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Abstract: This paper gives upper bounds for ruin probabilities of geliwed risk processes under rates of interest with hommggen
Markov chain premiums and Hemogenenous Markov chain Isiter&Ve assume that premium and rate of interest take a dbeinta
number of non-negative values. Generalized Lundberg mléggs for ruin probabilities of these processes are @elrlwy the Martingale
approach.
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1 Introduction

In recent years, the classical risk process has been extandaore practical and real situations. For most of the
investigations treated in risk theory, it is very significéam deal with the risks that rise from monetary inflation i th
insurance and finance market, and also to consider the aperatcertainties in administration of financial capital.
Teugels and Sund®[10] considered the effects of constant rate on the ruin prdibabihder the compound Poisson risk
model. Yang 12] built both exponential and non exponential upper boundsidm probabilities in a risk model with
constant interest force and independent premiums and laka and Wang 11] given upper bounds for ruin
probabilities in a risk model with interest force and indegent premiums and claims with Markov chain interest rate.
Cai [1] studied the ruin probabilities in two risk models, with egendent premiums and claims with the interest rates is
formed a sequence of i.i.d random variables. In Qithe author studied the ruin probabilities in two risk misgavith
independent premiums and claims and used a first order guésgve process to model the rates of in interest. In Cai
and Dickson 8], the authors given Lundberg inequalities for ruin profities in two discrete- time risk process with a
Markov chain interest model and independent premiums aaidnsl Fenglong Guo and Dingcheng Warly {ised
recursive technique to build Lundberg inequalities fomrprobabilities in two discrete- time risk process with the
premiums, claims and rates of interest have autoregresging average (ARMA) dependent structures simultaneously
P. D. Quang%] used martingale approach to build upper bounds for ruib@hdities in a risk model with interest force
and independent interest rates and premiums, Markov clgims P. D. Quangd] used martingale approach to build
upper bounds for ruin probabilities in a risk model with &gt force and independent interest rates, Markov chain
claims and Markov chain premiums. P. D. Quanfy {ised martingale approach to build upper bounds for ruin
probabilities in a risk model with interest force and indegent premiums, Markov chain claims and Markov chain
interests. P. D. Quan@] also used recursive approach to build upper bounds forptobabilities in a risk model with
interest force and Markov chain premiums, Markov chain ne&i while the interest rates follow a first-order
autoregressive processes.

In this paper, we study the models considered by Cai and Dit[3 to the case homogenous markov chain premiums,
homogenous markov chain interests and independent cl&imesnain difference between the model in our paper and the
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one in Cai and Dicksor] is that premiums, interests in our model are assumed tovidiomogeneous Markov chains.
Generalized Lundberg inequalities for ruin probabilitiéshese processes are derived by the Martingale approach.

2 The Model and the Basic Assumptions

In this paper, we study the discrete time risk models With {Xn}n>0 are premiumsy = {Yy}n>o are claims| = {In}n>0
are interests and,Y andl are assumed to be independent. To establish probabilitpaiiies for ruin probabilities of
these models, we consider two style of premium collecti@rsone hand of the premiums are collected at the begining

of each period then the surplus proc%ssﬁl)} ) with initial surpIusUc(,l) =u> 0 can be written as

n>
Ui = U (14 1) + X0 — Yo, (1)
which can be rearranged as
n n n
Ui =u []a+10+ S =Y [] @+1)). @)
k=1 K=1 j=k+1

On the other hand, if the premiums are collected at the endaif period, then the surplus proc{sﬂa} - with initial
n>

surplusuéz) =u> 0 can be written as

U = (U4 X0) (14 1) — Yo, (3)
which is equivalent to
n n n
U =u 1A+ + Y D+ - [] @+1)). 4)
k=1 K=1 j=k+1

b b
where throughout this paper, we den¢lex =1and y x =0ifa> b.
t=a t=a

In this paper, we consider model§ @nd @), in whichX = {Xy},,- ¢ is @ homogeneous Markov chak, take values in a
set of non - negative numbeBx = {x1,X2, ..., Xm, ...} With X, =X and

pij = P[Xme1=X)[Xm=2x],(me N),x,Xj € G,

400
where 0< pj; <1, 5 pij=1.
=1

We also assume that= {In}nZO is homogeneous Markov chaih, take values in a set of non - negative numi@yrs-
{il,iz, ...,in, } W|th |0 == ir a.nd

qr.’s:P[|m+1:is|xm:ir]a(me N),ir,isEG|,

+00
where0< s <1, 5 Qs=1.
s=1

In addition,Y = {Yn} - is sequence of independent and identically distributedmegative continuous random variables
with the same distribution functidf(y) = P(Y, <Yy).

Based on the previous assumptions, we define the finite tich@kimate ruin probabilities in model) respectively, by

Wt (i) = P(U U <0)[UsY = u X =xi,10 = n) : )

k=1

U <0

Cs

w“)(u,m,ir)=n|iggowél>(u,xi,ir>=P< Ué”:u,xo:m,lo:ir). (6)

k=1
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Similarly, we define the finite time and ultimate ruin probieis in model @) respectively, by

n

W (ux,ir) =P < UJwu? <o

k=1

UéZ):LLXO:XivIO:ir)v (7)

0

WP (ux,ir) = lim W (u,x,ir) = P < U U2 <0)
k=1

ué2>=u,xo:xi,lo:ir>. (8)

In this paper, we derive probability inequalities 6" (u,x;,i;) andw@ (u,x,iy) by the Martingale approach.

