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Can macroscopic quantum superposition states (or highly entangled number states) be
observed directly? Specifically, can phase contrast imaging be applied to observe a su-
perposition state with essentially “all” of the atoms in a gaseous double well BEC being
simultaneously in both wells at the same time? That is we are looking to image states of
the type |N, 0 > +|0, N > where |L, R > denotes L particles in the Left well and R

in the Right. We will happily settle for states of the form |N − n, n > +|n, N − n >,
with n << N , these being less ephemeral. Earlier work in our group, Perry, Reinhardt
and Kahn, has shown that such highly entangled number states may be generated by
appropriate phase engineering, just as in the case of the phase engineering of solitons in
single well BECs. Experimentalists have been hesitant to attempt to create such states
in fear that definitive observations cannot be carried out. There have also been sugges-
tions that “Nature” will prevent such superpositions from existing for N too large . . .

and thus there are also basic issues in quantum theory which may prevent the formation
and detection of such states. In the present progress report we begin an investigation
of calculating the lifetimes of such entangled states in the presence of both observation
and spontaneous decay both of which perturb, and eventually destroy, the entangle-
ment under investigation via quantum back-action. Quantum State Diffusion (QSD)
provides a useful computational tool in addressing such questions, and we present the
initial results of exploring this novel use of QSD.
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1 Introduction

“Can Quantum-Mechanical Description of Physical Reality Be Considered Com-
plete?” A. Einstein, B. Poldoski, and N. Rosen, The Physical Review, 1935.

It is a commonplace that “no one understands” quantum mechanics. In a Young’s dou-
ble slit experiment, individual electrons [39] seemingly act like “waves” in a superposition
state, passing though both slits simultaneously and thus producing the well known double
slit interference patterns. Yet they may also be, in fact can only be, counted as discrete
particles which arrive, one at a time, at the photo-plate detector with definite energies, lo-
cations, and other familiar properties of particles. Bohr referred to this as complementarity.
Einstein insisted that such a theory was, while perhaps not wrong, at least incomplete, as
discussed and exemplified in the famous “EPR” paper [32]. See also Bohr’s response [7].
Bell [5, chapters 10, 16] gives an illuminating comparison of Einstein’s and Bohr’s views
regarding this situation. In a paper entitled “The current situation in quantum theory,” also
a response to EPR, Schrödinger introduced his infamous Cat to argue that one could never
see an elementary particle in a superposition state. Such a particle, he argued, could not
be simultaneously observed in both slits in an interference experiment or directly observed
in a superposition of being “decayed and not decayed.” Observation yields only one or the
other possibility [36]. See also the useful English translations of these Schrödinger papers
by Trimmer [40]. Thus, Schrödinger argued that the wave-function aspects of quantum the-
ory are indeed a fiction. In agreement with Bohr, he also insisted that quantum mechanics
was a statistically predictive theory, but one in which the underlying mathematics have no
physical interpretation. At this point, it is useful to note that both the EPR and Schrödinger
Cat papers involve what Schrödinger was the first to call entanglement, which will emerge
to be the main topic of interest in the present paper. The development of quantum me-
chanics has been accompanied by parallel efforts to develop alternative formulations of the
theory which make correct quantum predictions but also give rise to classical-like visual-
izations. These alternate theories would then provide the understanding presumed to be
missing of what really goes on in quantum dynamics. Of course, there may or not be such
missing understanding to begin with. See, for example, the development of the mixed clas-
sical and quantum theory by Bohm [6], and the overview essays of Bell [5], Leggett [18]
and Omnes [26].

Another challenging aspect of quantum mechanics relates to the question: how does
the familiar world of “classical dynamics” emerge from the quantum world? Ghirardi
et al. [14], and Penrose [27], among others, have suggested that the familiar world we
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see around us arises as quantum properties are “suppressed or quenched” beyond certain
masses or particle numbers. This allows emergence of the classical world, in which inter-
ference effects seemingly vanish, because the Schrödinger equation is modified as physical
systems grow in size. Others [26, 35], to cite representative overviews of a long running
thema, argue that decoherence, namely the interaction of quantum systems with finite tem-
perature classical systems (or even warm quantum systems), quenches quantum properties.
This quenching again leads to the classical world in which we seem to live. The issue of
the distinction between the quantum system and its environment “complicates” such dis-
cussions, to say the least.

At the same time, entanglement [32, 36] is, although among the strangest of quantum
phenomena, the basis of quantum information processing, quantum encryption, and pos-
sibly quantum computation. See Neilson and Chuang for an overview of all three [25].
These new technologies simply take quantum mechanics at face value, utilizing its deepest
mysteries to practical and commercial advantage.

Why quantum computation? As Feynman pointed out [10], quantum systems have no
trouble time evolving themselves very efficiently, yet classical computers are very inef-
ficient when they attempt to mimic quantum dynamics. The solution is to build special
quantum systems, known as quantum computers, which emulate other quantum systems
while hopefully performing other useful tasks as well. Quantum information processing
and encryption have been experimentally realized and have begun to appear outside of op-
tics and physics laboratories. A quantum encrypted cell phone might well be on the market
in the near future, but it will not be cheap because encryption may well rely on entangled
photon pairs from orbiting satellites! Precision time measurements, foundational to mod-
ern communications and the GPS system of Global navigation, are being upgraded with
the help of entanglement as these words are being written. Thus the quantum and classical
worlds are beginning to mix at a level of practicality and engineering well beyond that of
the now common devices which exploit quantum properties for simple switches.

It has been tacitly assumed in the above that quantum systems consist of single, or
small numbers of, elementary particles. Schrödinger considered the entanglement of a
single atom with his “living” or “dead” cat to make the point that one would never observe
the atom in a superposition state, otherwise we would also necessarily find the cat in a
superposition state. He argued that, as no one has ever seen a cat in a superposition state,
we should not imagine that we could do so for an atom. This is not the place to critique
this argument on its own terms, as many would argue that even the above statement of the
problem is rather simplistic [18, 26, 35]. After all, the cat is a warm classical system and
has likely decohered, losing any initial quantum nature more quickly than any measurement
can be made to detect that nature. See, for example, Omnes [26, Chapter 19].

