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1 Introduction

The exact solutions of nonlinear partial differential
equations (NLPDEs) have been investigated by many
authors who are interested in nonlinear phenomena which
exist in all fields including either the scientific works or
engineering fields, such as fluid mechanics, chemical
physics, chemical kinematics, plasma physics, elastic
media, optical fibers, solid state physics, biology,
biophysics and so on. The research of traveling wave
solutions of some nonlinear evolution equations derived
from such fields played an important role in the analysis
of some phenomena.

The theory of nonlinear evolution equations (NLEEs)
has come a long way through. There are a large number of
nonlinear evolution equations that are studied nowadays.
These equations are especially generated as a generalized
and combined versions of the existing version of the
well-known equations like the Korteweg-de Vries (KdV)
equations [1], sine-Gordon equations and many more.

The objective of our present work is to apply the
extended trial equation method to the two generalized
nonlinear equations: the KdV equation and the
(N + 1)-dimensional double sinh-Gordon equation. The
KdV equation has several connections to physical
problems. It describes the evolution one-dimensional

waves in many physical settings, including: shallow-water
waves with weakly nonlinear restoring forces, acoustic
waves on a crystal lattice, and more. The
(N + 1)-dimensional double sinh-Gordon equation is an
important model equation and plays an important role in
physics. It has numerous applications in physics, such as
nonlinear optics, Josephson array, ferromagnetic
materials, charge density waves, and the study of liquid
helium, and so on. For example, this equation arises in
resonant nonlinear optics in the theory of self-induced
transparency when the atoms of the resonant medium
have degenerate energy levels.

Many powerful methods, such as the Backlund
transformation, the inverse scattering method [2], bilinear
transformation, the tanh-sech method [3], the extended
tanh method, the pseudo-spectral method [4], the trial
function and the sine-cosine method [5], Hirota method
[6], tanh-coth method [7,8], the exponential function
method [9], (G′/G)-expansion method [10,11],
homogeneous balance method [12], the trial equation
method [13,14,15,16,17,18,19,20,21,22] have been
used to investigate nonlinear partial differential equations
problems. The types of solutions of NLEEs, that are
integrated using various mathematical techniques, are
very important and appear in various areas of physics,

∗ Corresponding author e-mail:mehmet.ekici@bozok.edu.tr

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/msl/040210


158 A. Sonmezoglu et. al. : New Exact Solutions to the KdV and(N +1)-dimensional...

applied mathematics and engineering. There are a lot of
nonlinear evolution equations that are integrated using
these and other mathematical methods.

In this paper, the KdV equation with power law
nonlinearity and double sinh-Gordon equation will be
studied by extended trial equation. By virtue of the
solitary wave ansatz method, an exact 1-soliton solution
will be obtained. The extended trial equation method will
be employed to back up our analysis in obtaining exact
solutions with distinct physical structures.

2 The extended trial equation method

Step 1. For a given nonlinear partial differential equation
with rank inhomogeneous

P(u,ut ,ux,uxx, . . . ) = 0, (1)

take the wave transformation

u(x1, . . . ,xN , t) = u(η), η = λ

(

N

∑
j=1

x j − ct

)

, (2)

whereλ 6= 0 andc 6= 0. Substituting Eq. (2) into Eq. (1)
yields a nonlinear ordinary differential equation,

N(u,u′,u′′, ...) = 0. (3)

Step 2. Take transformation and trial equation as follows:

u =
δ

∑
i=0

τiΓ i, (4)

in which

(Γ ′)2 = Λ(Γ ) =
Φ(Γ )

Ψ(Γ )
=

ξθ Γ θ + ...+ ξ1Γ + ξ0

ζεΓ ε + ...+ ζ1Γ + ζ0
. (5)

whereτi (i = 0, ...,δ ), ξi (i = 0, ...,θ ) andζi (i = 0, ...,ε)
are constants. Using the relations (4) and (5), we can find

(u′)2 =
Φ(Γ )

Ψ(Γ )

(

δ

∑
i=0

iτiΓ i−1

)2

, (6)

u′′ =
Φ ′(Γ )Ψ(Γ )−Φ(Γ )Ψ ′(Γ )

2Ψ2(Γ )

(

δ

∑
i=0

iτiΓ i−1

)

+
Φ(Γ )

Ψ(Γ )

(

δ

∑
i=0

i(i−1)τiΓ i−2

)

, (7)

where Φ(Γ ) and Ψ(Γ ) are polynomials. Substituting
these terms into Eq. (3) yields an equation of polynomial
Ω(Γ ) of Γ :