3 Upper Boundsfor Ruin Probability by the M artingale approach

To establish probability inequalities for ruin probatéi of model {), we first prove the following Lemma.
Lemma 3.1. Let model Q).
Ifany x € Gx,ir € Gy,

E((a—a)(1+ |1)—1] Xo=%,lo=ir) <0 andP( (o= Xa)(1+11) " > o]xo =X,lo=1) >0, 9)
then there exists a unique positive const@ptatisfying:
E (eﬂr<Y1—X1><1+'1>’l‘ Xo =%, lo=ir) =1. (10)
Proof. Define

fir(t) =E { et<YrX1><1+'1>*1\ Xo =%,lo = ir} —1,t€(0,+)

We have
fr(0) = B (X)L +1) 200007 5 i lo =i ]
2 _
f/(t)=E { [(Yl —Xq)(1+ |1)—1] (=X (+) 1’xo =X,lo= ir} :
Hencef//(t) > 0.
This implies that
fir (t) is a convex function witH, (0) = 0 (12)
and
() = E{ (= Xa)(L+ 1) Xo =%, lo=ir } <O. (12)

By P((Yl—X]_)(1+ Il)‘1 > O’ Xo=X,lo= ir) > 0, we can find some constadt > 0 such that

P((h—X)(@+1) 7> & > 0 Xo=x,lo =i ) > 0.
Then, we get
fir(t) =E { eI(Yl—xl)(1+I1)’1’xo =X,lo= ir} -1

Yi—X1)(1+1;) 7L oy
2E({é(l 1)(1+11) XO:XHIO_I’}'1{(Y17X1)(1+I1)*1>cir|Xo:x4,|0:i,})_1

> L (= X) (11071 > & [Xo =X lo =ir } — 1

This implies that
lim fi () = +oo. (13)

t—>-oo
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From (11), (12) and @L3) there exists a unique positive const&jtsatisfying (0).
This completes the proof.

Let: Ry — inf{Rir >0:E (eWYer)(H'ﬁ’l‘xo —Xi,lo = ir) —1,% € Gy.ir € Gy }

Remark 3.1, E (eRo<YrX1><1+'1>’1‘ Xo = X, lo = ir) <1

To establish probability inequalities for ruin probalidi of model L), we prove the following Theorem.
Theorem 3.1. Let model (). Under the condition of Lemma 3.1 aRd > 0, then for anyu > 0, X € Gx,ir € Gy,

W (u,x,ir) < e e, (14)

Proof. Consider the proces@.lél)} is given by @), we let

ﬁ1+| = +i(x ~Y) ]+ (15)
=1 =1 t=

andstt = e R Thus, we have

With anyn > 1, we have

E( 21’xl,xz,...,xn,Yl,Yz,...,Yn,ll,lz,...,ln)
Ro(Xn1-Yos1) 1, (L)
_§11 A Ul t X17X27'~'7xn7Y17Y27"'7Yn7|17|27"'7|n

(141"t

==

g (e—F<o<><n+1—Yn+1><1+|n+1>1t

XlJXZJ "'7xn7|17 |27 "'7|n> M

n
From0< ] (1+ It)’l < 1 and Jensen’s inequality implies
t=1

(1417t

==

OE <e—Ro<><n+1—Yn+1><1+|n+1>1t

XlJXZJ "'7xn7|17 |27 "'7|n>

n
-1
<s'E ( Ro(Xar1—Yns1) (1+inia) \xl,xz, Xl 1o, ,|)t51<1+'”

In addition,
E (e*Ro(xn+1*Yn+l>(1+|n+l>71‘ X1, X2, oo X 11, 2, ... |n)
—E (e—Ro<xn+1—Yn+1><1+ln+1>*1 ’ X, |n)

—E (e—Ro(Xl—Yl)(1+|1)7l‘ Xo, |0) <1

Thus, we have
E (é&gl’ X17X27"'7Xn7Y17Y27~'~7Yn7 Ila |27~'~7 |n) < éll)

Hence,{ S@, n=12, } is a supermartingale with respect to e filtration

O = 0 {Xe, oo X0, Yo, oo, Yo I, oy I}
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Define
T =min{n: WY < 0] = uXo=x,lo=ir }
with Vn(l> is given by (5).

Hence,'l'igl) is a stopping time and/\TiED = min(n,TiE”) is a finite stopping time.
Therefore, from the optional stoppling theorem for supetimgales, we have

E <S<1) (1)> < E(%l)) —_ g R

Ty

This implies that

(1)
—e(gY 1 _efe %4 16
G taen ) TR e | (16)

FromVT% < 0 then (L6) becomes
)) —P(TY <), (17)

In addition,

W (u,x,ir) = U <o)

l-JC():L> :Uaxo:Xian:ir)

_U
N
TCs
i

n
=P ( UM <0)[udY = u %o =xi,1o = ir> —P(TM <n). (18)
k=1
Combining (L7) and @8) imply that
WY (u,x,ir ) < e Rl (19)

This complete the proof.

