7 Efficiency Comparisons in Case II

7.1 Comparison with sample mean per unit estimatorȳ

The variance of usual unbiased estimator ¯y is given by

V (ȳ) =

(

1− f
n

)

C2
y (28)

From equation (28) and (25), we have

V (ȳ)−MSE
{

ˆ̄YRdR
EC

}

II (opt)
=−

(

N
′
1+N

′
2

)

+

(

N
′
3+N

′
4

)2

1
nC2

x +N
′
5

> 0 (29)

if

(

N
′
3+N

′
4

)2

1
nC2

x+N
′
5

>
(

N
′
1+N

′
2

)
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7.2 Comparison with chain ratio estimator
{

ˆ̄Ydc
R

}

II

The MSE of chain ratio estimator
{

ˆ̄Ydc
R

}

II
in double sampling is given by

MSE
{

ˆ̄Ydc
R

}

II
= Ȳ2

[

1− f
n

(

C2
y +C2

x (1−2Kyx)
)

+
1− f1

n1

(

C2
x +C2

z (1−2Kxz)
)

]

(30)

From equation (30) and (25), we have

MSE
{

ˆ̄Ydc
R

}

II
−MSE

{

ˆ̄YRdR
EC

}

II (opt)
= Ȳ2






K

′
1+K

′
2+

(

N
′′
3 +N

′′
4

)2

K
′
3






> 0 (31)

if K
′
1, K

′
2, K

′
3 > 0, where

K
′
1 =

(

1− f
n

){

C2
x

(

1− g2

4

)

− (2−g)KyxC
2
x

}

K
′
2 =

(

1− f 1
n1

){(

1− g2

4

)

(

C2
x +C2

z

)

−
(

2− g2

2

)

KxzC
2
z

}

K
′
3 =

{(

1
n
+

1
n1

)

C2
x +

1
n1

C2
z (1−2Kxz)

}

7.3 Comparison with chain linear regression estimator
{

ˆ̄Ydc
reg

}

II

The MSE of the chain linear regression estimator
{

ˆ̄Ydc
reg

}

II
in double sampling suggested by [?] is given by

MSE
{

ˆ̄Ydc
reg

}

II
= Ȳ2

[

1− f
n

(

C2
y −K2

yxC
2
x

)

+
1− f1

n1
K2

yx

(

C2
x −K2

xzC
2
z

)

]

(32)

From equation (32) and (25), we have

MSE
{

ˆ̄Ydc
reg

}

II
−MSE

{

ˆ̄YRdR
EC

}

II (opt)
= Ȳ2







1− f
n

C2
y −K

′
4+K

′
5+

(

N
′
3+N

′
4

)2

K
′
3






> 0 (33)

if K
′
3, K

′
5 > 0 andK

′
4 < 0

7.4 Comparison with exponential chain ratio estimator
{

ˆ̄Ydc
Re

}

From equation (26) and (25), we have

MSE
{

ˆ̄Ydc
Re

}

II
−MSE

{

ˆ̄YRdR
EC

}

II (opt)
= Ȳ2






−
(

K
′
6+K

′
7

)

+

(

N
′
3+N

′
4

)2

K
′
3






> 0 (34)

if

(

N
′
3+N

′
4

)2

K
′
3

> K
′
6+K

′
7, where

K
′
6 =

(

1− f
n

)

C2
x

{

1−g2

4
− (1−g)Kyx

}

K
′
7 =

(

1− f1
n1

){

1−g2

4
Cx2 − g2

4
C2

z −
(1−g2)

2
ρxzCxCz

}
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7.5 Comparison with chain dual to ratio estimator
{

ˆ̄Ydc
dR

}

II

The MSE of chain dual to ratio estimator
{

ˆ̄Ydc
dR

}

II
is given by

MSE
{

ˆ̄Ydc
dR

}

II
= Ȳ2

[

1− f
n

C2
y +

1− f
n

g2C2
x

(

1− 2
g

Kyx

)

+
1− f1

n1

{

g2C2
x +g2C2

z

(

1− 2
g

Kxz

)}]

(35)

From equation (35) and (25), we have

MSE
{

ˆ̄Ydc
dR

}

II
−MSE

{

ˆ̄YRdR
EC

}

II (opt)
= Ȳ2






K

′
8+K

′
9+

(

N
′
3+N

′
4

)2

K
′
3






> 0 (36)

if K
′
8,K

′
9,K

′
3 > 0, where

K
′
8 =

(

1− f
n

)