Recently, however, free standing “large” quantum systems consisting of thousands or
even millions of atoms, and showing full quantum coherences, have been created [2]. This
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feat has subsequently been repeated in laboratories all over the world. These are the gaseous
atomic Bose-Einstein condensates (BECs) [19, 20, 29, 30], which following their creation
have been found to be fully coherent [4,37], subject to quantum “phase engineering” which
can create quantum solitons [9, 33, 42], and to exhibit macroscopic and coherent quantum,
Josephson-like tunneling [1]. It may certainly be argued that the rather earlier discoveries of
super-fluidity and superconductivity, see for example [20,38], are also examples of “large”
quantum systems. However, these latter types of macroscopic quantum behavior are “hid-
den” within the liquids or solids which contain them. These consist of elemental particles
whose properties are not subject to experimental control, and thus offer far less opportunity
for comprehensive study than the gaseous BECs. Through optical manipulations and trap
trickery, the shapes, densities, number of independent species, and even the fundamental
interparticle interactions in a gaseous condensate may be “tuned” almost at will. This al-
lows their properties to be explored over a great range of physical situations [19, 20, 30],
perhaps including macroscopic superposition states.

Will this possibility of macroscopic quantum systems in “superposition” lead to direct
observation of quantum superposition for macroscopic states? Experiments in supercon-
ductors have shown “avoided” crossings of the energy levels of such macroscopic sys-
tems [13, 41], leading to the possible conclusion that a signature of macroscopic quantum
superposition states has already been observed. However, it is likely that only a few of the
elementary bosonic particles (bosonic Cooper pairs in the case of superconductivity [20])
are actually involved in such level-crossing observations, see Reinhardt and Perry [34]. Fur-
thermore, we would like to actually see, visualize, or take a picture of such a state, which
is simply not possible in a typical metallic superconductor; all of the quantum mechanical
processes are hidden in the solid state matrix that supports it.

For gaseous BECs in magnetic traps, however, actual photographs of the quantum con-
densate have been taken from the time of the earliest experiments. For example, in observ-
ing the sloshing of a BEC of Rb atoms in a harmonic trap experimentalists have made an
actual movie or “film” of the moving condensate [15]. The same is the case for the dynam-
ics of solitons as seen in [9]. On the other hand, in these experiments the visualization of
dynamics is created by a series of experiments made on identically prepared replicas of a
time evolving condensate. Images are photographed at an appropriate sequence of times
in the evolution of different condensates, and each replica condensate is destroyed in the
process of being imaged. This follows from the fact that the atoms are observed through
actual absorption of resonance radiation. This process knocks many of the atoms out of
the BEC via momentum recoil and leaves any remaining condensate atoms decohered by
heating from the exiting atoms.

Is there a way to image a BEC in a magnetic trap without destroying it? Ketterle et
al. [3,17] have developed a form of non-destructive imaging and demonstrated that “many”
images of the same condensate (rather than a series of identically prepared condensates)
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may be taken, seemingly without destroying the condensate. This was at first called “quan-
tum non-demolition imaging,” but is actually a form of dark field microscopy [12] in that
it detects slight differences in index of refraction via phase interferences of the probing
photons. In such dark field imaging the light is off resonance to avoid absorption, but
completely non-absorptive imaging is impossible. From arguments involving the optical
theorem, or the Kramers-Krönig relations, it is easily concluded that the index of refraction
is complex. The imaginary part leads to absorption (particle loss), and is non-zero even
“far” off resonance, see Foot [11, Section 7.6] and the pedagogical discussion of Ketterle
et al. [17]. Thus in the Ketterle [3] experiments a fraction of the atoms (on the order of
0.1%) are lost in each observation. In addition, the phase coherence of the condensate is
disturbed in a manner complementary to the measurement of the local particle number [8].
Too many such “non-destructive” observations will decohere the condensate, essentially by
imprinting a non-uniform phase which leads to local particle currents, just as in the case of
soliton production [33]. These currents eventually heat the BEC, causing decoherence [8].

We are now, at last, in a position to state the purpose of the present progress report.
Members of our group [23, 24] have demonstrated, within the frame work of the Bose-
Hubbard model applied to a BEC in a double well, that highly number entangled states,
also essentially Schrödinger Cat-type states, may be generated by phase engineering and
described the subsequent dynamics of a ground state condensate. In such phase engineered
states up to 95% of all particles are simultaneously in the left and right wells, and therefore
in physically distinct locations. This is discussed in more detail in what follows. The ques-
tion we are asking is simply: can an image show that most of the atoms are simultaneously
in both of the two wells? That is, if we can make a macroscopic superposition state of large
numbers of atoms in two places at the same time, can we produce a single image showing
this to be the case? Said yet another way can we directly observe, using phase contrast
photographic imaging, a macroscopic quantum superposition state of exactly the type that
Schrödinger [36] suggested could not exist?

The outline of the progress report is a follows: to simulate observation of a quantum
system, with the necessarily accompanying particle loss and the effects of particle detection
back-action, we introduce Quantum State Diffusion (QSD) [28] as a numerical method for
simulating actual quantum measurements. This results in a Brownian-type Monte-Carlo
(i.e., statistical) method for simulation of an otherwise isolated quantum system as it in-
teracts with a measuring apparatus and data are collected. Collection of such data also
induces a “back action” on the original quantum system. However, unlike a destructive
“all or nothing” measurement which collapses the wave function essentially instantly, the
measurement(s) and subsequent back action are weak, as in a Ketterle [3] type dark field
non-destructive imaging. Thus as information is slowly collected, the quantum system also
feels the back action slowly, so we can explore the actual time scales on which data are
taken. We then ask: can weak probing of a quantum system take place on a time scale such
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that data may be taken before the combination of particle loss and quantum back-action
destroys the macroscopic superposition we are attempting to observe? How does this pos-
sibility depend on the system size? The QSD method is briefly introduced in Section 2, and
exemplified in Section 3 by the simple example of a quantum harmonic oscillator in a prob-
ing field which is also coupled to an external bath. This allows both decay and the effects
of quantum back action to be seen. In Section 4 the method is applied to a superposition
state of the single oscillator from Section 3. A simplified treatment, necessary to extend
the method to large particle numbers, is introduced and found to perform reasonably well
given its extreme simplicity. Number entangled states and their decay during observation
are introduced in Section 5. Here we concentrate, not on a BEC in a double well, but on
two distinct and uncoupled oscillators which can be prepared in a number entangled state.
For example, we will consider states of the form |M, N > + |N, M > which do not factor
into a product of eigenstates of the single oscillators. Here |M, N > denotes oscillator “1”
in quantum state M , and oscillator “2” in state N . Full QSD calculations, even for just two
such oscillators, become quickly time consuming as M, N increase, so we will let them
go no larger than 6. As 6 is hardly the hundreds of thousands, or millions, of particles
typical in laboratory BECs, the problem of carrying out full computations becomes the de-
velopment of simple models which capture the essence of the full computations. We show
that the decay of entangled states can be mimicked by an empirical QSD, which we call
QSD2, involving only the two initial quantum states. Exploration of this approximation
gives the central novel results of this report. Section 6 illustrates the utility of the QSD2
approximation with 100,000 particles in a double well Bose-Hubbard Model of a BEC with
encouraging results, and also contains a summary and conclusions.

