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Abstract: This paper gives upper bounds for ruin probabilities of generalized risk processes under rates of interest with homogenous
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1 Introduction

In recent years, the classical risk process has been extended to more practical and real situations. For most of the
investigations treated in risk theory, it is very significant to deal with the risks that rise from monetary inflation in the
insurance and finance market, and also to consider the operation uncertainties in administration of financial capital.
Teugels and Sundt [9,10] considered the effects of constant rate on the ruin probability under the compound Poisson risk
model. Yang [12] built both exponential and non exponential upper bounds for ruin probabilities in a risk model with
constant interest force and independent premiums and claims. Xu and Wang [11] given upper bounds for ruin
probabilities in a risk model with interest force and independent premiums and claims with Markov chain interest rate.
Cai [1] studied the ruin probabilities in two risk models, with independent premiums and claims with the interest rates is
formed a sequence of i.i.d random variables. In Cai [2], the author studied the ruin probabilities in two risk models, with
independent premiums and claims and used a first order autoregressive process to model the rates of in interest. In Cai
and Dickson [3], the authors given Lundberg inequalities for ruin probabilities in two discrete- time risk process with a
Markov chain interest model and independent premiums and claims. Fenglong Guo and Dingcheng Wang [4] used
recursive technique to build Lundberg inequalities for ruin probabilities in two discrete- time risk process with the
premiums, claims and rates of interest have autoregressiveoving average (ARMA) dependent structures simultaneously.
P. D. Quang [5] used martingale approach to build upper bounds for ruin probabilities in a risk model with interest force
and independent interest rates and premiums, Markov chain claims. P. D. Quang [6] used martingale approach to build
upper bounds for ruin probabilities in a risk model with interest force and independent interest rates, Markov chain
claims and Markov chain premiums. P. D. Quang [7] used martingale approach to build upper bounds for ruin
probabilities in a risk model with interest force and independent premiums, Markov chain claims and Markov chain
interests. P. D. Quang [8] also used recursive approach to build upper bounds for ruinprobabilities in a risk model with
interest force and Markov chain premiums, Markov chain claims, while the interest rates follow a first-order
autoregressive processes.

In this paper, we study the models considered by Cai and Dickson [3] to the case homogenous markov chain premiums,
homogenous markov chain interests and independent claims.The main difference between the model in our paper and the
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one in Cai and Dickson [3] is that premiums, interests in our model are assumed to follow homogeneous Markov chains.
Generalized Lundberg inequalities for ruin probabilitiesof these processes are derived by the Martingale approach.

2 The Model and the Basic Assumptions

In this paper, we study the discrete time risk models withX = {Xn}n≥0 are premiums,Y = {Yn}n≥0 are claims,I = {In}n≥0
are interests andX ,Y andI are assumed to be independent. To establish probability inequalities for ruin probabilities of
these models, we consider two style of premium collections.On one hand of the premiums are collected at the begining

of each period then the surplus process
{

U (1)
n

}

n≥1
with initial surplusU (1)

o = u > 0 can be written as

U (1)
n =U (1)

n−1(1+ In)+Xn−Yn, (1)

which can be rearranged as

U (1)
n = u.

n

∏
k=1

(1+ Ik)+
n

∑
k=1

(Xk −Yk)
n

∏
j=k+1

(1+ I j). (2)

On the other hand, if the premiums are collected at the end of each period, then the surplus process
{

U (2)
n

}

n≥1
with initial

surplusU (2)
o = u > 0 can be written as

U (2)
n = (U (2)

n−1+Xn)(1+ In)−Yn, (3)

which is equivalent to

U (2)
n = u.

n

∏
k=1

(1+ Ik)+
n

∑
k=1

[Xk(1+ Ik)−Yk]
n

∏
j=k+1

(1+ I j). (4)

where throughout this paper, we denote
b
∏

t=a
xt = 1 and

b
∑

t=a
xt = 0 if a > b.

