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Abstract: Uminsky and Yeats [D. Uminsky, and K. Yeats, electronic daliof Combinatoricd4, 1-13 (2007)], studied the properties
of the log-operator.Z on the subset of the finite symmetric sequences and provexiserce of an infinite regioZ, bounded
by parametrically defined hypersurfaces such that any segueorresponding a point of is infinitely log-concaveWe study the
properties of a new operatof; and redefine the hypersurfaces which generalizes the omeddfy Uminsky and Yeats. We show that
any sequence corresponding a point of the reginbounded by the new generalized parametrically defiradtor hypersurfaces, is
Generalized r-factor infinitely log concaviéd/e also give an improved value of found by McNamara and Sagan [P. R. W. McNamara

and B. E. Sagan, Adv. App. Mathi4, 1-15 (2010)], as the log-concavity criterion using the negroperator
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1 Introduction

A sequencéay) = ap,as,ay,... of real numbers is said to
be log-concave or 1-fold log-concave iff the new
sequencéhy) defined by the? operator(by) = % (ax)
is non negative for ak € N, where by = a,® — ay_18; 1.

A sequence(ay) is said to be2-fold log-concave iff
L&) = L(ZL(a)) = Z(bx) is non negative for all
k € N, where Z(by) = bi? — b_1by; 1 and the sequence
(ax) is said to bei-fold log-concave iff.#"(a) is non
negative for alk € N, where

L (@) =12 e ~ 12 a1 12 ).

(a) is said to benfinitely log-concave iftZ"(ay) is non
negative for all i > 1. Binomial -coefficients
(0):(1),(5),-- along any row of Pascal's triangle are log
concave for alh > 0. Boros and Moll 8] conjectured that
binomial coefficients along any row of Pascal’s triangle
are infinitely log-concaveor all n > 0. This was later
confirmed by McNamara and Sagédlj for the nth rows

of Pascal’s triangle fon < 1450 and complete proof in

[4]. for more details about the log concave and other

related stuff seeq] and [6].

McNamara and Sagag][defined a stronger version of
log-concavity
A sequencéay) = ap,as,ay, ... of real numbers is said to
ber-factor log-concave iff

2
&~ > rak-1 a1

1)

for all k e N. Thusr-factor log-concaveequence implies
log-concavity if r > 1. We are interested only in
log-concavesequences, so from here onward, value of
used would mean> 1 unless otherwise stated.

We first define a new operatd?; and then using this
operator, we define Generalized r-factor infinite
log-concavitywhich is a bit more stronger version of
log-concavity Define the real operata®; and the new
sequence (by) such that (by) = Z(a), where
bk = % (&) = a® — T a1 a;1.

Then (ax) is said to ber-factor log-concave(or
Generalized r-factor 1-fold log-concave) ifby) is non
negative for alk € N.

This again definegl) alternatively using% operator.
(ay) is said to beGeneralized r-factor 2-fold log-concave
iff Z2(a) = %4 (L (&) = Z(by) is non negative for
all k€ N, where

Z(be) = b — 1 by_1 bia
or ZP(a) =L (a)]*— 1 [Z(ac1)] [% ()]

(ax) is said to beGeneralized r-factor i-fold log-concave
iff Z/(ac) is non negative for allk € N, where
Li@) = L H@)P — 1 [Z Hacy)] [4 @)
(ax) is said to beGeneralized r-factor infinite log-concave
iff £} (ax) is non negative for all > 1.

Uminsky and Yeats1] studied the properties of the
log-operator . on the subset of the finite symmetric
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sequences of the form
{..,0,0,1, X, X1, - -+, Xn, - -+ X1, %0, 1,0,0,... },

{...,0,0,1, X, X1, ., X0, Xn, - - - ,X1,%,1,0,0,... }.

The first sequence above is referred as odd of lengt

2n+ 3 and second as even of length-24. Any such
sequence corresponds to a poix,X1,X2,...,%n) N

0.