2 Quantum State Diffusion: Outline of the Formalism

Quantum State Diffusion (QSD) [28] is a stochastic, or Brownian quantum random
walk, technique for solving problems which may be described using a density-matrix for-
mulation of the interaction between a quantum system and a measuring apparatus. Rather
than working directly with the density matrix, QSD begins with a wave function, |ψ >.
The wave function dynamics are controlled by a Hamiltonian H and coupled to the out-
side world by operators representing “measurements” being made on the system or other
interactions with the environment. These operators may even include spontaneous decay
of the system. We might identify each realization of the trajectory of such a wavefunction
as representing a single measurement. Averages follow from collection of data over many
such trajectories, just as in the laboratory where average values are slowly accumulated.
The emergence of interference, particle by particle, as in the work of Tonomura et al. [39],
is an excellent example of this process. The effects of measurements, and other interac-
tions, on the initial wavefunction are mathematically described via appropriate Lindblad
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operators. For example, a harmonic oscillator with Hamiltonian H = a†a with eigen-
values 0, 1, 2, 3, . . . , N, . . . and corresponding Fock space eigenfunctions |N >, where
H|N >= N |N >, might be subject to measurements of its quantum state “N” via a mea-
surement Lindblad LN = S a†a, where “S” represents the strength of the measurement,
while at the same time being subject to decay via the Lindblad LD = D a, with a decay
rate determined by the constant “D.” Here a and a† are the usual Fock lowering (destruc-
tion) and raising (creation) operators. This is, further illustrated below, is also considered
in some detail by Percival [28] in his textbook encapsulation of the QSD technique.

What is the evolution of an initial state |M > simultaneously subject to the dynamics of
the Hamiltonian, responding to external measurement of its state, and undergoing decay?
One could solve the evolution of the appropriate density matrix equations, but these are of
a dimensionality of the square of the dimensionality of the Hilbert space for p ψ > , and
thus are often impractical. The QSD method generates independent quantum trajectories,
to be illustrated below, whose aggregate statistical properties contain exactly the same in-
formation as the solution of the full evolution of the density matrix. The advantage is that
each trajectory exists in a space of the same dimensionality as the original Hilbert space,
not its square. A natural, although perhaps too anthropomorphic, conceptualization also
follows: each quantum trajectory might correspond to a single realization of a quantum
measurement. Quantum averages can be obtained from the average of many such trajecto-
ries, just as experimental quantum averages correspond to the results of many experiments
performed on a series of many independently, but identically, prepared replicas of a quan-
tum system. But, as the evolution of each trajectory can actually be visualized (again, see
below), such individual trajectories give a feeling of what might actually be occurring dur-
ing a quantum measurement, each stochastic time step leading to partial collapse of the
wave-function. As data are collected the wavefunction indeed partially collapses, corre-
sponding to our gain in knowledge of its state. It is this effect which is referred to as the
back-action. Thus each trajectory seemingly provides a “picture” of what is actually hap-
pening as a quantum measurement is made. This progress report is not the place to discuss
the derivation of the formalism or to properly address questions regarding the correct in-
terpretation of individual QSD trajectories. The interested and motivated reader is pointed
to the clear, although perhaps simplified for pedagogical purposes, treatment of QSD by
I. C. Percival [28]. Percival not only outlines the theory along its numerical implementa-
tions and philosophical consequences, but also gives a thorough introduction to the deeper
literature.

We begin with a simple example: suppose we have an oscillator in state “N” and an
apparatus which measures the value of “N” (with the output being a dial reading “M”, M =
0, 1, 2, . . . N . . . etc.). The operator which reads N is the Lindblad L=LN = Sa†a, which
in this simple case is proportional to the Hamiltonian for the system. S is the strength of
the measurement, i.e., a measure of the coupling of the system to the measuring apparatus.
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(Our next example will be more complicated!)
In Section 6 it will be pointed out that as more and more precise measurements of N

lead to loss of information about the phase of the system. The particle measuring Lind-
blad is thus said to be responsible for “phase diffusion” resulting from the quantum back
action on the system. Phase diffusion, caused by measuring the “local particle density,”
can destroy a BEC via phase decoherence. The local phase gradients corresponding to this
decoherence create currents, which are equivalent to local heating, taking the condensate
above its quantum phase transition temperature. Thus, as is the all too usual case in quan-
tum measurements, more precise knowledge of one quantity leads to increasing uncertainty
in its conjugate variable. In the case of measuring the particle number N , this conjugate
variable is the phase.