Ω(Γ ) = ρsΓ s + ...+ρ1Γ +ρ0 = 0. (8)

According to the balance principle we can determine a
relation ofθ , ε, andδ . We can take some values ofθ , ε,
andδ .
Step 3. Let the coefficients ofΩ(Γ ) all be zero will yield
an algebraic equations system:

ρi = 0, i = 0, ...,s. (9)

Solving this equations system (9), we will determine the
values ofξ0, ...,ξθ ; ζ0, ...,ζε andτ0, ...,τδ .
Step 4. Reduce Eq. (5) to the elementary integral form,

±(η −η0) =

∫

dΓ
√

Λ(Γ )
=

∫

√

Ψ(Γ )

Φ(Γ )
dΓ . (10)

Using a complete discrimination system for polynomial to
classify the roots ofΦ(Γ ), we solve the infinite integral
(10) and obtain the exact solutions to Eq. (3). Furthermore,
we can write the exact traveling wave solutions to Eq. (1)
respectively.

3 Applications of the extended trial equation
method

To illustrate the necessity of our new approach concerning
the trial equation method, we introduce two case studies.

3.1 The KdV equation

We start our application by considering the KdV equation
with power-law nonlinearity [23,24],

ut +α(n+1)unux +β uxxx = 0, (11)

whereα andβ are two nonzero coefficients andn > 2. We
note that whenn = 1 andα = 3, Eq. (11) is known as the
KdV equation and whenn = 2 andα = 2 it is known as
the mKdV equation. Now as far as the domain restriction
is considered, it must be very clearly stated thatn 6= 4 (see
[25] for more details).

In order to look for solutions of Eq. (11), we make the
transformation

u(x, t) = u(η), η = x− ct, (12)

wherec is an arbitrary constant. Then, Eq. (13) becomes

−cu′+α(n+1)unu′+β u′′′ = 0. (13)

Integrating Eq. (13) ones with respect toη and setting the
integration constant equal to zero, we obtain:

−cu+αun+1+β u′′ = 0. (14)

Eq. (14), with the transformation

u = ω1/n, (15)
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reduces to

nβ ωω ′′+β (1− n)(ω ′)2− cn2ω2+ n2αω3 = 0. (16)

Substituting Eqs. (6) and (7) into Eq. (16) and using
balance principle yieldsθ = ε + δ +2.
If we takeθ = 3, ε = 0 andδ = 1, then

(ω ′)2 =
τ2

1(ξ3Γ 3+ ξ2Γ 2+ ξ1Γ + ξ0)

ζ0
, (17)

whereξ3 6= 0, ζ0 6= 0. Respectively, solving the algebraic
equation system (9) yields

ζ0 = ζ0, ξ2 = ξ2, τ0 = τ0, τ1 = τ1,

ξ0 =
τ2

0(4n2αζ0τ0+β ξ2(n+2))

β τ2
1(n+2)

,

ξ1 =
2τ0(3n2αζ0τ0+β ξ2(n+2))

β τ1(n+2)
,

ξ3 =−2n2αζ0τ1

β (n+2)
, c =

6n2αζ0τ0+β ξ2(n+2)
n2ζ0(n+2)

.

(18)

Substituting these results into Eq. (5) and Eq. (10), we can
write

±(η −η0) =

√

−β (n+2)
2n2ατ1

×
∫

dΓ
√

Γ 3+ ℓ2Γ 2+ ℓ1Γ + ℓ0

,

(19)
where

ℓ2 =−β ξ2(n+2)
2n2αζ0τ1

,

ℓ1 =−τ0(3n2αζ0τ0+β ξ2(n+2))

n2αζ0τ2
1

,

ℓ0 =−τ2
0(4n2αζ0τ0+β ξ2(n+2))

2n2αζ0τ3
1

.

(20)

Integrating Eq. (19), we obtain the solutions to the Eq. (11)
as follows:

±(η −η0) =−2

√

A
Γ −α1

, (21)

±(η −η0) = 2

√

A
α2−α1

arctan

√

Γ −α2

α2−α1
, α2 > α1,

(22)

±(η −η0) =

√

A
α1−α2

ln

∣

∣

∣

∣

√
Γ −α2−

√
α1−α2√

Γ −α2+
√

α1−α2

∣

∣

∣

∣

,

α1 > α2,
(23)

±(η −η0) = 2

√

A
α1−α3

F(ϕ , l), α1 > α2 > α3, (24)

where

F(ϕ , l) =
∫ ϕ

0

dψ
√

1− l2sin2 ψ
, ϕ = arcsin

√

Γ −α3

α2−α3
,

(25)
and

l2 =
α2−α3

α1−α3
, A =−β (n+2)