If we can prove conversely, above lemma can be used
as an alternative criterion to verify thefactor i-fold
log-concavityof a givenr-factor log-concavesequence.
The Generalizedr-factor log-operator.Z; equals the
r}og-operatorf forr =1, soGeneralized r-factor infinite
0g-concavity implies infinite log-concavity Thus, we
have the following results:

R™1. They prove the existence of an infinite region Lemma 1.2. Let (a) be a log-concave sequence of

# < R"L bounded byn+ 1 parametrically defined

non-negative terms. If.¥(ax) is log-concave, then

hypersurfaces such that any sequence corresponding & 2 a-1 8132 < a. In general, if Z*(a) is

point of Z is infinitely log concave

log-concave, then

In the first part of this paper, we study the properties

of the Generalized r-factor log-operator?; on these
finite symmetric sequences and redefine

Loy 2) L (a1) L) L (ag2) < (£ (&)

the

parametrically defined hypersurfaces which generalizes emma 1.3. Every Generalizedr-factor infinitely

the one defined byl]. We show that any sequence
corresponding a point of the regio#,, bounded by the
new generalized parametrically defined-factor
hypersurfaces, isGeneralized r-factor infinite log
concave

In the end, we give an improved value mffound by
McNamara and Sagar2][ as the log-concavity criterion
using the newog-operator.%;.

Lemma 1.1.Let (a) be ar-factor log-concave sequence
of non-negative terms. &4 (ax) is Generalized -factor
log-concave, then

(rP)ay 2 a1 a1 Ao < .

In general, if Z'*1(a) is Generalized r-factor

log-concave, then

(r)Z (ak-2) £ (a-1) £ (8s1) L (awr2) < [F (@]

Proof. Let % (ay) is r-factor log-concaveThen

[ (@) > 1 [Z ()] [ ()]
aﬁ‘; (22 LA AR ) ) )
+r° gy a2 > 2rag_18gak, 1+ rak_2agak; 2.
+rlacsaag, ¢
Since (ax) is r-factor
a2 >ray 1 a1, we have

log concave so applying

(r°) a2 & 1 81 82 < 8.

Similarly, if .#?(ay) is Generalized r-factor log-concave,
then

(r°) L(ax2) L (a-1)Z (1)L (ar2) < [Z(a)]*

Continuing this way, it **(ay) is Generalized r-factor
log-concave, then

(%) £ (a-2) L (a-1) L (@i1) L (Br2) < [L (@))%

log-concave sequencéay) of non-negative terms is
infinitely log-concave.

2 Region of infinite log-concavity and r-factor

One dimensional even and odd sequences
{1,x,x,1},{1,x,1} correspond to a point€ R. Uminsky
and Yeats ] after applying thdog-operator.¥Z showed
that the positive fixed point for the sequence
L{Lxx1} = {1, —xx2—x,1} is x = 2 and for
Z{1x1} = {1x*-11} is x = HT\G Also the
sequencd 1,x,x,1} is infinitely log-concave ik > 2 and
{1,x,1} is infinitely log-concave ifx > 1*—2‘/5 For detall
see [l

Now if we apply the Generalized r-factor log operator
4, instead of applying the log operatdf, then after a
simple calculation we see that the positive fixed point for
the sequenceZ {1,x,x,1} = {1,x*—rx,x*—rx,1} is
X =1+r and for £{l1x1} = {1x°—r1} is
X= @_ Also the sequencgl, x, x, 1} is Generalized
r-factor infinitely log-concave ik > 1+r and{1,x,1} is
Generalized r-factor infinitely log-concave if
x > LI This agrees with the results obtained by
Uminsky and Yeats for = 1.

2.1 Leading terms analysis using r-factor
log-concavity

Consider the even sequence of length+4
S— {17 aX, aledl 7 ale+d1+dz7 N 7anxl+d1+---+dn7
@

apd ittty gl g 1}

If we apply .4 operator on s, instead of applying’,
then
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Zi(9) = {1, (28— ragxh ), s (@ — raga, ),

X2+2d1+d2 (a%Xdz rasalxds) i,

X2+2d1+"'+2dnfl+dn (anxdn _ ranan—1)7

X2+2d1+“‘+2dn—1+dn (aﬁxdn _ ranan—1)7 e 1}

where, 0< dy, < dp1 <--- <d; <1 The(n-1) faces
are defined byd; = 1, dj =dj 1, for0< j <n, and
dn = 0, they define the boundaries of what will be our
open region of convergence, for detail seig |
For dl =1. The leading terms of 4(s)
{1 —rag)x2, x4 adx2e | a2zt 2y
x‘“r2dz+ +2d",...,1} matching the coefficients of
Ieading terms in% (s) with the coefficients o6. So that
the leading terms of%; have the same form astself for
some new, we have the positive values

are

1+v1+4 .
= %, andaj=1for0<i<n. (3)
This agrees with the values, = ”T‘@, anda = 1 for

0 < i < n, obtained by Uminsky and Yeatg][for r = 1.