Suppose that our system is initially in state p ψ >. The measurement apparatus (and H)
now “act” for a short time interval dt and p ψ > evolves into p ψ > + p dψ >. Here p dψ >

is given by

p dψ >= − i

}
H p ψ > dt− 1

2
(L− 〈L〉)2 p ψ > dt + (L− 〈L〉) p ψ > dξ (2.1)

The deterministic terms proportional to dt represent the usual Schrödinger time evolu-
tion due to the Hamiltonian H and the change induced in p ψ > by the fact that the system
has been subject to a measurement of “N” for the time interval dt. < L > is the mean value
of L with respect to the normalized state p ψ >. The implicit presence of the wavefunction
itself in the term < L > makes the apparently linear Eq. (2.1) highly non-linear! The
second term in the time evolution is proportional to dξ, and represents quantum stochastic
diffusion. It is defined as dξ = (

√
dt)ei2πr, where r is a real random number on the interval

(0, 1]. The stochastic phase factor ei2πr thus introduces a random complex phase on the
interval (0, 2π] and a complex diffusive time element of magnitude

√
dt. The origin, see

Percival [28], of the
√

dt is the quantum analog of the fact that diffusive processes spread
with a mean square variance of t, and thus a variance proportional to

√
dt. The quantum

analog includes a random phase in this diffusive process. Stated more succinctly, dξ is a
complex random variable such that << dξ >>= 0 and << dξ∗dξ >>= dt, and where
<<>> denotes, not the quantum expectation value, but the average over realizations of
the random variable dξ. Eq. (2.1) is not fully general, as advantage has been taken of the
fact that L is Hermitian in the case that L = SH . It does, however, immediately show two
important facts, which are fully illustrated in the numerical examples to follow. First, if
p ψ > is an eigenstate of L, both (L− < L >) and (L− < L >)2 vanish when acting
on the state. In an eigenstate, the only time evolution is due to H itself, and the “back
action” of measuring the eigenvalue has neither a deterministic nor a stochastic effect on
the wave function. This is consistent with the usual naive quantum measurement theory
idea that measurement of a quantum property gives only eigenvalues of operators asso-
ciated with that property, and further that once such an eigenvalue is detected the wave
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function has “collapsed” (or been “filtered”) to give the corresponding eigenfunction. Fur-
ther measurements then give only repetitions of the identical eigenvalue. Second, and more
interestingly: if p ψ > is not an eigenstate of L, the term −(((L− < L >)2)/2)dt evolves
the system to minimize (L− < L >)2. Namely, it tends to force the system into one of the
many possible eigenstates of L. This deterministic tendency is offset by the random diffu-
sive term proportional to the square root of this same term, which is also proportional to dξ.
Thus measurement will tend to initiate a diffusive process, with larger diffusive amplitude
for larger measurement strength S, whose end result will attempt to produce a zero value
of (L− < L >)2. However, the presence of other interactions with the environment may
make the dynamics more complex than a simple monotonic decay, as we will see in the
following section. This simple example will be crucial to understanding the nature of the
decay of Schrödinger Cat states. For these, entanglement produces a value of < L > which
is half-way in between initial possible eigenvalues of L for the separate parts of the bipartite
superposition. The system is thus fundamentally unstable, and its fluctuating trajectories
are inevitably drawn to one of the two collapsed states with equal probability.

Now, in the more general case, [28], there will be many different Lindblads Lk, not all
of which are Hermitian. These add linearly, but each with its own random diffusive phase
and amplitude dξk. Thus the generalization of Eq. (2.1) is

p dψ >= − i

}
H p ψ >dt +

∑

j

(
〈
L†j

〉
Lj − 1

2
L†jLj − 1

2

〈
L†j

〉
〈Lj〉) p ψ > dt

+
∑

j

(Lj − 〈Lj〉) p ψ > dξj (2.2)

In this case the independent random variables dξk must satisfy the independent condi-
tions: << dξk >>= 0, << dξkdξj >>= 0, and << dξ∗kdξj >>= δjkdt. In practical
computations these conditions are met by choosing dξk = (

√
dt)ei2πrk , where the rk are

independent random real variables on (0, 1].

3 Quantum State Diffusion: A Simple Application

In Eq. (2.2), as in Eq. (2.1), it is to be noted that the many quantum expectation values
< Lj > make the system non-linear. The fact that an expectation value <> requires infor-
mation about the full state of the whole system implies that pieces of the wave-functions
seemingly far away from each other in either coordinate or Fock space may strongly af-
fect one another...this being Einstein’s Spooky Action at a Distance. Thus the reader is
warned to expect, and we will indeed see, the effects of such non-locality. Even though
the quantum trajectory may indeed be “observed” step by step as it evolves and diffuses,
the essential mystery of the non-locality of quantum mechanics is actually already built
into the numerical formalism of QSD. Thus, sadly, one learns nothing about how it works
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(or why it exists!) from watching the evolving trajectories. What can be learned is how
to control nonlocality and how to formulate experiments needed to observe such strongly
non-classical effects.

However, in simple cases where such non-locality does not play a strong role, interpre-
tation of the QSD trajectories is straightforward and gives a useful, robust interpretation of
the measurement process. We now consider such an example: the Harmonic Oscillator with
the measurement and decay Lindblads of Section (2). To be explicit, let us again consider
the harmonic oscillator with Hamiltonian H = a†a with eigenvalues 0, 1, 2, 3, . . . , N, . . .

and corresponding Fock space eigenfunctions |N >, where H|N >= N |N >. The os-
cillator is subject to measurements of its quantum state “N” via a measurement Lindblad
LN = S a†a, where “S” represents the strength of the measurement, and at the same time
subject to decay via the Lindblad LD = D a, with a decay rate determined by the constant
“D”.

We now solve the stochastic Eq. (2.2) in the subspace of oscillator states with N tak-
ing the values 0, 1, . . . , 6, with an initial condition N = 5, so that initially < i|ψ >=
(0, 0, 0, 0, 0, 1, 0). Here we have switched to a vector coefficient representation of < i|ψ >

in the basis of number states i = 0, 1, . . . , N , of the single oscillator. With the choice of
measuring strength S = 8, decay constant D = 0.9, and timestep, dt = 0.00002, and
with a good generator of real random numbers on the interval (0,1], the methods of Sec-
tion 2 may be implemented using an Euler type integration scheme. At each time step
p ψ >→p ψ > + p dψ > via Eq.(2.2) with L1 = LN , and L2 = LD, followed by itera-
tion to the next step. The norm of the time evolving complex wave-function is preserved
“on average” due to the chosen statistical properties of dξ. Nonetheless, because the Euler
method is not stable with respect to non-linearities, it is useful to “renormalize” the wave
function on a regular basis. Results of such a computation are shown in Figure (3.1), where
< H > for a single QSD trajectory is shown.