In this paper, we consider models (1) and (3), in whichX = {Xn}n≥0 is a homogeneous Markov chain,Xn take values in a
set of non - negative numbersGX = {x1,x2, ...,xm, ...} with Xo = xi and

pi j = P
[

Xm+1 = x j
∣

∣Xm = xi
]

,(m ∈ N),xi,x j ∈ GX ,

where 0≤ pi j ≤ 1,
+∞
∑
j=1

pi j = 1.

We also assume thatI = {In}n≥0 is homogeneous Markov chain,In take values in a set of non - negative numbersGI =
{i1, i2, ..., in, ...} with Io = ir and

qrs = P [ Im+1 = is|Xm = ir] ,(m ∈ N), ir, is ∈ GI,

where 0≤ qrs ≤ 1,
+∞
∑

s=1
qrs = 1.

In addition,Y = {Yn}n≥0 is sequence of independent and identically distributed nonnegative continuous random variables
with the same distribution functionF(y) = P(Yo ≤ y).

Based on the previous assumptions, we define the finite time and ultimate ruin probabilities in model (1) respectively, by

ψ(1)
n (u,xi, ir) = P

(

n
⋃

k=1

(U (1)
k < 0)

∣

∣

∣

∣

∣

U (1)
o = u,Xo = xi, Io = ir

)

, (5)

ψ(1)(u,xi, ir) = lim
n→∞

ψ(1)
n (u,xi, ir) = P

(

∞
⋃

k=1

(U (1)
k < 0)

∣

∣

∣

∣

∣

U (1)
o = u,Xo = xi, Io = ir

)

. (6)
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Similarly, we define the finite time and ultimate ruin probabilities in model (3) respectively, by

ψ(2)
n (u,xi, ir) = P

(

n
⋃

k=1

(U (2)
k < 0)

∣

∣

∣

∣

∣

U (2)
o = u,Xo = xi, Io = ir

)

, (7)

ψ(2)(u,xi, ir) = lim
n→∞

ψ(2)
n (u,xi, ir) = P

(

∞
⋃

k=1

(U (2)
k < 0)

∣

∣

∣

∣

∣

U (2)
o = u,Xo = xi, Io = ir

)

. (8)

In this paper, we derive probability inequalities forψ(1)(u,xi, ir) andψ(2)(u,xi, ir) by the Martingale approach.

3 Upper Bounds for Ruin Probability by the Martingale approach

To establish probability inequalities for ruin probabilities of model (1), we first prove the following Lemma.

Lemma 3.1. Let model (1).

If any xi ∈ GX , ir ∈ GI ,

E
(

(Y1−X1)(1+ I1)
−1
∣

∣

∣Xo = xi, Io = ir
)

< 0 and P
(

(Y1−X1)(1+ I1)
−1

> 0
∣

∣

∣Xo = xi, Io = ir
)

> 0, (9)

then there exists a unique positive constantRir satisfying:

E
(

eRir(Y1−X1)(1+I1)
−1
∣

∣

∣Xo = xi, Io = ir
)

= 1. (10)

Proof. Define

fir(t) = E
{

et(Y1−X1)(1+I1)
−1
∣

∣

∣Xo = xi, Io = ir
}

−1, t ∈ (0,+∞)

We have

f ′ir(t) = E
{

(Y1−X1)(1+ I1)
−1et(Y1−X1)(1+I1)

−1
∣

∣

∣
Xo = xi, Io = ir

}

,

f ′′ir(t) = E

{

[

(Y1−X1)(1+ I1)
−1
]2

et(Y1−X1)(1+I1)
−1
∣

∣

∣

∣

Xo = xi, Io = ir

}

.

Hencef ′′ir(t)≥ 0.

This implies that
fir(t) is a convex function withfir(0) = 0 (11)

and
f ′ir(0) = E

{

(Y1−X1)(1+ I1)
−1
∣

∣

∣Xo = xi, Io = ir
}

< 0. (12)

By P
(

(Y1−X1)(1+ I1)
−1

> 0
∣

∣

∣Xo = xi, Io = ir
)

> 0, we can find some constantδir > 0 such that

P
(

(Y1−X1)(1+ I1)
−1

> δir > 0
∣

∣

∣Xo = xi, Io = ir
)

> 0.