Ford; =dj 1. The leading terms of/ (s) are

{1 aOX a2X2+2d1 a X2+2d1+2d2, o

2 2+2dp+-+2dj 52 2+2dp+--+-2dj 1 +4d;
(af —raj_1ay1)x AT L+t 2dj g +ad)

7aj+lx

anX2+2d1+ +2dn anX2+2d1+"'+2d", o 1}

comparing the coefficients, we get the positive values

1+vV1+4r
—

aj=1for i# j, andaj = (4)

This gives the values far=1, & = 1 fori # j, anda; =
145 same as in1].
For d,, = 0. The leading terms af (s) are

{17 aOXZ a2X2+2d1+2d2 B

2 212d 20
(a5 — ranan_q)x< <ot

2 2420 420
(a5 — ranan_q)x= et

2,,2+20;

a2x 2

2-+2dq+---+2dn—
.’an_lir 1+t n-1,

1}
comparing the coefficients, we get the values

g=1for0<i<n, anda,=1+r. (5)

This again agrees with the values= 1 for 0<i < n, and
a, = 2, obtained in{] forr = 1.
Similarly for the odd sequence of length2 3

s={1,ax apx* T, axt Tt
Lidg+otd w+d
anX + 0+t . 1

9

Sanx T agx, 1}

(6)

Applying .4 operator

= {1,x(a%x—rapx®),x* "% (afx® — raza.x®),
x2+20+ 0 (g2x% _ raga x®), ...
X2+2d1+~~+2dn,1(al{21x2dn _ raﬁ_l)7 e 1}

For d; = 1andd; = d;,1. This is equivalent to the

even case, see), (4). So we only analyze fod, =0
The leading terms af (s) are

2 2+2d 2 2+2d1+--+2dn_
{1,823, 1. ah gt nn
(a2 — ran_l)x2+2d1+”'+2d"*1, 1)
so equating the coefficients, we get,

aj=1for0<i<n, anda, = @)
This again agrees with the values for 1, as obtained in
[1]. The even sequence)( and the odd sequencé)(
correspond to the point

(aox, aqxtta, . anxltdit-+th) ¢ R Hence from
(3),(4),(5 and (7) the redefined and generalized
parametrically defined Hypersurfaces are

1++/1+4r
> .

= { (1"‘7 \/1"‘4")( 22t X2+dz+~~~+dn> 1<y
2 ol b 100 . — o)
1>d2>-~~>dn>0}
= {(x td 1+ V21+4 Lidyotdy g ldrtoody 1420

’X1+d1+---+d,-71+2d,-+di+2+»~+dn> .

1<x, 1>d1>-~->dj>dj+2>-~->dn>0}

The hypersurfaces are same for & j < nin both even
and odd cases, while;, is different.

In even case:

S = {(x,x”dl,...,x

(1<x 1>d1>--->dn,1>0}

l+d1+"'+dn—l7 (1_‘_r)xl+d1+"'+dn—l)

In odd case:

1+d
%—{(x,x* 1LX

(1<x 1>d1>--->dn1>0}

Trdyttdy , 1HVIFA X1+d1+~»+dn,1)
’ 2

Hence, ther-factor hypersurfaces far= 1 agrees with
the hypersurfaces obtained it] [
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So from here onward we considét to be the region and consider the following sequence
of Generalizedr-factor infinite log-concavity and is

gtljsuonded by the new gaenl;eralizedactor hype;tar:‘jae%isé S— {17 CPOax,, CPWax,, CP@adx,, ..
(,0,0,1, X0, X0, -« s X0, X - -5 X1, %0, 1,0,0,... } i in Z CPMax,, CPMatIx, ... 1} (14)

iff (Xo,X1,...,X%) € %, and with the positive increasing

coordinates defined as greater in iH& coordinate than  for a > (1+r)CP("-1-P() ~ cP(-1)-P(N) Now usingr-
4. In this case we say that above sequence lies on thé&ctor log-concavity of], we have

correct side of 7. Next, we present ther-factor

log-concavity version of the Lemm@&.2) of [1]. CPOR22 — 22 > 2rxy > rcPWady (15)