Examination of Fig. (3.1) makes it evident that S = 8 is a “strong” measurement
regime in that the oscillator takes what might be though of as “quantum jumps” between
the quantized energy levels, 5, 4, 3 . . . the initial state being N = 5, as energy is lost.
Between such jumps the measurement Lindblad tends to cause the system to “stick” at or
near an “eigenstate” of the observable being measured (in this case the quantum state of
the system, as indicated by its quantum number N ). From a practical point of view it is the
deterministic term (L− < L >)2 in the measurement Lindblad which causes this effect;
the Hamiltonian H has nothing to do with this sticking of the trajectory near its eigenvalues.
The eigenfunctions of H just happen to be the same as those of the Lindblad in this simple
case. Perhaps this is surprising at first, yet it is the same as in the situation in the laboratory!
The dial or pointer on laboratory apparatus has no insight as to the nature of the quantum
Hamiltonian, it just puts data counts in labeled “boxes” whose dynamics and structure
are classical, not quantum. Nonetheless, there is a temptation to think of Figure (3.1) as
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Figure 3.1: Decay of a quantized harmonic oscillator, with energy level spacing one, under the influ-
ence of simultaneous observation, (S = 8 in this example) and subject to energy loss to an external
bath,with coupling D = 0.9.

showing the evolution of the oscillator as it loses discrete amounts of energy. Alternately,
as in what follows, the system loses particles or quanta from a system of atoms or photons.
In the latter case, N simply counts these particles (or quanta), which are detected by the
apparatus. Coupling to this apparatus is here represented by LN . The abscissa indicates the
number of QSD time steps “saved” in the evolution of this free system, the total number
of steps actually being 100,000, in the calculations of Figures (3.1)-(3.4). In this, and the
following three figures, this amounts to time running from 0 to 2, in units of the natural
scale conjugate to energies 0, 1, 2, . . . The system does decay, and different realizations of
this process would produce a mean first order decay rate proportional to D2. While the
jumps would occur at different times, a smooth mean exponential decay would result from
taking an average over a large ensemble of trajectories. Thus the QSD simulations reconcile
the seemingly disparate views of quantum systems making “jumps” between eigenstates,
and Fermi’s Second Golden Rule with its prediction of exponential decay. This will be
exemplified, in a different context, in Section 6.

In all the examples shown, except the last in Section 6, time propagation is carried out
with the simple Euler method implied in Eq. (1,2). As the Euler method is notably unsta-
ble, the system vector is renormalized to unity at every Euler time step. Renormalization
at every 5th or 10th or 100th step would show essentially similar results for the decaying
quantum state N. Averaging over many such trajectories gives the correct mean decay rate.
The deviation of the norm from unity is shown in Figure (3.2) for each Euler time step
over the time scale of Figure (3.1). In this figure the state is manually renormalized every
hundredth time step. Were it not renormalized at an appropriate frequency, the Euler com-
putation illustrated would eventually become completely unstable and useful information
would not be obtained. Knight et al. [31] (also see references therein) have extended the
Euler method to allow direct integration of Eq. (2.2) in a more stable manner.
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Figure 3.2: In QSD the norm is only preserved “on average.” In the data stream shown, the QSD
wave-function is allowed to propagate for 100 Euler steps and then renormalized. Normalization is
preserved to a few tenths of one percent during these time intervals.
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Figure 3.3: Decay of a quantized harmonic oscillator with energy level spacing “one” under the
influence of simultaneous observation, as measured by S (S = 3 in this example) and subject to
energy loss to an external bath, with coupling strength D = 0.9.

We now investigate the effects of changing the “measurement strength,” S, while hold-
ing the decay rate coupling, D, constant. It is evident, see Figure (3.3), that S = 3 is a
“weaker” measurement regime than the S = 8 of Figure (3.1) in that the oscillator still
takes what might be thought of, now more impressionistically, as “quantum jumps” be-
tween quantized energy levels, 5, 4, 3, 2, . . . as energy is lost, but the energy level spectrum
is much less forcefully defined by the measurement and its Lindblad, LN , than for S = 8.
In between such jumps the measurement Lindblad still tends to cause the system to occa-
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Figure 3.4: Decay of a quantized harmonic oscillator, with energy level spacing “one” under the
influence of simultaneous observation, as measured by S (S = 0.0001 in this example) and subject
to energy loss to an external bath, with coupling strength D = 0.9.

sionally “stick” at or near to an “eigenvalue” being measured, but now much less strongly
than shown in Figure (3.1). The time scale is again that of Figure (3.1). The time aver-
ages of many such trajectories in Figures (3.1) and (3.2) would show essentially the same
mean decay rate, as Dis unchanged. Similar results for very weak coupling are illustrated
in Figure (3.4). It is evident that S = 0.0001 is a “weak” measurement regime in that
the measured oscillator energy simply drifts from higher to lower energy (typically). The
energy does not “stick” near any of the eigenvalues, N , which are being observed via the
measurement Lindblad. Again, the time scale is that of Figure (3.1). In this regime one is
less tempted to think of the apparatus as inducing discrete quantum jumps. Yet, the mean
decay profile of an ensemble of QSD trajectories would still yield approximately the same
decay rate. The Hamiltonian and decay Lindblads are identical in Figures (3.1), (3.3), and
(3.4), strengthening the view that the coupling of the system to the apparatus creates the
actual observation.