2n2ατ1
. (26)

Also α1, α2 and α3 are the roots of the polynomial
equation

Γ 3+
ξ2

ξ3
Γ 2+

ξ1

ξ3
Γ +

ξ0

ξ3
= 0. (27)

Substituting the solutions (21), (22), (23) into (4) and (15),
denotingτ̄ = τ0+ τ1α1, and setting

v =
6n2αζ0τ0+β ξ2(n+2)

n2ζ0(n+2)
, (28)

we get

u(x, t) =

[

τ̄ +
4τ1A

(x− vt −η0)2

]
1
n

, (29)

u(x, t)=
{

τ̄ + τ1(α2−α1)
[

1− tanh2
(

∓B
(

x− vt −η0
))]}

1
n ,

(30)

u(x, t) =
{

τ̄ + τ1(α1−α2)cosech2
(

B
(

x− vt
))}

1
n , (31)

whereB= 1
2

√

α1−α2
A . If we takeτ0 =−τ1α1, that isτ̄ = 0,

andη0 = 0, then the solutions (29), (30), (31) can reduce
to rational function solution

u(x, t) =

(

2
√

τ1A
x− vt

)

2
n

, (32)

1-soliton solution

u(x, t) =
A1

cosh
2
n [∓B(x− vt)]

, (33)

and singular soliton solution

u(x, t) =
A2

sinh
2
n [B(x− vt)]

, (34)

where

A1 = [τ1(α2−α1)]
1
n , A2 = [τ1(α1−α2)]

1
n . (35)

Here,A1 andA2 are the amplitudes of the solitons, while
v is the velocity andB is the inverse width of the solitons.
Thus, we can say that the solitons exist forτ1 > 0.
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Fig. 1: Profile of a numerical solution of (33) at n = 2, A1 =
1, B = 1 whilev = 1.

-1

0

1

2

3

x

1.0

1.5

2.0

2.5

3.0

t

-4

-2

0

2

4

u

Fig. 2: Profile of a numerical solution of (34) at n = 2, A2 =
1, B = 1 whilev = 1.

3.2 The (N +1)-dimensional double
sinh-Gordon equation

Double sinh-Gordon equation is given by [26,27]

N

∑
j=1

ux jx j − utt −αsinhu−β sinh2u= 0. (36)

We look for solutions of Eq. (36) by considering the
transformation

u(x1, . . . ,xN , t)= u(η), η = λ

(

N

∑
j=1

x j − ct

)

, λ 6= 0, c 6= 0.

(37)
Using the transformation (37), Eq. (36) can be rewritten in
the following form:

λ 2(N − c2)u′′−αsinhu−β sinh2u= 0, (38)

where the prime denotes derivative with respect toη .Next,
let us consider the transformation

u = lnω , (39)

then we obtain

u′′ =
ωω ′′− (ω ′)2

ω2 ,

sinhu =
ω −ω−1

2
, sinh2u =

ω2−ω−2

2
.

(40)

By substituting Eq. (40) in Eq. (38), we can rewrite the
(N +1)-dimensional double sinh- Gordon Eq. (36) in the
following form:

2λ 2(N−c2)(ωω ′′−(ω ′)2)−α(ω3−ω)−β (ω4−1)= 0.
(41)

Substituting Eqs. (6) and (7) into Eq. (41) and using
balance principle yieldsθ = ε +2δ +2.
If we takeθ = 4, ε = 0 andδ = 1, then

(ω ′)2 =
τ2

1(ξ4Γ 4+ ξ3Γ 3+ ξ2Γ 2+ ξ1Γ + ξ0)

ζ0
, (42)

whereξ4 6= 0, ζ0 6= 0. Respectively, solving the algebraic
equation system (9) yields

ξ1 = ξ1, ξ2 = ξ2, ζ0 = ζ0, τ0 = τ0, τ1 = τ1,

ξ0 =
ξ1τ1(−2ατ0+4ατ3

0−β+5β τ4
0)−2ξ2τ0(τ2

0−1)(β+τ0(α+β τ0))

2τ2
1(α(3τ2

0−1)+4β τ3
0)

,

ξ3 =
τ1(2ξ2τ0−ξ1τ1)(α+2β τ0)

α(3τ2
0−1)+4β τ3

0
, ξ4 =

β τ2
1(2ξ2τ0−ξ1τ1)

2(α(3τ2
0−1)+4β τ3

0)
,

c =± 1
λ

√

ζ0(α−3ατ2
0−4β τ3

0)+λ 2(2ξ2τ0−ξ1τ1)N
2ξ2τ0−ξ1τ1

.