Lemma 2.1.1.Let the sequence CZP(j)a2j+2XJZ > CPWa2l*2(rxj_1xj41) VO < j >n

S— {17x7x1+d17x1+d1+d27,.,7xl+d1+“‘+d”7xl+d1+"'+d"7...7X71} _ rCzP(j) anFl aj+2Xj+l
ber-factor 1-log-concave fox > 0. Then 1> dy > --- > > rcPU-Dalx; ;cPUDal 2, 4. by (1)
dn > 0. (16)
In Lemma (3.3) of Uminsky and Yeats 1] using andCPMar1x, > aCPMal (1 1)
properties of the triangular numbers and the sequence
> cP(n=1)—P(n) rCP(n)aanHl by (14)

s={1,CTOax,,CTWa?x,CTPax,, ...,

T 1, T 1 >CPM Valxy g (17)
CTMaM1x,, cTMaM 1, ..., 1} ®  and SAC2P(M21+2,2 _ P gn+ly P gnily
provgd the existence of the log-concavity regi@hby > rcP-Danx, ,cPMartix,. by (17)
applying log-operator? for a > 2CT("-D-T(W and for (18)
0<C< TZ\G Sequences (8) is not the only sequence

for which Z is non-empty. One can also prove it by some From (15),(16),(18), we conclude thas is also r-factor 1-
other numbers such as Pentagon numbers and figurateg-concave.

numbers. 2 Define ¥ = CP@ax, and define d; such that
If we chooseC such that O0< C < gy vl then @+ — cPa2x,  and continuing, we have
applying the Generalized r-factor log-operatf on the = ga+di+-+dj _ CPlhaitlx, = 1>d;>do>--->dy >0
sequenceq), we can easily prove the existence of the by lemma 2.1) )
Generalized r-factor log-concavity region # for For 7
> (L4 r)CT-D-T_ et P(n) denotes thent" J
pentagonal number, then

Choose x = % d = d for i # j,j+1 and
dj = (dj +d;;1)/2 for hypersurface’|. Consequently,

- 3n—1) 1>d;>--->dj>dj;2>--->dy>0,and so

By = . B(n—1)+3n-2

CP(J)aJ+1Xj > CP(J')aJ+1\/m

DefineP(n) = 2P(n) for n > 0, we can easily have
= \/F\/CZP(i)—P(i+1)—P(J—1)CP(J—1)aixjflCP(J'+1)aJ'+2xj+l

P(n+1)+P(n—1)=2P(n)+6 9)
P(n+1)+P(n—1)> 2P(n) (10) = \/F\/C—6X1+d1+---+dj71X1+d1+---+dj,1+2dj by (9)
CP(n+1)+P(n—1) < CZP(n) forall C<1 (11) > \/FC—1X1+d1+"'+dj,1+dj
> 1+ V21+4rxl+d1+'~'+dj,1+dj by (13)
Also P(0) — @ =—-1--P0)=0andP(1)=1 (12) (19)

Hence the Generalized r-factor log-concavity version of
Lemma(3.3) [1] is given below:

Lemma 2.1.2. The Generalized r-factor infinite
log-concavity regio%; is non-empty and unbounded.

Proof. Let us consider ang-factor log-concave sequence.

Thussis on the correct side of7.

For 722

Choosex= %, dy =1 and d; = d; Vi > 1. Consequently,
1>dy>--->dy >0, bylemma 2.)and so

th00:S£ SBCh7t0haa0t7 17X07X17 v Xny ey X1, Xo, 17 Oa Oa e } CP(l)ale _ il+&l _ XZ _ X2
2 F = a’ =C Py (20)
0<C< [ 1 (13)  also CP)gi+iyi — ghtdit—+dj _ y2+dpttd|
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Now we check
C"Oax, > cPOy/ra2x
= VrcPOy/Cc-PWx2 by (20)
= rctx by (12)

1+I+4r
>%X

Thussis on the correct side of%.

by(13)  (21)

For %4,
Choosex=X, and d; = d; fori < n, dy = d, = 0 for /4.
Consequently, we have,41d; > --- >d,_1 >0,

cPMatly > CP(n)an-s-l(r Xn_1)
> g CP(N=P(n=1) yl+dy+-+dy 1

> (L4r) XM+t phy(14)  (22)
Thuss is on the correct side o##4,. From (@19),(21),(22),
and by the definition of the regio#%,, we conclude that
sequences is in %;. Hence using-factor log-concavity
% is non-empty and unboundédl.

Now we present the Generalizedactor Infinite log-

concavity version of the main theorem di [

Theorem 2.1.3. Any sequence in%, is Generalized
r-factor Infinite log-concave.

