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1 Introduction and Preliminaries

In spite of its simplicity, the Banach fixed point theorem
still seems to be the most important result in metric fixed
point theory. Fixed point theorems are very useful in the
existence theory of differential equations, integral
equations, functional equations and other related areas.
Existence of a fixed point for contraction type mappings
in partially metric spaces and its applications has been
considered recently by many authors[1,2,4,5,7,11,21,25,
28,30,32,37]. Consistent with [6,24], the following
definitions and results will be needed in the sequel.

Definition 1.[24] A partial metric on a nonempty set X is
a function p: X×X −→ R+ such that for all x,y,z∈ X :

(P1)x= y ⇔ p(x,x) = p(x,y) = p(y,y),
(P2)p(x,x) ≤ p(x,y),
(P3)p(x,y) = p(y,x),
(P4)p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).

A partial metric space is a pair(X, p) such that X is a
nonempty set and p is a partial metric on X.

Remark.It is clear that, ifp(x,y) = 0, then from(P1) and
(P2) x= y. But if x= y , p(x,y) may not be 0.

Example 1.[24] Let a function p : R+ × R+ −→ R+ be
defined byp(x,y) = max{x,y} for any x,y ∈ R+. Then,
(R+, p) is a partial metric space.

Example 2.[24] If X = {[a,b] : a,b ∈ R,a ≤ b}, then p :
X × X −→ R+ defined byp([a,b], [c,d]) = max{b,d}−
min{a,c} defines a partial metric onX.

If p is a partial metric onX, then the functionps : X ×
X −→ R+ given by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y) (1)

is a metric onX.

Definition 2.[24,26,27] Let (X, p) be a partial metric
space. Then

(i)A sequence{xn} in a partial metric space(X, p)
converges to a point x∈ X if and only if
p(x,x) = limn−→∞ p(x,xn).

(ii)A sequence{xn} in a partial metric space(X, p) is
called a Cauchy sequence if there exists (and is finite)
limn,m−→∞ p(xm,xn).

(iii )A partial metric space(X, p) is said to be complete if
every Cauchy sequence{xn} in X converges to a point
x∈ X, that is p(x,x) = limn,m−→∞ p(xm,xn).

Remark.It is easy to see that, every closed subset of a
complete partial metric space is complete.

Example 3.[20] If X = [0,1] ∪ [2,3] and define
p : X×X −→ [0,∞) by

p(x,y) =

{

max{x,y} i f {x,y}∩ [2,3] 6= /0,
|x− y| i f {x,y} ⊂ [0,1].

Then (X, p) is a complete partial metric space.

Lemma 1.[24,25,26]Let (X, p) be a partial metric space.
Then
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(a){xn} is a Cauchy sequence in(X, p) if and only if it is
a Cauchy sequence in the metric space(X, ps).

(b)A partial metric space(X, p) is complete if and only if
the metric space(X, ps) is complete. Furthermore,

lim
n−→∞

ps(xn,x) = 0

if and only if

p(x,x) = lim
n−→∞

p(x,xn) = lim
n,m−→∞

p(xm,xn).

Lemma 2.[4] A mapping f : X −→ X is said to be
continuous at a∈ X, if for everyε > 0, there existsδ > 0
such that f(B(a,δ ))⊂ B( f (a),ε).

The following result is easy to check.

Lemma 3.Let (X, p) be a partial metric space.
T : X −→ X is continuous if and only if given a sequence
{xn} ⊆ X and x∈ X such that p(x,x) = limn−→∞ p(xn,x),
then p(Tx,Tx) = limn−→∞ p(Txn,Tx).

Lemma 4.[33] Consider X= [0,∞) endowed with the
partial metric p : X × X −→ [0,∞) defined by
p(x,y) = max{x,y} for all x,y ≥ 0. Let F : X −→ X be a
non-decreasing function. If F is continuous with respect
to the standard metric d(x,y) = |x− y| for all x,y ≥ 0,
then F is continuous with respect to the partial metric p.

Definition 3.Let X be a set, T and g are selfmaps of X.
A point x in X is called a coincidence point of T and g if
Tx= gx. We shall call w= Tx= gx a point of coincidence
of T and g.