Then, we get

fir(t) = E
{

et(Y1−X1)(1+I1)
−1
∣

∣

∣Xo = xi, Io = ir
}

−1

≥ E
({

et(Y1−X1)(1+I1)
−1
∣

∣

∣
Xo = xi, Io = ir

}

.1{ (Y1−X1)(1+I1)
−1

>δir |Xo=xi,Io=ir}

)

−1

≥ etδir .P
{

(Y1−X1)(1+ I1)
−1

> δir

∣

∣

∣Xo = xi, Io = ir
}

−1.

This implies that
lim

t→+∞
fir(t) = +∞. (13)
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From (11), (12) and (13) there exists a unique positive constantRir satisfying (10).

This completes the proof.

Let: Ro = inf
{

Rir > 0 : E
(

eRir(Y1−X1)(1+I1)
−1
∣

∣

∣Xo = xi, Io = ir
)

= 1,xi ∈ GX , ir ∈ GI

}

.

Remark 3.1. E
(

eRo(Y1−X1)(1+I1)
−1
∣

∣

∣Xo = xi, Io = ir
)

≤ 1.

To establish probability inequalities for ruin probabilities of model (1), we prove the following Theorem.

Theorem 3.1. Let model (1). Under the condition of Lemma 3.1 andRo > 0, then for anyu > 0, xi ∈ GX , ir ∈ GI ,

ψ(1)(u,xi, ir)≤ e−Rou
. (14)

Proof. Consider the process
{

U (1)
n

}

is given by (2), we let

V (1)
n =U (1)

n

n

∏
j=1

(1+ I j)
−1 = u+

n

∑
j=1

(X j −Yj)
j

∏
t=1

(1+ It)
−1
, (15)

andS(1)n = e−RoV
(1)
n . Thus, we have

S(1)n+1 = S(1)n e
−Ro(Xn+1−Yn+1)

n+1
∏

t=1
(1+It )

−1

.

With anyn ≥ 1, we have

E
(

S(1)n+1

∣

∣

∣X1,X2, ...,Xn,Y1,Y2, ...,Yn, I1, I2, ..., In

)

= S(1)n E



e
−Ro(Xn+1−Yn+1)

n+1
∏

t=1
(1+It )

−1

∣

∣

∣

∣

∣

∣

X1,X2, ...,Xn,Y1,Y2, ...,Yn, I1, I2, ..., In





= S(1)n E

(

e
−Ro(Xn+1−Yn+1)(1+In+1)

−1 n
∏

t=1
(1+It)

−1
∣

∣

∣

∣

∣

X1,X2, ...,Xn, I1, I2, ..., In

)

.

From 0≤
n
∏

t=1
(1+ It)

−1 ≤ 1 and Jensen’s inequality implies

S(1)n E

(

e
−Ro(Xn+1−Yn+1)(1+In+1)

−1 n
∏

t=1
(1+It)

−1
∣

∣

∣

∣

∣

X1,X2, ...,Xn, I1, I2, ..., In

)

≤ S(1)n E
(

e−Ro(Xn+1−Yn+1)(1+In+1)
−1
∣

∣

∣X1,X2, ...,Xn, I1, I2, ..., In

)

n
∏

t=1
(1+It )−1

.

In addition,

E
(

e−Ro(Xn+1−Yn+1)(1+In+1)
−1
∣

∣

∣X1,X2, ...,Xn, I1, I2, ..., In

)

= E
(

e−Ro(Xn+1−Yn+1)(1+In+1)
−1
∣

∣

∣Xn, In

)

= E
(

e−Ro(X1−Y1)(1+I1)
−1
∣

∣

∣Xo, Io

)

≤ 1.

Thus, we have

E
(

S(1)n+1

∣

∣

∣X1,X2, ...,Xn,Y1,Y2, ...,Yn, I1, I2, ..., In

)

≤ S(1)n .

Hence,
{

S(1)n ,n = 1,2, ...
}

is a supermartingale with respect to theσ - filtration

ℑ(1)
n = σ {X1, ...,Xn,Y1, ...,Yn, I1, ..., In}
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Define
T (1)

ir = min
{

n : V (1)
n < 0

∣

∣

∣U
(1)
o = u,Xo = xi, Io = ir

}

,

with V (1)
n is given by (15).