Proof. Let us consider the sequencesh

s={Lxx%
Xl+d1+“‘+dj,1+2dj X
it +2d +"'+dn’ e 1}

wltditetdja 1+vitar xltdite+d i
) ) 2 )
1+4dp+-+2dj+-+dy
X, €>0
Applying .4 operator ors and simplifying, we get
Z(s) = {17 X2 -
X2+2d1+“~+2dj,1 _r (1+ v 1+4r ) X2+2d1+“~+2dj,2+dj,1+dj

2

e 2

—Er X1+d1+---+d,-,z’ ((1+ 21"'4r> _ r) w2201+ +2d; +€2
e <1+ m) sHduetd) 242d; 4 4-2d; 1 +4d;

oy (1+ Vit ) 32201 +-+43dj+dj 2
2

“re <X1+d1+»~+2d,-+d,-+2> ’“.’X2+2d1+~»+4d,-+»~+2dn
oy <X2+2d1+---+4d,-+---+2dn,1+dn) w221+ +-4d) 4+ 20,
)

“r <X2+2d1+---+4d,-+---+2dn,1+dn) )

1}

Since

2
(1+m> _r:1+m 23)

2 2 ’

so by usingx? in place ofx in the definition of.# and
applying Lemma(3.4) ofl], we conclude that botkand
2 (s) are on the same side o] which are larger in the

jth coordinate. Hence result is true for hypersurfate

Similarly, forx, € > 0 consider the sequence

2
£,X,...,

1++/1+ 4
{17%)(_'_

WHdotttn (24dpttdh 1}

After applying.% operator ors and simplifying, we
get

Zi(s) =
{1, <<1+7 '21+4r)2— r) X+e (1+ M) X+ €2,

X4_r (M) X3+d2 _ r£X2+d2
2 sy

X4+2d2+---+2dn _ rX4+2d2+"'+2dn—1+dn
3

A2t 200 _ 204201 4-0h 1}
yeees

again by 23) and Lemma(3.4) of], we conclude thas
and.Z; (s) lie on the same side of%. Hence result is true
for J%.

Finally, forx,& > 0, d, = 0 consider the sequence
s={Lxx%, .

(L4r)xtratttns g 1)

ety ()bt g

Applying %, we get
Z(s) = {]_7 x2 _ er+d1’X2+2d1 _ rx2+d1+d2, N ,X2+2d1+---+2dn,1

_ I’(1+ r)x2+2d1+~~+2d,-,,z+dn,1 _ grxlﬂdfr'”de,-,,z7
<(1+ r)Z o r(1+ r)) X2+2d1+“~+2dn,1 + E(r + 2)Xl+d1+"'+dn,1 + 827
((1+ r)2 _ r(1+ r)) X2+2d1+~~+2d,-,,1+

E(I’ + 2)X1+d1+m+d,-,,1 + 527 o 1}

Since (1+r)>—r(14+r) = 147, so again by

Lemma(3.4) of 1], we conclude thas and.% (s) lie on
the same side of’4. Hence the result is true for
considerings4.

Consequently from the above three cases, %, =
£ (s) € %;. Hence any sequence i#; is Generalizea-
factor Infinite log-concave.

In case of the odd sequences, system is equivalent to
the even case fo#Z, and.7Z]. So we only need to consider
for 4. Let

1+V1+4r
s— {1,X,Xl+d17...7xl+d1+ +dn,17fxl+d1+ +dn,1+s’

Xl+d1+"'+dn—17 e 1}
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be a sequence i%;. Applying .4 operator ons and  have
simplifying, we get

1, [(2r+1) 4
2841858y ,1 + P8y _pagay 2 < *ak"‘ 2% =\ 2 )&

Z(s) = {1, X2 — rxIt 2 +20 _ py2tditdy
So to keep24) valid, we have? 4t = 1=r2—2r—1=0.

y2t2di 420y (L V1+4r> x2t2d1+-+20n 2401 Thusr = 1++/2, is the posmve root of the above equation.
This proves the assertion. Thus,(&x) is Generalized-
TN 2 factor log-concave, then so.i&; . Continuing this way,
— grxttditetng ((M) _ r) x2H2t-+20hg i gl ? is Generalized-factré?%g-concave?then soyis
2 Z*1(a). This also implies Generalizedfactor infinite
P (1+ m) sttty g2 log- concavijty of the sequencey).[] .
Comparing this new value af sayr, = 1+ /2, with
W22 201 (1+ V1+ 4r> 52200+ +20 o401 the value ofr, = 3*—2\@ obtained by McNamara and Sagan
[2]. We find that the value of; = 1+ /2 obtained by
L using Generalized-factor log-concavity is smaller than
—enx "2l obtained by McNamara and Sagan which,is= 3+Tf5
So in this way we get an improved /smaller value of
So by @3) and Lemma(3.4) of]], we conclude thasand r=1+ V2. Itis clear that Generalizedfactor log concave
Z(s) lie on the same side of#. Hence any (odd) operator is more useful and dynamic than the previously
sequence in%, is also Generalized-factor Infinite  used log-operatafZ. Hence for the new improved value
log-concave.l. of r, we can restate Lemma (3.2) [as:

Lemma 3.3. Let a,,ai,...,aomr1 be symmetric,
) o ) nonnegative sequence such that

3 Generalized r-factor infinite log-concavity
criterion (i) 8 > ria a1 for k<m,

(i) am> (1+r)ap-1 for r > 1
We start this section by a Lemma 2.1, proved by
McNamara and Saga2] using the log-operata, that
is
Lemma 3.1[ Lemma 2.1, B],] Let (ax) be a non-negative
sequence and let = (3+/5). Then(ax) beingr.-factor
log-concave implies tha¥’(ay) is too. So in this caséa)
is infinitely log-concave. )

If we apply the GeneralizerHactor log-operator;, ~ Theorem 3.4[Revised Theorem 3.22]] Any sequence

instead of app|y|ng the |og_operatw’ we have the Correspondlng to a pOInt ﬁr is Generalized |nf|n|t9|y
following result: ri-factor log-concave.

Lemma 3.2.Let (ax) be a sequence of non-negative terms Proof. Let (ax) be a sequence corresponding to a point of
and r = 1+ V2. If (a) is Generalizedr-factor Z%. Then, for(ay), being on the correct side 6], we have
log-concave, then so i¥; (ax) Hence continuing(ak) is

Then%, (ax) has the same properties, which implies that
(ax) is ry-factor infinitely log-concave.

Using above lemma we now show that Generalized
factor log-operators; andr-factor hypersurfaces agrees
with Theorem (3.2) ofZ] for r = 1. It also proves theorem
(2.2) alternatively.

Generalized-factor infinitely log-concave sequence. a > 1+ \/1+4 it
Proof. Let (ax) ber-factor log-concavesequence of non- -
negative terms. Now?; (ax) will be r-factor log-concave
if and only if > (1+ vi+dar > Y22y +2d
(L (@)]* > 1% (a-1)] L (B 1)) B (1+ 2r + /11 4r ) 4 a for0<ion
(af — rax-1ak1)* > r(af_1 — rak-28) (8, 1 — rakdks2) - I b=n
1
2ay_1afas1 + ray_paka s < —aﬁ+ (r—1)ag 48,4 butr > 1, so above inequality is true for= 1 as well
+rag j@@2 +ra-2adk; 1 < 8+ (1 —1)ag 18k, 316
+rag_jacdy 2+ rag o3k, (24) = a> ( 5 ) aj_18j41 = lodk_18k+1 (25)

Since (ax) is r-factor log concave so applying

2> ( ) a4 — 1A A
aZ > ray_18x1, to the L.H.S. of the above inequality, we = &= (1+V2)aan=naaga (26)
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Also being on the correct side 6#;, we have

><1+m>x

I \/

1+\/1+—4>

1+ 2r+\/1+4 )
also true for r=

=

I \/

(3 ) ar=rat1ar (27)

1+ \/E) a3 =ria 1ag (28)

\ \/

Odd Case
Being on the correct side off;,, we have

> <1+ V 1—|—4I’) Xl+d1+"'+dn—l

- @2> <1+V1+4 ) w2201 20y

142r++/1+4r
(A o

above inequality is true far=1

3+v5
=  a> (T) an-18n+1="lo8n-18n:1 (29)

= aﬁ > (1—|— \/E) an—18n+1 = lNa@n—18n+1 (30)

Even Case
Being on the correct side of4, is equivalent to

an > (14r) xMd++h1— (14r)a, 1 (31)
= @ >2a51 (32)

Since forr = 1, (25), (27), (29) agrees with Lemma 3.1
() and @2) with (ii) of McNamara and Sagar2]. Thus

any sequence %, is infinitely log-concave for = 1.

Hence Generalized-factor log-operators; andr-factor

hypersurfaces agrees with the results obtained?byolr

r = 1. Also (26), (28), (30)and @1) by Lemma3 proves

theorem 2.1) alternativelyl.
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