Definition 4.[12] Let (X,≤) be a partially ordered set and
F,g : X −→ X are mappings of X into itself. One says F is
g-non-decreasing if for x,y∈ X, we have

g(x)≤ g(y) =⇒ F(x)≤ F(y).

Definition 5.[33] Let (X, p) be a partial metric space and
T,g : X −→ X are mappings of X into itself. We say that
the pair {T,g} is partial compatible if the following
conditions is hold:

(b1)p(x,x) = 0 then p(gx,gx) = 0,
(b2)limn−→∞ p(T(gxn),g(Txn)) = 0 whenever{xn} is a

sequence in X such that Txn −→ t and gxn −→ t for
some t∈ X.

Alber and Guerre-Delabriere [3] defined weakly
contractive mappings on a Hilbert spaces and established
a fixed point theorem for such maps.

Definition 6.[3] Let (X,d) be a metric space. A
selfmapping f on X is said to be weakly contractive if

d( f x, f y) ≤ d(x,y)−ϕ(d(x,y)) (2)

for all x,y∈ X, whereϕ : [0,∞)−→ [0,∞) is a continuous
and nondecreasing function such thatϕ(t) = 0 if and only
if t = 0.

Aydi [8] obtained the following result.

Theorem 1.[8] Let (X,≤X) be a partially ordered set and
let p be a partial metric on X such that(X, p) is complete.
Let f : X −→ X be a nondecreasing map with respect to
≤X. Suppose that the following conditions hold: for y≤ x,
we have
(i)

p( f (x), f (y) ≤ p(x,y)−ϕ(p(x,y)), (3)

where ϕ : [0,∞) −→ [0,∞) is a continuous and
non-decreasing function such that it is positive in[0,∞),
ϕ(0) = 0 and limt−→∞ ϕ(t) = ∞;
(ii) there exist x0 ∈ X such that x0 ≤X f x0;
(iii) f is continuous in(X, p), or;
(iv) if a non-decreasing sequence{xn} converges to x∈ X,

then xn ≤X x for all n. Then f has a fixed point u∈ X.
Moreover, p(u,u) = 0.

Choudhury [13] introduced the following definition.

Definition 7.A mapping T: X → X, where(X,d) is a
metric space is said to be weakly C−contractive (or a
weak C−contraction) if for all x,y∈ X,

d(Tx,Ty)≤
1
2
[d(x,Ty)+d(y,Tx)]−φ(d(x,Ty),d(y,Tx)),

Where φ : [0,∞) × [0,∞) −→ [0,∞) is a continuous
function such thatφ(x,y) = 0 if and only if x= y= 0.

2 Main results

SetΨ [0,∞) = {ψ : [0,∞)−→ [0,∞) : ψ is continuous and
nondecreasing mapping withψ(t)= 0 if and only ift = 0}.
Our first main result is the following.

Theorem 2.Let (X,≤) be a partially ordered set and
suppose there is a partial metric p on X such that(X, p)
is a complete partial metric space. Assume there is a
continuous functionϕ : [0,∞)−→ [0,∞) with ϕ(t)< t for
each t> 0 and also suppose T,g : X −→ X are such that
TX ⊆ gX, T is a g−non-decreasing and for every two
elements x,y ∈ X which gx and gy are comparable, we
have

ψ(p(Tx,Ty))≤ ψ(M(x,y))−φ(p(gx,gy), p(gx,Tx)),
(4)

where

M(x,y) = max{ϕ(p(gx,gy)),ϕ(p(gx,Tx)),ϕ(p(gy,Ty)),

ϕ(
p(gx,Ty)+ p(gy,Tx)

2
)},

(5)

ψ ∈Ψ [0,∞) andφ : [0,∞)× [0,∞)−→ [0,∞) is continuous
mapping such thatφ(x,y) = 0 if and only if x= y= 0. Also
suppose either

(i)T,g are two continuous self-mappings of X and{T,g}
is partial compatible or
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(ii)if gX is closed and{g(xn)} ⊆ X is a non-decreasing
sequence with g(xn) −→ g(x) in g(X) then
g(xn)≤ g(x), g(x)≤ g(g(x)) ∀ n

holds.