3
4

g2C2
x

(

1− 4
3g

Kyx

)

K
′
9 =

(

1− f1
n1

)

3
4

g2{C2
x +C2

z (1−2Kxz)
}

7.6 Comparison with exponential chain dual to ratio estimator
{

ˆ̄Ydc
EdR

}

II

From equation (27) and (25), we have

MSE
{

ˆ̄Ydc
EdR

}

II
−MSE

{

ˆ̄YRdR
EC

}

II (opt)
= Ȳ2







(

N
′
3+N

′
4

)2

K
′
3






> 0 (37)

if K
′
3 > 0

8 Theorem II

To the first order of approximations, the proposed strategy under optimality condition (24) is always more efficient than

V (ȳ), MSE
(

ˆ̄Ydc
R

)

II
,

MSE
(

ˆ̄Ydc
reg

)

II
, MSE

{

ˆ̄Ydc
Re

}

II
, MSE

(

ˆ̄Ydc
dR

)

II
andMSE

(

ˆ̄Ydc
EdR

)

II
under the conditions

(

N
′
3+N

′
4

)2

1
nC2

x+N
′
5

>
(

N
′
1+N

′
2

)

; K
′
1,K

′
2,K

′
3 >

0; K
′
3,K

′
5 > 0andK

′
4 < 0;

(

N
′
3+N

′
4

)2

K
′
3

> K
′
6+K

′
7; K

′
3,K

′
8,K

′
9 > 0; andK

′
3 > 0.

9 Cost aspect

The different estimators reported in this paper have so far been compared with respect to their variances. In practical
applications, the cost aspect should also be taken into account. In the literature, therefore, convention is to fix the total
cost of the survey and then to find optimum sizes of priliminary and final samples so that the variance of the estimator is
minimized. In most of the practical situations, total cost is a linear function of samples selected at first and second phases.

In this section, we shall consider the cost of the survey and find the optimum sizes of the preliminary and second-phase
samples in Case I and Case II separately.
Case I: When we use one auxiliary variatex then the cost function is given byC = nC1+n1C2, whereC,C1 andC2 are
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the total cost, cost per unit of collecting information on the study variatey and the cost per unit of collecting information
on the auxiliary variatex respectively of the survey.

When we use additional auxiliary variatez to estimatê̄YRdR
EC , then the cost function is given by

C= nC1+n1(C2+C3) (38)

whereC3 is the cost per unit collecting information on auxiliary variatez.
Ignoring FPC, the MSE of̄̂YRdR

EC in (6) can be expressed as

MSE
{

ˆ̄YRdR
EC

}

I
=

1
n

V1+
1
n1

V2

whereV1 =C2
y +

g2

4 C2
x

(

1− 4
gKyx

)

+ (1−g)g
2 αC2

x

(

1− 2
gKyx

)

+ (1−g)2

4 α2C2
x

V2 =− g2

4 C2
x

(

1− 4
gKyx

)

+ g2

4 C2
z

(

1− 4
gKyz

)

− (1−g)g
2 αC2

x

(

1− 2
gKyx

)

+ (1−g)2

4 α2
(

C2
z −C2

x

)

+ g
2C2

z (1−Kyz)

It is assumed thatC1 >C2 >C3. The optimum values ofn andn1 for fixed costC=C0 which minimizes the MSE of
ˆ̄YRdR
EC in (6) under cost function are given by

nopt =
C0
√

V1/C1√
V1C1+

√

V2 (C2+C3)

n1opt =
C0
√

V2/(C2+C3)√
V1C1+

√
V2
√

C2+C3

Thus the resulting MSE of̄̂YRdR
EC is given by

MSE
{

ˆ̄YRdR
EC

}

I(opt)
=

1
C0

{

√

V1C1+
√

V2(C2+C3)
}2

(39)

If all the resources were diverted towards the study variatey only, then we would have optimum sample size as below

n∗∗ =C/C1

Thus, the variance of sample mean ¯y for a given fixed costC=C0 in case of large population is given by

Vopt (ȳ) =
C1

C0
S2

y (40)

From (39) and (40), the proposed sampling strategy would be profitable as longas

MSE
{

ˆ̄YRdR
EC

}

I
<Vopt (ȳ)

or equivalently,

C2+C3

C1
<

[

Sy−
√

V1√
V2

]2

Case II: We assume thaty measured onn units, andx andz are measured onn1 units. We consider a simple cost
function

C= nC1+n1

(

C
′
2+C

′
3

)

(41)

whereC
′
2 andC

′
3 denote cost per unit of observingx andzvalues respectively.