Hence,T (1)
ir is a stopping time andn∧T (1)

ir = min(n,T (1)
ir ) is a finite stopping time.

Therefore, from the optional stoppling theorem for supermartingales, we have

E

(

S(1)
n∧T

(1)
ir

)

≤ E(S(1)o ) = e−Rou
.

This implies that

e−Rou ≥ E

(

S(1)
n∧T

(1)
ir

)

≥ E

(

S(1)
n∧T

(1)
ir

.1
(T (1)

ir ≤n)

)

= E

(

S(1)
T
(1)
ir

.1
(T (1)

ir ≤n)

)

= E



e
−RoV

(1)

T
(1)
ir .1

(T (1)
ir ≤n)



 . (16)

FromV (1)

T
(1)
ir

< 0 then (16) becomes

e−Rou ≥ E

(

1
(T

(1)
ir ≤n)

)

= P(T (1)
ir ≤ n). (17)

In addition,

ψ(1)
n (u,xi, ir) = P

(

n
⋃

k=1

(U (1)
k < 0)

∣

∣

∣

∣

∣

U (1)
o = u,Xo = xi, Io = ir

)

= P

(

n
⋃

k=1

(V (1)
k < 0)

∣

∣

∣

∣

∣

U (1)
o = u,Xo = xi, Io = ir

)

= P(T (1)
ir ≤ n). (18)

Combining (17) and (18) imply that

ψ(1)
n (u,xi, ir)≤ e−Rou

. (19)

This complete the proof.

Similarly to Lemma 3.1, we have Lemma 3.2.

Lemma 3.2. Let model (3). Any xi ∈ GX , ir ∈ GY , if

E
(

Y1(1+ I1)
−1−X1

∣

∣

∣Xo = xi, Io = ir
)

< 0

and
P
(

Y1(1+ I1)
−1−X1 > 0

∣

∣

∣Xo = xi, Io = ir
)

> 0, (20)

then, there exists a unique positive constantRir satisfying

E
(

eRir[Y1(1+I1)
−1−X1]

∣

∣

∣Xo = xi, Io = ir
)

= 1. (21)

Let Ro = inf
{

Rir > 0 : E
(

eRir(Y1(1+I1)
−1−X1)

∣

∣

∣Xo = xi, Io = ir
)

= 1,xi ∈ GX , ir ∈ GI

}

.

Remark 3.2. E
(

eRo(Y1(1+I1)
−1−X1)

∣

∣

∣Xo = xi, Io = ir
)

≤ 1.

Similarly, we establish probability inequalities for ruinprobabilities of model (3) by proving the following Theorem.

Theorem 3.2. Let model (3). Under the conditions of Lemma 3.2 andRo > 0,then for anyu > 0,xi ∈ GX , ir ∈ Gr,

ψ(2)(u,xi, ir)≤ e−Rou (22)
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Proof.
Consider the process

{

U (2)
n

}

given by (4), we let

V (2)
n =U (2)

n

n

∏
j=1

(1+ I j)
−1 = u+

n

∑
j=1

(X j(1+ I j)−Yj)
j

∏
t=1

(1+ It)
−1
, (23)

andS(2)n = e−RoV (2)
n . Thus, we have

S(2)n+1 = S(2)n e
−Ro(Xn+1−Yn+1(1+In+1)

−1)
n
∏

t=1
(1+It)

−1

.

With anyn ≥ 1, we have

E
(

S(2)n+1

∣

∣

∣X1,X2, ...,Xn,Y1,Y2, ...,Yn, I1, I2, ..., In

)

= S(2)n E

(

e
−Ro(Xn+1−Yn+1(1+In+1)

−1)
n
∏

t=1
(1+It )

−1
∣

∣

∣

∣

∣

X1,X2, ...,Xn,Y1,Y2, ...,Yn, I1, I2, ..., In

)

= S(2)n E

(

e
−Ro(Xn+1−Yn+1(1+In+1)

−1)
n
∏

t=1
(1+It )

−1
∣

∣

∣

∣

∣

X1,X2, ...,Xn, I1, I2, ..., In

)

.