(43)
Substituting these results into Eq. (5) and Eq. (10), we can
write

±(η −η0) =

√

2ζ0(α(3τ2
0 −1)+4β τ3

0)

β τ2
1(2ξ2τ0− ξ1τ1)

×
∫

dΓ
√

Γ 4+ ℓ3Γ 3+ ℓ2Γ 2+ ℓ1Γ + ℓ0

, (44)

where

ℓ3 =
2(α+2β τ0)

β τ1
,

ℓ2 =
2ξ2(α(3τ2

0−1)+4β τ3
0)

β τ2
1(2ξ2τ0−ξ1τ1)

,

ℓ1 =
2ξ1(α(3τ2

0−1)+4β τ3
0)

β τ2
1(2ξ2τ0−ξ1τ1)

,

ℓ0 =
ξ1τ1(−2ατ0+4ατ3

0−β+5β τ4
0)−2ξ2τ0(τ2

0−1)(β+τ0(α+β τ0))

β τ4
1(2ξ2τ0−ξ1τ1)

.

(45)
Integrating Eq. (44), we obtain the solutions to the Eq. (36)
as follows:

±(η −η0) =− B
Γ −α1

, (46)
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±(η −η0) =
2B

α1−α2

√

Γ −α2

Γ −α1
, α2 > α1, (47)

±(η −η0) =
B

α1−α2
ln

∣

∣

∣

∣

Γ −α1

Γ −α2

∣

∣

∣

∣

, (48)

±(η −η0) =
B

√

(α1−α2)(α1−α3)

× ln

∣

∣

∣

∣

∣

√

(Γ −α2)(α1−α3)−
√

(Γ −α3)(α1−α2)
√

(Γ −α2)(α1−α3)+
√

(Γ −α3)(α1−α2)

∣

∣

∣

∣

∣

,

α1 > α2 > α3,
(49)

±(η −η0) = 2

√

B
(α1−α3)(α2−α4)

F(ϕ , l),

α1 > α2 > α3 > α4,

(50)

where

F(ϕ , l) =
∫ ϕ

0
dψ

√

1− l2sin2 ψ
,

ϕ = arcsin

√

(Γ −α1)(α2−α4)

(Γ −α2)(α1−α4)
,

l2 =
(α2−α3)(α1−α4)

(α1−α3)(α2−α4)
,

B =

√

2ζ0(α(3τ2
0 −1)+4β τ3

0)

β τ2
1(2ξ2τ0− ξ1τ1)

.

(51)

Also α1, α2, α3 and α4 are the roots of the polynomial
equation

Γ 4+
ξ3

ξ4
Γ 3+

ξ2

ξ4
Γ 2+

ξ1

ξ4
Γ +

ξ0

ξ4
= 0. (52)

Substituting the solutions (46), (47), (48), (49) into (4) and
(39), and setting

v =± 1
λ

√

ζ0(α −3ατ2
0 −4β τ3

0)+λ 2(2ξ2τ0− ξ1τ1)N

2ξ2τ0− ξ1τ1
,

(53)
we obtain

u(x1, . . . ,xN , t)= ln























τ0+ τ1α1∓
τ1B

λ

(

N

∑
j=1

x j − vt − η0

λ

)























,

(54)

u(x1, . . . ,xN , t) = ln{τ0+ τ1α1

+
4B2(α2−α1)τ1

4B2−
[

λ (α1−α2)

(

N

∑
j=1

x j − vt − η0

λ

)]2



























, (55)

u(x1, . . . ,xN , t) = ln{τ0+ τ1α2

+
(α2−α1)τ1

exp

(

λ (α1−α2)

B

(

N

∑
j=1

x j − vt − η0

λ

))

−1























, (56)

u(x1, . . . ,xN , t) = ln{τ0+ τ1α1

+
(α1−α2)τ1

exp

(

λ (α1−α2)

B

(

N

∑
j=1

x j − vt − η0

λ

))

−1























, (57)

u(x1, . . . ,xN , t) = ln{τ0+ τ1α1

− 2(α1−α2)(α1−α3)τ1

2α1−α2−α3+(α3−α2)cosh

(

B1

(

N

∑
j=1

x j − vt

))























,

(58)

whereB1 =
λ
√

(α1−α2)(α1−α3)