The MSE of
{

ˆ̄YRdR
EC

}

II
in (23) can be written as

MSE
{

ˆ̄YRdR
EC

}

II
=

1
n

V1+
1
n1

V3 (42)
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whereV3 =
{

g2

4 + (1−g)g
2 + (1−g)2

4 α2
}

{

C2
x +C2

z (1−2Kxz)
}

To obtain the optimum allocation of sample between phases for a fixed costC = C0, we minimized (23) with
condition (41). It is easily found that this minimum is attained for

nopt =
C0
√

V1/C1
√

V1C1+
√

V2
(

C
′
2+C

′
3

)

n1opt =
C0

√

V2/
(

C
′
2+C

′
3

)

√
V1C1+

√
V2

√

C
′
2+C

′
3

Thus, the optimum MSE corresponding to these optimum valuesof n andn1 are given by

MSE
{

ˆ̄YRdR
EC

}

II (opt)
=

1
C0

{

√

V1C1+
√

V2
(

C
′
2+C

′
3

)

}2

(43)

From (40) and (43), it is obtained that the proposed estimatorˆ̄YRdR
EC yields less variance than that of sample mean ¯y for the

same fixed cost if

C
′
2+C

′
3

C1
<

[

Sy−
√

V1√
V2

]2

10 Empirical Study

To examine the merits of the proposed estimator, we have considered three natural population data sets. The description
of the population are given as follows:

Population I[7]
Y: Number of placebo children
X: Number of paralytic polio cases in the placebo group.
Z: Number of paralytic polio cases in the notinoculated groups.
N = 34, n = 15, n15, Ȳ = 4.92, X̄ = 2.59, Z̄ = 2.91, ρyx = 0.7326, ρyz = 0.6430, ρxz = 0.6837, C2

y = 1.0248,
C2

x = 1.5175,C2
z = 1.1492

Population II :[27]
Y:Apples trees of bearing age in 1964.
X:Bushels of apples harvested in 1964.
Z:Bushels of apples harvested in 1959.
N = 200, n = 20, n1 = 30, Ȳ = 0.103182X104, X̄ = 0.293458X104, Z̄ = 0.365149X104 ρyx = 0.93, ρyz = 0.77,
ρxz= 0.84,C2

y = 2.55280,C2
x = 4.02504,C2

z = 2.09379

Population III [12]
Y:Area under wheat in 1964.
X:Area under wheat in 1963.
Z: Cultivated area in 1961.
N = 34,n= 7, n1 = 10,Ȳ = 199.44 acre,X̄ = 208.89acre,Z̄ = 747.59 acre,ρyx = 0.9801,ρyz= 0.9043,ρxz= 0.9097,
C2

y = 0.5673,C2
x = 0.5191,C2

z = 0.3527
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Table 1: Percent relative efficiencies of different estimators w.r.t ȳ

Estimators Population I Population II Population III

Case I

ȳ 100 100 100

{ ˆ̄Ydc
R }I 136.91 279.93 730.78

{ ˆ̄Ydc
reg}I 185.53 326.33 778.93

{ ˆ̄Ydc
Re}I 184.35 150.97 259.55

{Ȳdc
dR}I 174.26 * *

{Ȳdc
EdR}I 136.82 * 102.30

{ ˆ̄YRdR
EC }I(opt) 230.17 322.9 4 763.29

Case II

ȳ 100 100 100

{ ˆ̄Ydc
R }II * 182.67 730.78

{ ˆ̄Ydc
reg}II 162.83 338.50 701.87

{ ˆ̄Ydc
Re}II 207.03 574.91 454.36

{ ˆ̄Ydc
dR}II * 130.93 171.75

{ ˆ̄Ydc
EdR}II * 113.69 130.42

{ ˆ̄YRdR
EC }II (opt) 196.16 362.61 735.15

* Data is not applicable

11 Conclusion

Table1 clearly indicates that there is a substantial gain inefficiency by using the proposed estimatorˆ̄YRdR
EC over the

conventional estimator ¯y, { ˆ̄Ydc
R }, { ˆ̄Ydc

reg}, { ˆ̄Ydc
Re}, { ˆ̄Ydc

dR} and{ ˆ̄Ydc
EdR} in both the cases with respect to all sets of data except

ˆ̄Ydc
reg for population II and III in Case I and̂̄Ydc

Re for population I and II in case II.
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