If there exists an x0 ∈ X with g(x0) ≤ T(x0) then T and g
have a coincidence point.

Proof. Note that ifT, g have a coincidence pointz, then
p(Tz,Tz) = p(gz,gz) = 0. Indeed, assume thatp(gz,gz)>
0. Then from (4) with x= y= z, we have

ψ(p(gz,gz)) = ψ(p(Tz,Tz))

≤ ψ(M(z,z))−φ(p(gz,gz), p(gz,T z)),
(6)

where

M(z,z) = max{ϕ(p(gz,gz)),ϕ(p(gz,Tz)),ϕ(p(gz,T z)),

ϕ(
p(gz,Tz)+ p(gz,Tz)

2
)}

= max{ϕ(p(gz,gz)),ϕ(p(gz,gz)),ϕ(p(gz,gz)),

ϕ(
p(gz,gz)+ p(gz,gz)

2
)}

= ϕ(p(gz,gz)).

Then we have

ψ(p(gz,gz)) = ψ(p(Tz,Tz))

≤ ψ(ϕ(p(gz,gz)))−φ(p(gz,gz), p(gz,gz))

≤ ψ(p(gz,gz))−φ(p(gz,gz), p(gz,gz))

φ(p(gz,gz), p(gz,gz)) ≤ 0, a contradiction. Hence
p(Tz,Tz) = p(gz,gz) = 0.
Let x0 be an arbitrary point ofX such thatg(x0) ≤ T(x0).
Since TX ⊆ gX we can choosex1 ∈ X so that
g(x1) = T(x0). Again from TX ⊆ gX we can choose
x2 ∈ X so that g(x2) = T(x1). Since
g(x0) ≤ T(x0) = g(x1) and T is g−non-decreasing, we
haveT(x0)≤ T(x1).
Continuing this process we can choose a sequence{xn} in
X such that

g(xn+1) = T(xn) n= 0,1,2, ...,

T(x0)≤ T(x1)≤ T(x2)≤ ...≤ T(xn)≤ T(xn+1)≤ ...·

Therefore,

g(x1)≤ g(x2)≤ g(x3)≤ ...≤ g(xn)≤ g(xn+1)≤ ...· (7)

If there existsn∈ N such thatp(Txn,Txn+1) = 0, then by
(p1) and(p2) we havegxn+1 = Txn = Txn+1. Hencexn+1
is a coincidence ofT and g. So we assume that
p(Txn,Txn+1)> 0, for all n∈N. We will show that

p(Txn,Txn+1)< p(Txn−1,Txn) ∀ n≥ 1. (8)

From (4) with x= xn andy= xn+1, we have

ψ(p(Txn,Txn+1))

≤ ψ(M(xn,xn+1))−φ(p(gxn,gxn+1), p(gxn,Txn))

= ψ(M(xn,xn+1))−φ(p(Txn−1,Txn), p(Txn−1,Txn)),

(9)

where

M(xn,xn+1)

= max{ϕ(p(gxn,gxn+1)),ϕ(p(gxn,Txn)),ϕ(p(gxn+1,Txn+1)),

ϕ(
p(gxn,Txn+1)+ p(gxn+1,Txn)

2
)}

= max{ϕ(p(T xn−1,Txn)),ϕ(p(Txn−1,T xn)),ϕ(p(Txn,T xn+1)),

ϕ(
p(Txn−1,Txn+1)+ p(Txn,Txn)

2
)}

= max{ϕ(p(T xn−1,Txn)),

ϕ(p(Txn,Txn+1)),ϕ(
p(T xn−1,Txn+1)+ p(T xn,Txn)

2
)}.

–If M(xn,xn+1) = ϕ(p(Txn−1,Txn)), by (9) and using
the fact thatϕ(t)< t for t > 0, we have

ψ(p(Txn,Txn+1))

≤ ψ(ϕ(p(T xn−1,Txn)))−φ(p(T xn−1,Txn), p(Txn−1,Txn))

≤ ψ(ϕ(p(T xn−1,Txn)))

< ψ(p(Txn−1,Txn)).