B . If we takeτ0 =−τ1α1 and
η0 = 0, then the solutions (54), (55), (56), (57), (58) can
reduce to rational function solutions

u(x1, . . . ,xN , t) = ln























∓ τ1B

λ

(

N

∑
j=1

x j − vt

)























, (59)

u(x1, . . . ,xN , t) = ln
4B2(α2−α1)τ1

4B2−
[

λ (α1−α2)

(

N

∑
j=1

x j − vt

)]2 ,

(60)
traveling wave solutions

u(x1, . . . ,xN , t) = ln

{

(α2−α1)τ1

2

×
[

1∓ coth

(

λ (α1−α2)

2B

(

N

∑
j=1

x j − vt

))]}

, (61)

and soliton solution

u(x1, . . . ,xN , t) = ln
A3

D+ cosh

[

B1

(

N

∑
j=1

x j − vt

)] , (62)
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where

A3 =
2(α1−α2)(α1−α3)τ1

α3−α2
, D=

2α1−α2−α3

α3−α2
. (63)

Here, A3 is the amplitude of the soliton, whilev is the
velocity andB1 is the inverse width of the soliton. Thus,
we can say that the solitons exist forτ1 < 0.
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Fig. 3: Profile of a numerical solution of (62) at N = 1, A3 =
2, B1 = 0.1 andD < 0 whilev = 1.
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4 Conclusion

In this paper we have used the extended trial equation
method to derive exact solutions with distinct physical
structures. This method with symbolic computation on
the computer is used for constructing broad classes of
periodic and soliton solutions of two nonlinear equations
arising in nonlinear physics. Basic features of the
1-soliton solution and singular soliton solution were
analytically and numerically discussed. We proposed a
new trial equation method as an alternative approach to
obtain the analytic solutions of nonlinear partial
differential equations with generalized evolution in
mathematical physics. We use the extended trial equation
method aided with symbolic computation to construct the
soliton solutions, the elliptic function and rational
function solutions for the KdV equation with power law
nonlinearity and (N + 1)-dimensional double
sinh-Gordon equation.
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University, and Ph.D. degree
from Erciyes University. He

is interested in summability of Fourier series, elliptic
functions and integrals, probability and statistics,
nonlinear partial differential equations in Mathematical
Physics, nonlinear sciences.

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 2, 157-163 (2015) /www.naturalspublishing.com/Journals.asp 163

Mehmet Ekici is a
Ph.D. student in Department
of Mathematics at Erciyes
University. He received
his M.Sc. degree from
Adnan Menderes University
and B.Sc. degree from
Celal Bayar University. He
is a Lecturer at Department
of Mathematics, Bozok

University, Yozgat, Turkey. He is interested in numerical
analysis, analytical and numerical solutions of the linear
or nonlinear partial differential equations, nonlinear
sciences, mathematical physics, mathematical biology,
control theory and its applications.

Elsayed M. E. Zayed,
Professor of Mathematics
(from 1989 till now)
at Zagazig University.
His interests are the nonlinear
PDEs in Mathematical
Physics, Inverse problems
in differential equations,
Nonlinear difference
equations. He Published

about 225 articles in famous International Journals around
the world. He was the head of Mathematics Department at
Zagazig University, Egypt from 2001 till 2006. He is an
Editor of WSEAS Transaction on Mathematics. He has
got some Mathematical prizes by the Egyptian Academy
of scientific research and Technology. He got the Medal
of Science and Arts of the first class from the president of
Egypt. He got the Medal of Excellent of the first class
from the president of Egypt. He is one of the Editorial
Board of the Punjab University Journal of Mathematics.
He have reviewed many articles for many international
Journals . He has got his BSC of Mathematics from Tanta
University, Egypt 1973 . He has got two MSC degrees in
Mathematics. The first one from Al-Azher University,
Egypt 1977, while the second one from Dundee
University, Scotland, UK 1978. He has got his PHD in
Mathematics from Dundee University, Scotland, UK
1981. He has got the Man of the Year award, (1993), by
the American Biographical, Institute, U.S.A. He has got
the Research Fellow Medal, (1993), by the American
Biographical Institute, U.S.A. The Curriculum Vitae of
Professor E.M.E. Zayed has been published by Men of
achievement of the International Biographical center,
Cambridge, vol. 16, (1995), p.534 The Curriculum Vitae
of Professor E.M.E. Zayed has been published by
Dictionary of International Biography of the International
Biographical center, Cambridge, vol. 23, (1995), p.714.
He was a Professor of Mathematics at Taif University,
Saudi Arabia (2006-2010).

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The extended trial equation method
	Applications of the extended trial equation method
	Conclusion