From 0≤
n
∏

t=1
(1+ It)

−1 ≤ 1 and Jensen’s inequality implies

E
(

S(2)n

∣

∣

∣X1,X2, ...,Xn,Y1,Y2, ...,Yn, I1, I2, ..., In

)

≤ S(2)n E
(

e−Ro(Xn+1−Yn+1(1+In+1)
−1)
∣

∣

∣X1,X2, ...,Xn, I1, I2, ..., In

)

n
∏

t=1
(1+It)

−1

.

In addition,

E
(

e−Ro(Xn+1−Yn+1(1+In+1)
−1)
∣

∣

∣X1,X2, ...,Xn, I1, I2, ..., In

)

= E
(

e−Ro(Xn+1−Yn+1(1+In+1)
−1)
∣

∣

∣Xn, In

)

= E
(

e−Ro(X1−Y1(1+I1)
−1)
∣

∣

∣Xo, Io

)

≤ 1.

Thus, we have

E
(

S(2)n+1

∣

∣

∣X1,X2, ...,Xn,Y1,Y2, ...,Yn, I1, I2, ..., In

)

≤ S(2)n

Hence,
{

S(2)n ,n = 1,2, ...
}

is a supermartingale with respect to theσ - filtration

ℑ(2)
n = σ {X1, ...,Xn,Y1, ...,Yn, I1, ..., In} .

Define
T (2)

ir = min
{

n : V (2)
n < 0

∣

∣

∣U
(2)
o = u,Xo = xi, Io = ir

}

with V (2)
n is given by (23).

Hence,T (2)
ir is a stopping andn∧T (2)

ir = min(n,T (2)
ir ) is a finite stopping time.

Therefore, from the optional stopping theorem for supermartingales, we have

E

(

S(2)
n∧T

(2)
ir

)

≤ E(S(2)o ) = e−Rou
.
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This implies that

e−Rou ≥ E

(

S(2)
n∧T

(2)
ir

)

≥ E

(

S(2)
n∧T

(2)
ir

.1
(T

(2)
ir ≤n)

)

= E

(

S(2)
T (2)

ir

.1
(T

(2)
ir ≤n)

)

= E



e
−RoV (2)

T
(2)
ir .1

(T
(2)

ir ≤n)



 . (24)

FromV (2)

T
(2)
ir

< 0 then (24) becomes

e−Rou ≥ E

(

1
(T

(2)
ir ≤n)

)

= P(T (2)
ir ≤ n). (25)

In addition,

ψ(2)
n (u,xi, ir) = P

(

n
⋃

k=1

(U (2)
k < 0)

∣

∣

∣

∣

∣

U (2)
o = u,Xo = xi, Io = ir

)

= P

(

n
⋃

k=1

(V (2)
k < 0)

∣

∣

∣

∣

∣

U (2)
o = u,Xo = xi, Io = ir

)

= P(T (2)
ir ≤ n). (26)

Combining (25) and (26) imply that

ψ(2)
n (u,xi, ir)≤ e−Rou

. (27)

Thus, (22) follows by lettingn → ∞ in (27).
This completes the proof.

4 Conclusion

Our main results in this paper, Theorem 3.1 and Theorem 3.2 give upper bounds forψ(1)
n (u,xi, ir) andψ(2)

n (u,xi, ir) by the
Martingale approach with homogenous Markov chain premiumsand Hemogenenous Markov chain Interests. To obtain
Therem 3.1 and Theorem 3.2, first, we obtain important preliminary results, Lemma 3.1 and Lemma 3.2, which give
Lundbergs constants.

There remain many open issues - e.g.
(a) extending results of this article to considerX = {Xn}n≥0 andI = {In}n≥0 are homogenous Markov chains,Y = {Yn}n≥0
is a first - order autoregressive process;

(b) building numerical examples forψ(1)
n (u,xi,rr) andψ(2)

n (u,xi,rr) by the martingale approach;

(c) Letτm := inf
{

k ≥ 1|U (m)
k < 0

}

(m = 1,2) be the time of ruin. Can we calculate or estimate quantities such asE(τm).

Further research in some of these direction is in progress.
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