Then (8) holds.
–If M(xn,xn+1) = ϕ(p(Txn,Txn+1)), then we have

ψ(p(Txn,Txn+1))

≤ ψ(ϕ(p(T xn,Txn+1)))−φ(p(T xn−1,Txn), p(Txn−1,Txn))

≤ ψ(ϕ(p(T xn,Txn+1))),

since we suppose thatp(Txn,Txn+1)> 0 and asϕ(t)<
t for t > 0, thenp(Txn,Txn+1)≤ ϕ(p(Txn,Txn+1)) it
is impossible.

–If M(xn,xn+1) = ϕ(
p(Txn−1,Txn+1)+ p(Txn,Txn)

2
),

we get

ψ(p(Txn,Txn+1))

≤ ψ(ϕ(
p(Txn−1,Txn+1)+ p(Txn,Txn)

2
))

−φ(p(Txn−1,Txn), p(Txn−1,Txn))

≤ ψ(ϕ(
p(Txn−1,Txn+1)+ p(Txn,Txn)

2
))

≤ ψ(
p(Txn−1,Txn+1)+ p(Txn,Txn)

2
),

thus, we have

p(Txn,Txn+1)≤
p(Txn−1,Txn+1)+ p(Txn,Txn)

2
.

On the other hand, by the triangular inequality in
partial metric space, we have

p(Txn−1,Txn+1)+ p(Txn,Txn)

2
≤

p(Txn−1,Txn)+ p(Txn,Txn+1)

2
,

so, we have

p(Txn,Txn+1)≤
p(Txn−1,Txn)+ p(Txn,Txn+1)

2
,

which implies that

p(Txn,Txn+1)≤ p(Txn−1,Txn).
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Therefore, we proved that (8) holds. Then, the sequence
{p(Txn,Txn+1)} of real numbers is monotone decreasing.
Hence there exists a real numberδ ≥ 0 such that,

lim
n−→∞

p(Txn,Txn+1) = δ . (10)

We show thatδ = 0. Suppose, to the contrary, thatδ > 0.
Then from continuityφ and (9) gives that

lim
n−→∞

ψ(p(Txn,Txn+1))

≤ lim
n−→∞

ψ(ϕ(p(Txn−1,Txn)))

− lim
n−→∞

φ(p(Txn−1,Txn), p(Txn−1,Txn)),

which implies that

ψ(δ )≤ ψ(ϕ(δ ))−φ(δ ,δ ),
which is possible only whenδ = 0. Therefore, we proved
that

lim
n−→∞

p(Txn,Txn+1) = 0. (11)

Fromp(Txn,Txn), p(Txn+1,Txn+1)≤ p(Txn,Txn+1) and
(11), we have

lim
n−→∞

p(Txn,Txn) = lim
n−→∞

p(Txn+1,Txn+1) = 0. (12)

From (11), (12) and (1), we have

lim
n−→∞

ps(Txn,Txn+1) = 0. (13)

Now, we prove that

lim
m,n→∞

p(Txm,Txn) = 0.

If not, then there exists anε > 0 and subsequences{xn(k)}

and {xm(k)} of {xn} with n(k) > m(k) > k such that
p(Txn(k),Txm(k)) ≥ ε and p(Txn(k)−1,Txm(k)) < ε. Then
we have
ε ≤ p(Txn(k),Txm(k))

≤ p(Txn(k),Txn(k)−1)+ p(Txn(k)−1,Txm(k))

− p(Txn(k)−1,Txn(k)−1)

< p(Txn(k),Txn(k)−1)+ ε − p(Txn(k)−1,Txn(k)−1).

(14)

Takingk→ ∞ in (14) and using (11) and (12) we get

lim
k→∞

p(Txn(k),Txm(k)) = ε. (15)

Thus from the definitionp we have

p(Txm(k),Txn(k))

≤ p(Txm(k),Txm(k)−1)+ p(Txm(k)−1,Txn(k)−1)

+ p(Txn(k)−1,Txn(k))

− p(Txm(k)−1,Txm(k)−1)− p(Txn(k)−1,Txn(k)−1),

(16)

p(Txm(k)−1,Txn(k)−1)

≤ p(Txm(k)−1,Txm(k))+ p(Txm(k),Txn(k))

+ p(Txn(k),Txn(k)−1)

− p(Txm(k),Txm(k))− p(Txn(k),Txn(k)).