4 Decay of a Superposition State of a Single Oscillator, and Introduc-
tion of a Simple Model

Now we consider the time evolution of a superposition of the single oscillator states
discussed in Section 2. The Hamiltonian and Lindblads are precisely the H , LN and LD

of that section; but now we consider the evolution and measurement of N with initial
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normalized single oscillator superposition state < i|ψ > = (1, 0, 0, 0, 0, 0, 1)/
√

2 (again
using the vector coefficient representation of < i|ψ > in the basis of number states i =
0, 1, . . . , N , of the single oscillator). The measurement strength S is now 0.005, and the
decay constant D is 0.2. As < LN > is now initially 3, rather far from the N = 0
or N = 6 of the initial state vector, (LN− < LN >)2 p ψ > is non-vanishing until
the final, fully decayed state (1, 0, 0, 0, 0, 0, 0) is ultimately reached. Additionally, large
fluctuations might be expected because (LN− < LN >)2 can decrease for either gain or
loss of oscillator quanta. The decay of < LN > is plotted in Figure (4.1). Indeed, large
fluctuations are seen, and the value D = 0.2 gives a longer decay time than in the earlier
examples of decay of the N = 5 state shown in Figs. (3.1), (3.3), and (3.4). Note that in
the earlier figures, the actual time evolution is over only 2 time units, rather than the 60
shown in Figs. (4.1) and (4.2).

The eventual goal of this progress report is to present a method for working with 105

to 106 particles or (oscillator quanta, these being interchangeable terms in the Fock space
description). Development of simple approximations will thus be useful. Further, in the
following Sections 5 and 6 we will wish to work with models of Schrödinger Cat states
thought of as “two state” systems: namely with a Fock state |N, 0 > describing all particles
on the left in a double well system (or, equivalently, all excitations in the left oscillator),
a fock state |0, N > equivalent to all particles being on the right, or the macroscopic
superposition of both: p ψ > = (|N, 0 > +|0, N >)/

√
2. We thus attempt to reproduce,

within a two “state model”, the data of Figure (4.1), which is, after all, a system with an
initial superposition of two states, each with particle numbers far from their mean value.

A two state description (which we refer to as a QSD2 approximation) might at first
seem somewhat optimistic, or even completely unrealistic. We therefore test it here in a
novel manner. Linear regression of the data of Figure (4.1) gives an effective first order
decay constant keff =0.07596, which fits the data very well at longer times. This indicates
that, after initial transients, the mean decay is indeed exponential. Defining L2=L2N as the
diagonal 2 by 2 matrix with elements Ne−kefft, which are retained for N = 6 and N = 0
only. The initial vector (1, 0, 0, 0, 0, 0, 1)/

√
2 we now truncate to (1, 1)/

√
2, keeping only

the two non-vanishing initial occupied states, N = 0 and N = 6. Using the value of
k=keff empirically determined from the full QSD calculation of Figure 5, we now carry
out a 2−dimensional QSD. The decay Lindblad is no longer needed because its effect has
been taken into account via the decaying exponentials Ne−kefft. We now follow the QSD2
evolution equation

p dψ >= − i

}
H p ψ > dt− 1

2
(L2− 〈L2〉)2 p ψ > dt + (L2− 〈L2〉) p ψ > dξ (4.1)

We have now replaced the 6 dimensional Fock space of Figure (4.1) with a two di-
mensional truncation, using an empirically decaying 6th state N(= 6 exp(−keff t)). The
Lindblad describing fluctuations between the two remaining states is retained. Can this
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simplification possibly give even a vaguely plausible description of the dynamics? Figure
(4.2) indicates that it is, indeed, possible!
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Figure 4.1: < LN > for ten QSD trajectories (thin lines), and their mean (heavy line), for the initial
superposition state, described above, plotted for 60 time units.
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Figure 4.2: Two state modeling of the dynamics leading to the results of Figure (4.1). The results of
ten QSD2 trajectories, from Eq. (4.1), for < L2N >, (lighter lines) and their mean (heavy line) are
shown.

Comparison of Figures (4.1) and (4.2) clearly indicates that, following initial transients,
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the mean values of the oscillator excitation (or particle number) are in quite reasonable
agreement, although the QSD2 calculation in its initial form certainly exaggerates the fluc-
tuations. The latter effect is because in QSD2 the fluctuations can only take place between
between the N = 0 and N = 6 exp(−keff t) states, whereas fluctuations of this magni-
tude are not seen in the full QSD dynamics of Figure (4.1). This suggests the need for
a renormalization of the fluctuations, which we carry out successfully for the case of the
two-oscillator superposition states considered in the following section.

5 Decay of Schrödinger Cat States of Two Independent Quantum Os-
cillators

Having introduced the QSD model and applied it to a single harmonic oscillator in two
very different initial states, we are now ready to study the main objects of our interest,
namely number entangled states of two independent oscillators. Or, what is essentially
the same problem with the added constraint of number conservation, number entangled
states of bosons confined in a double well. See the theoretical work of Khan, Reinhardt
and Perry [23, 24, 34] where coherent highly excited states of a BEC in a double well are
discussed theoretically. Some of these are also seen experimentally. Namely, Oberthaler et
al. [1] have observed Josephson oscillations of BECs in a double well system and also the
self-trapped stationary excited states wherein an excess of particles are trapped in either the
Left or Right well. In the latter case, particles do not tunnel even though tunneling would
be possible for less highly excited states. These non-linear self-trapped states are of the
form of symmetric pairs: |N − n, n > and |n,N − n >, with n << N . Here the notation
|P,Q > indicates N = P in the Left potential well, and N = Q in the Right well. Number
conservation for atomic BECs implies P +Q = N ; however, for the two oscillator problem
we will only require P, Q < N,, i.e., that each oscillator has maximal excitation N just as
in the examples of Sections (3,4). As these self-trapped states are exactly degenerate, we
may write the macroscopic superposition states in the form

(|N − n, n > +/− |n,N − n >)/
√

2. (5.1)

When N >> n, these are referred to as macroscopic superposition states, number en-
tangled states, or (more loosely) as Schrödinger Cat states. We would like to “photograph”
them via phase contrast imaging, a la Ketterle et al. [3]. The +/− linear combinations will
be slightly split by tunneling, similar to the splittings observed in superpositions of counter
propagating super-conducting loops [13, 41], but such a small energy difference would be
difficult to observe in a double well BEC.

Considering the system of two independent and uncoupled oscillators, of the type ex-
amined in Sections (3,4) (rather than the number conserving double well BEC itself) as a
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model system, we examine the fate of such macroscopic superposition states under obser-
vation of the quanta in the Left or Right oscillator. The appropriate Lindblad is LR

N = S

a†RaR , and the number in the Left well via Lindblad LL
N = S a†LaL where the subscripts

L and R on the creation/annihilation operators indicate operators which operate indepen-
dently in each well. Similarly, there will be independent decay Lindblads, LL

D = DaL and
LR

D = DaR for the Left and Right wells respectively.