Similarly to Lemma 3.1, we have Lemma 3.2.

Lemma 3.2. Let model B). Any x; € Gx,ir € Gy, if
E(Va(@+12) =X Xo =X, lo=ir) <0

and
P(Ya2+10) = > o}xo:xi,lozir) >0, (20)

then, there exists a unique positive conspsatisfying

E (ear[vl<1+ll>*1—x1]

Xo:m,lo:ir):l. (1)

LetR, = inf {qu >0:E (eﬂr<Y1<1+'1>’l—X1>

Xo=Xi,|o:ir) :1,x;er,ir66|}.
Remark 3.2, E (eﬁo<Y1<1+'1>’1*><1> Xo = Xi,lo = ir) <1

Similarly, we establish probability inequalities for ryanobabilities of model3) by proving the following Theorem.
Theorem 3.2. Let model @). Under the conditions of Lemma 3.2 aRd > 0,then for anyu > 0,x; € Gx,ir € G,

Y@ (u,x;,ir) < e e (22)
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Proof.
Consider the proces{i) } given by @), we let

n

=}

i

(1+1) 1= (Xj(1+1)) 1+1)7Y (23)
ﬂ J=1 tl_l
ands? — e RV’ Thus, we have
§12 Ro(Xns1— Y1 (Ltlnga) ™ ) H 1+t
+1 =

With anyn > 1, we have

E( Zjl‘xl,xz,...,xn,Yl,Yz,...,Yn,ll,lz,...,ln)

I < RolXn1-Yos1(Lhnin) ) 1 (1)

X17X27"'7XH7Y17Y27 "'7Yn7 Ila |27"'7 |n>

_ &2 < RolXp1-Yos1 (L) ™) 1 (1)~

X17X27 "'aXna Ila |27 cey In) .
n
From0< ] (1+ It)’l < 1 and Jensen’s inequality implies

t=1

E (S<q2>’X15X25 s X0, Y1, Y2, Y, D, D, ""In)

n
M (a+1)~t
<s?E ( Ro(Xns1=Yns1(IHInsa) ™ ‘Xl,xz, Xn, 11,12, J)t:l t

In addition,

m

( —Ro(Xn+1—Yn2(L+Ini) ‘Xl,XZ, Xy l1, 12,00, 1n )
(i 1)

—E ( e RoX-Y1(1+11) ) ‘ Xo, |0) <1

Thus, we have
E (Sf:l’ Xlax27 "'7xn7Y17Y27~'~7Yn7|17 |27 '~'7|n) < SQIZ)

Hence,{ 3(12), n=1,2, } is a supermartingale with respect to e filtration

0P = 0 {X0, oo, X0, Y1, oo Yo 11, ooy In}

Define
T2 =min{n:vi® < 0]UP = uXo =Xl =it |

with vn<2> is given by @3).
Hence,‘l’iﬁ2> is a stopping and/\TiE ) = mm(n,T,ﬁ )) is a finite stopping time.
Therefore, from the optional stopping theorem for supetimgales, we have

<S(2 ) < E($2>) _ e—ﬁou.

NAT: (2)
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This implies that

—RyV
_ 2) _ 2
—E (s.<Ti(r2> .1<Ti52)<n>) =Ele Wl | (24)
FromVT% < 0 then @4) becomes
¢ aE <1<Ti§2>gn>) =P(T,” <n). (25)
In addition,
2 . 2 2
W (ux,in =P [ [J P <0)|Ud? =uXo=x,10= ir>

T
N

M2 <0)

Il

o
/N N
>

Il
Q
——
_‘E =~
IN
=

l-JO(2> :U7>(o:)(ia|o:ir>

||
=

(26)

Combining @5) and £6) imply that

W2 (u,x,ir) < e P, (27)

Thus, @2) follows by lettingn — o in (27).
This completes the proof.

4 Conclusion

Our main results in this paper, Theorem 3.1 and Theorem 8e2ugiper bounds foqflrgl> (u, g, iy) andtprg2> (u,x,iy) by the
Martingale approach with homogenous Markov chain premiantsHemogenenous Markov chain Interests. To obtain
Therem 3.1 and Theorem 3.2, first, we obtain important pirkny results, Lemma 3.1 and Lemma 3.2, which give
Lundbergs constants.

There remain many open issues - e.g.
(a) extending results of this article to consies { X, }n>0 andl = {lI}1>0 are homogenous Markov chaifs= { Y, }n>0
is a first - order autoregressive process;

(b) building numerical examples falvr(11>(u,><.-,rr) andwr(f)(u,)q,rr) by the martingale approach;
(c) Lettm :=inf { k> 1] Uk<m> < O} (m=1,2) be the time of ruin. Can we calculate or estimate quantitieb 8E (7).
Further research in some of these direction is in progress.
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