(17)

Taking k → ∞ in (16) and (17) and using (12), (13) and
(15) we get

lim
k→∞

p(Txn(k),Txm(k)) = lim
k→∞

p(Txn(k)−1,Txm(k)−1)

= ε.
(18)

p(Txn(k)−1,Txm(k))+ p(Txm(k)−1,Txn(k))

≤ p(Txn(k)−1,Txm(k)−1)+ p(Txm(k)−1,Txm(k))

− p(Txm(k)−1,Txm(k)−1)+ p(Txm(k)−1,Txn(k)−1)

+ p(Txn(k)−1,Txn(k))− p(Txn(k)−1,Txn(k)−1).

(19)

Now using inequality (4), we have

ψ(ε)≤ ψ(p(Txn(k),Txm(k)))

≤ ψ(M(xn(k),xm(k)))

−φ(p(gxn(k),gxm(k)), p(gxn(k),T xn(k)))

≤ ψ(M(xn(k),xm(k)))

−φ(p(T xn(k)−1,Txm(k)−1), p(Txn(k)−1,Txn(k))),

(20)

where

M(xn(k),xm(k))

= max{ϕ(p(gxn(k),gxm(k))),ϕ(p(gxn(k),Txn(k))),

ϕ(p(gxm(k),Txm(k))),

ϕ(
p(gxn(k),Txm(k))+ p(gxm(k),Txn(k))

2
)}

= max{ϕ(p(Txn(k)−1,Txm(k)−1)),

ϕ(p(Txn(k)−1,Txn(k))),ϕ(p(Txm(k)−1,Txm(k))),

ϕ(
p(Txn(k)−1,Txm(k))+ p(Txm(k)−1,Txn(k))

2
)}.

Letting k → ∞ in the above inequality and using(18) and
(19), we obtain

lim
k−→∞

M(xn(k),xm(k)) = max{ϕ(ε),ϕ(0),ϕ(0),ϕ(
ε + ε

2
)}

= ϕ(ε).
As k−→ ∞, inequality (20) becomes,

ψ(ε)≤ ψ(ϕ(ε))−φ(ε,0)
< ψ(ε)−φ(ε,0)

which is a contradiction by virtue of a property ofφ and
ψ .

Thus, we obtain that limm,n→∞ p(Txm,Txn) = 0, i.e.,
{Txn} is a cauchy sequence in(X, p), and hence in the
metric space(X, ps) by Lemma 1. Since (X, p) be a
complete partial metric space, then, from lemma1,
(X, ps) is also complete, so the sequence{Txn} converges
in the metric space(X, ps), so there existz in X such that

lim
n→∞

ps(Txn,z) = lim
n→∞

ps(gxn+1,z) = 0.

Again, from Lemma1, we get

p(z,z) = lim
n−→∞

p(Txn,z) = lim
n−→∞

p(gxn+1,z)

= lim
n,m−→∞

p(Txn,Txm) = 0.
(21)
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because limn,m−→∞ p(Txn,Txm) = 0.
Suppose that the assumption(i) holds. Now we show that
z is a coincidence point ofT andg.
SinceT andg are continuous, from (21) and using Lemma
3, we get

p(Tz,T z) = lim
n−→∞

p(T(Txn),Tz)

and

p(gz,gz) = lim
n−→∞

p(g(Txn+1),gz).

(22)

Since T and g are partial compatible mappings, this
implies that

p(gz,gz) = 0 and lim
n−→∞

p(T(g(xn+1)),g(T(xn+1))) = 0.

(23)
The condition(p4), we obtain

p(Tz,gz)≤ p(Tz,T(Txn))+ p(T(Txn),g(Txn+1))

+ p(g(Txn+1),gz)− p(T(Txn),T(Txn))

− p(g(Txn+1),g(Txn+1))

= p(Tz,T(Txn))+ p(T(gxn+1),g(Txn+1))

+ p(g(Txn+1),gz)

− p(T(Txn),T(Txn))− p(g(Txn+1),g(Txn+1)).