As discussed further in section 6, where a more fully realistic BEC example is illus-
trated, the scattering and absorption of light by atoms are connected via the optical theorem
(alternately, the real and imaginary parts of the index of refraction are connected via the
Kramers-Krönig relationship). Because particle detection and loss via off-resonant absorp-
tion are connected, both must be considered simultaneously. Furthermore, the values of S

and D are not independent. In this section we will choose S and D freely for pedagogical
clarity. In the first example we take D = 0.2, and S = 0.005; and in the second, D = 0.02,
and S = 0.005.

Figure (5.1) shows the QSD time evolution of the initial Cat state of the two oscilla-
tors (|6, 0 > +|0, 6 >)/

√
2 within the full Fock space, i.e., all states |P, Q >, such that

P, Q <= 6. This gives a dimensionality of 49. The coefficients used are D = 0.2 and
S = 0.005. The Hamiltonian term from Eq. (2.2) is simply omitted because its effect is
negligible (i.e., we neglect tunneling). The dynamics are then entirely controlled by the
four independent Lindblads, and their independent stochastic fluctuations are controlled,
in turn, by the four independent sequences of random complex diffusive increments, dξk.
Normalization of the wave-function then conveys information from one oscillator to the
other (or, in a BEC, from one part of the condensate to the other) via the entanglement
between the otherwise non-interacting oscillators. The is precisely the spooky action at a
distance of Einstein, Poldoski, and Rosen [32].

As in the case of the superposition state of the single oscillator considered in Section 4,
(|6, 0 > +|0, 6 >)/

√
2 is not an eigenstate of either LR

N or LL
N . Thus (L− < L >)2 will

be large and non-vanishing until the system collapses to an eigenstate of LL
N or LR

N . The
eventual collapse of the state into one well or the other is certain, but occurs unpredictably
(with a 50 − 50 probability for identical oscillators). All such Cat states are therefore
unstable in QSD, just as in nature. What we are attempting to understand and model is
the time dependence of this collapse, in order to determine whether phase contrast imaging
could detect the initial superposition state before causing it to collapse.

In the presence of decay, the collapsed state will have also lost particles (or excitations
of the oscillators), and both effects must be treated simultaneously. The large fluctua-
tions from the average value of 3 particles in each well are easily seen. The fluctuations
illustrated run from zero particles on the Left (a fully collapsed state with all remaining
excitation belonging to the Right oscillator) up to about 4. Examination of the actual state
of the system indicates that after 3 or 4 units of time there are only 4 total quanta of exci-
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Figure 5.1: Twenty QSD trajectories (with S = 0.005 and D = 0.2), each starting in the superpo-
sition state (|6, 0 > +|0, 6 >)/

√
2 and their mean value. What is shown is the number of quanta in

each oscillator, namely < LL
N > and < LL

N >, as a function of time along each QSD trajectory.

tation remaining, so the maximum of “four” indicates a collapse to the Left-localized state
|4, 0 >, which then continues to decay.

In the case of two oscillators with the same maximal excitation of N = 6, the 49 by
49 stochastic matrix problem is easily solved. This would not be the case were N on the
order of 105 or 106, so approximations must be developed. The effective decay rate cor-
responding to the data of Figure (5.1), keff = 0.06108, is used to develop and explore a
two state model analogous to that of Section 4. We take the matrix representations of LL

N

and LR
N to be diagonal, where the diagonal elements are given by (0, 1, 2, 3 . . . , N)e−kefft).

Each element of the diagonal matrix thus decays with the same rate, obtained from the
QSD computation of Figure (5.1). The system is then truncated to a 2 by 2 representation
consisting only of the Fock states |N, 0 > and |0, N >; the initial Cat vector becomes
(1, 1)/

√
2. Again taking N = 6 as the maximal excitation of either oscillator, S = 0.005,

and omitting the Lindblads LL
D and LR

D because the effect of decay is now included em-
pirically through keff, a QSD2 computation is carried out. The results are shown in Figure
(5.2).

Examination of Figure (5.2) shows that the decay has been properly captured by the
choice of keff. However, compared to the full QSD data of Figure (5.1), the measurement
with strength S = 0.005 has resulted in considerably less phase diffusion. The superposi-
tion state is thus far more stable with respect to collapse than in the full QSD model. We
conclude that both the D and S Lindblads contribute to destruction of the superposition
state. In a model containing the D Lindblad only through the empirically determined rate
constant keff, S must be increased to properly model the collapse of the initial superposi-
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Figure 5.2: QSD2 simulation of the collapse of the superposition state (|6, 0 > +|0, 6 >)/
√

2 (with
S = 0.005 and D = 0.02) with the original value of S = 0.005. As in Figure (5.1), < LL

N > and
< LR

N > are shown as a function of time.
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Figure 5.3: QSD2 computation as in Figure (5.2), but with S = 0.04.

tion state. This is not surprising. Figures (5.3) and (5.4) show the results of repeating the
QSD2 computation of Figure (5.2) with values of S = 0.04 and S = 0.05 respectively.
These two values give decay rates and fluctuations in expectation values of the number op-
erators which nicely bracket the full QSD results of Figure (5.1), indicating that a 2 state
model with an empirical decay constant and a “renormalized” measurement strength can
accurately reproduce the results of a 49 dimensional computation using a reduced 2 dimen-
sional space. In this case the S value was increased by a factor of 10 to account for the
fluctuations absent in the QSD2 computation. We would expect that a smaller value of D,
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which leads to slower decay and reduces the importance of the D Lindblad fluctuations,
would require a much less dramatic renormalization of S.
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Figure 5.4: QSD2 computation as in Figure (5.2), but with S = 0.05. The two values of S in Figures
(5.3) and (5.4) exhibit fluctuations with magnitudes that nicely bracket the full QSD results of Figure
(5.1).

To check this hypothesis, a full QSD 49 state calculation with the same initial super-
position state, but now with D = 0.02 (rather than 0.2), was carried out (S = 0.005 is
unchanged). The results are shown in Figure (5.5).