Lettingn−→ ∞ in the above inequality and using (22)and
(23), we have

p(Tz,gz)≤ p(Tz,T z)+ p(gz,gz) = p(Tz,Tz). (24)

Now, we will prove thatp(Tz,gz) = 0. Suppose that this is
not the case. Then, from (4) with y =x=z, we get

ψ(p(Tz,Tz))≤ ψ(M(z,z))−φ(p(gz,gz), p(gz,T z)),

where

M(z,z) = max{ϕ(p(gz,gz)),ϕ(p(gz,Tz)),ϕ(p(gz,T z)),

ϕ(
p(gz,Tz)+ p(gz,Tz)

2
)}

= ϕ(p(gz,Tz))< p(gz,Tz).

Therefore, from (24) and the above inequality, we have

p(gz,Tz)< p(gz,Tz),

a contradiction. Hencep(gz,Tz) = 0 which implies that
Tz= gz, that is, z is a coincidence point ofT and g.
Suppose now that(ii) holds. Since{Txn} ⊆ gX andgX is
closed, there existsx ∈ X such thatz= gx. From (7) and
hypothesis(ii), we have

gxn ≤ gx f or all n, gx≤ g(gx). (25)

Now, we claim thatx is a coincidence point ofT andg. We
have

p(gx,T x) ≤ p(gx,gxn+1)+ p(gxn+1,Tx)− p(gxn+1,gxn+1)

= p(z,gxn+1)+ p(T xn,Tx)− p(gxn+1,gxn+1),

p(gxn,Tx) ≤ p(gxn,gx)+ p(gx,T x)− p(gx,gx)

= p(gxn,z)+ p(gx,T x)− p(gx,gx).

Takingn−→ ∞ in the above inequality, we have

p(gx,Tx)≤ lim
n−→∞

p(Txn,Tx), (26)

lim
n−→∞

p(gxn,Tx)≤ p(gx,Tx). (27)

By property ofψ and using (26), we have

ψ(p(gx,T x))≤ lim
n−→∞

ψ(p(T x,Txn))

≤ lim
n−→∞

[ψ(M(x,xn))−φ(p(gx,gxn), p(gx,Tx))]

≤ lim
n−→∞

ψ(M(x,xn))−φ(0, p(gx,T x))

= ψ( lim
n−→∞

M(x,xn))−φ(0, p(gx,T x))

where

lim
n−→∞

M(x,xn)

= lim
n−→∞

[max{ϕ(p(gx,gxn)),ϕ(p(gx,Tx)),

ϕ(p(gxn,Txn)),ϕ(
p(gx,T xn)+ p(gxn,Tx)

2
)}]

= ϕ(p(gx,Tx)),

hence

ψ(p(gx,Tx))≤ ψ(p(gx,Tx))−φ(0, p(gx,Tx)).

which is possible only whenp(gx,Tx) = 0, which implies
thatTx= gx, that is,x is a coincidence point ofT andg.

Theorem 3.Adding to the hypotheses of Theorem2 the
following condition:
if T and g commute at their coincidence points, we obtain
the uniqueness of the common fixed point of T and g.

Proof. Suppose thatT andg commute atx. Sety= Tx=
gx. Then

Ty= T(gx) = g(Tx) = gy, (28)

from (4) we get

ψ(p(Tx,Ty))≤ ψ(M(x,y))−φ(p(gx,gy), p(gx,Tx))(29)

where

M(x,y) = max{ϕ(p(gx,gy)),ϕ(p(gx,Tx)),ϕ(p(gy,Ty)),

ϕ(
p(gx,Ty)+ p(gy,Tx)

2
)}

= max{ϕ(p(Tx,Ty)),ϕ(p(T x,Tx)),ϕ(p(Ty,Ty)),

ϕ(
p(Tx,Ty)+ p(Ty,Tx)

2
)}

= ϕ(p(Tx,Ty)).