0 1 2 3 4 5 6
2.0

2.5

3.0

3.5

4.0

Figure 5.5: Twenty QSD trajectories (with S = 0.005 and D = 0.02), each starting in the superpo-
sition state (|6, 0 > +|0, 6 >)/

√
2 and their mean value. What is shown is the number of quanta in

each oscillator, < LL
N > and < LR

N >, as a function of time, along each QSD trajectory.

Figure (5.6) shows the results of a QSD2 computation, as described above, but using
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Figure 5.6: QSD2 computation as an approximation to the full QSD simulation of Figure (5.5). Here
D = 0.005 as in the original simulation.

the original value of S = 0.005. This indicates that, for the smaller value of D, the
fluctuations induced by the “S” Lindblad indeed dominate and no renormalization of S is
necessary to obtain near quantitative agreement between the decay and the rate of collapse
during measurement of the superposition state. The state is in fact rather more stable for
the smaller value of D.
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Figure 5.7: Density matrix for a number entangled superposition state at t = 0.
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Figure 5.8: Density matrix of a number entangled superposition state at a time half way to full
collapse, t = T/2. Comparison of Figures (5.7)-(5.9) indicates that collapse of the entangled state is
not simply monotonic.
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Figure 5.9: Density matrix of of a number entangled superposition state at the time of full collapse,
t = T .

Another way to visualize the decay of a superposition state such as
(|6, 0 > +|0, 6 >)/

√
2 is to examine the time evolution of the density matrix. This

is illustrated in Figures (5.7)-(5.9), in which D = 0.02 and S = 1. This larger value
of S gives a very rapid oscillation, followed by decay of the superposition state. The
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calculations shown are full QSD computations, but it is evident that a QSD2 2-state model
would suffice to reproduce the whole dynamics because the phase diffusional collapse is
so rapid that the decay barely plays any role at all. Note the oscillation in population, from
the Left to the Right oscillator and back, before the final destruction of the superposition.

6 A More Realistic Application to a Double Well BEC and Conclu-
sions

QSD simulations for the ground state of a double well BEC, where the measurement
of the particle number N in either of the wells causes a phase fluctuation of the coherent
BEC in that well (simplistically explained by the number-phase uncertainty relationship,
∆N∆θ > 1), have been carried out by Dalvit et al. [8]. The resulting phase shift corre-
sponds exactly with the quantum back-action on the system resulting from measuring N

to higher precision, thus increasing the phase uncertainty. This phase shift subsequently
induces an AC Josephson effect in the double well system, causing particles to flow in a
random, oscillatory manner between the two wells. See Figure (3.1) of [8]. Dalvit et al.
also give estimates of S and D for such a double well system with bosonic Rubidium-87.
Note carefully that S and D, as used in the present report, are the square roots of the “phase
diffusion” and “spontaneous emission” rates calculated there. Recall also that S and D are
not independent, being connected via the optical theorem. An extended discussion of this
last point appears in [16, 21, 22], where the explicit relationships are worked out. For a
typical Rb BEC, Dalvit et al. [8] estimate that S2 = 10−6 and D2 = 10−5. They then
correctly argue that for large N , 105 or 106, phase diffusion dominates because the mea-
surement and decay Lindblads scale as N and

√
N , respectively. Thus, even though the

decay rate constant is typically larger than the phase diffusion rate constant, phase diffusion
effects actually dominate the solution of Eq. (2.2) when the scaling of the Lindblads with
respect to N is included. This suggests that a QSD2 model may well suffice, even though
hundreds to thousands of particles may be lost via spontaneous emission if the initial N is
on the order of 105 (Ketterle estimates that 0.1% to 1% of the particles are lost in a single
phase contrast imaging “shot” [3]). The validity of such an approximation is further sup-
ported by the results shown in Figures (4.1), (4.2), (5.1)-(5.4), where the rate of quenching
for a superposition state, albeit with N = 6, not N = 105, is seen to be modeled well
by the QSD2 approximation. Even though many particles are lost, mean decay rates and
fluctuation behavior of the superposition states are seen to be well modeled.

Figure (6.1) shows such fluctuations in a preliminary calculation of the QSD2 time
evolution for the state (|N − n, n > +|n, N − n >)/

√
2, subject to the “S” Lindblad and

with the empirical decay mechanism of the QSD2 method, for N = 105 and n = 104 over a
time interval of 0.75µs. Physically plausible values of S and D are used, as in, for example,
[8]. It is clear that experimental observation is at least a possibility, as the phase contrast
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Figure 6.1: QSD2 time evolution of the probability |cL(t)|2, in the normalized two-state expansion
cL(t)|N − n, n > +cR(t)|n, N − n >, indicating that over a time of 0.75 µs that phase diffu-
sion back-action has not destroyed the macroscopic superposition state. Here N = 100, 000 and
n = 10, 000, so phase contrast imaging, capturing 100,000 particles in two places at once, is thus a
possibility.

microscopy of [3] takes place on a time scale of 1 µs. The key information conveyed in
Figure (6.1) is that on the time-scale of 1 µs the superposition state is not quenched. This
single QSD2 trajectory is typical for these values of S and N and for this time-scale of
observation. Thus phase contrast images showing the bulk of the condensate to be in both
wells at the same time should be possible. The value of S used in the simulation of Figure
(6.1) is, however, an order of magnitude smaller than that of [8]; such experiments will
indeed be challenging.

In summary, Quantum State Diffusion has been shown to allow simulation of the time
dependent behavior of a double well gaseous BEC during the quenching of a microscopic
(N = 6) or a macroscopic (N = 100, 000) superposition state (Schrödinger Cat). Fur-
ther, as the particle measurement Lindblad (the “S” Lindblad) dominates for large N , it is
phase diffusion, rather than particle loss, that kills the Cat. This being the case, particle
loss may be handled empirically using the newly introduced QSD2 2-state approximation,
making applications to large N systems possible. Preliminary application to a system with
N = 100, 000 indicates that imaging of a macroscopic superposition state in two spatially
separate potential wells at once is within the realm of experimental possibility.
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