Suppose thatp(Tx,Ty)> 0, from (29), we get

ψ(p(Tx,Ty))≤ ψ(M(x,y))−φ(p(gx,gy), p(gx,Tx))

= ψ(ϕ(p(Tx,Ty)))−φ(p(gx,gy), p(gx,Tx))

≤ ψ(ϕ(p(Tx,Ty))),

by property ofψ andϕ , we have

p(Tx,Ty)≤ ϕ(p(Tx,Ty))< p(Tx,Ty),
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which is a contradiction. Hencep(Tx,Ty) = 0, that is,
p(y,Ty) = 0. Therefore,

Ty= gy= y. (30)

Thus we proved thatT andg have a common fixed point.
Uniqueness: Letv andw be two common fixed points of
T and g. (i.e) v = Tv = gv and w = Tw = gw. Using
inequality (4), we have

ψ(p(Tw,Tv))≤ ψ(M(w,v))−φ(p(gw,gv), p(gw,Tw)),

where

M(w,v) = max{ϕ(p(gw,gv)),ϕ(p(gw,Tw)),

ϕ(p(gv,Tv)),ϕ(
p(gw,Tv)+ p(gv,Tw)

2
)}

= ϕ(p(w,v)).

Therefore,

ψ(p(w,v)) = ψ(p(Tw,Tv))

≤ ψ(ϕ(p(w,v)))−φ(p(gw,gv), p(gw,Tw))

which is possible only whenw = v. HenceT andg have
an unique common fixed point.

Example 4.Let X = [0,1] be endowed with usual order
and let p be the complete partial metric on X defined by
p(x,y) = max{x,y} for all x,y∈ X. Let T,g : X −→ X and
ψ ,ϕ : [0,∞) −→ [0,∞) andφ : [0,∞)× [0,∞) −→ [0,∞)

be given byTx= x3

3x+9, gx= x2

x+3, ψ(t) = t, φ(s, t) = s+t
6

andϕ(t) = t
2. Clearlyψ is continuous and nondecreasing,

ψ(t) = 0 if and only if t = 0. φ andϕ are continuous and
φ(s, t) = 0 if and only if t = 0. We show that condition (4)
is satisfied.
If x,y∈ X with x≤ y, then we have

ψ(p(Tx,Ty)) = ψ(max{
x3

3x+9
,

y3

3y+9
})

= max{
x3

3x+9
,

y3

3y+9
}

≤
1
3

max{
x2

x+3
,

y2

y+3
}

=
1
3

p(gx,gy) =
2
3

ϕ(p(gx,gy))

≤ ψ(M(x,y))−φ(p(gx,gy), p(gx,Tx)).

Note that,T and g satisfy all the conditions given in
Theorem2. Moreover, 0 is a unique common fixed point
of T andg.
If we replacep by ps in (4) of Theorem2, thenT andg
do not satisfy (4) of Theorem2, because

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y) = 2max{x,y}− x− y

= |x− y|,

and

ψ(ps(T1,T0)) = ψ(ps(
1
12

,0)) =
1
12

,

M(1,0)

= max{ϕ(ps(g1,g0)),ϕ(ps(g1,T1)),

ϕ(ps(g0,T0)),ϕ(
ps(g1,T0)+ ps(g0,T1)

2
)}

= max{ϕ(ps(
1
4
,0)),ϕ(ps(

1
4
,

1
12

)),

ϕ(ps(0,0)),ϕ(
ps(1

4,0)+ ps(0, 1
12)

2
)}

= max{ϕ(
1
4
),ϕ(

1
6
),ϕ(0),ϕ(

1
4 +

1
12)

2
)}

=
1
8
,

φ(ps(g1,g0), ps(g1,T1)) = φ(ps(
1
4
,0), ps(

1
4
,

1
12

))

= φ(
1
4
,
1
6
) =

5
72

,

ψ(M(1,0))−φ(ps(g1,g0), ps(g1,T1)) =
4
72

.

Now, we will show that many results can be deduced
from our previous obtained results.
An immediate consequence of Theorem2 are the
following results.

Corollary 1.Let (X,≤) be a partially ordered set and
suppose there is a partial metric p on X such that(X, p)
is a complete partial metric space. Assume there is a
continuous functionϕ : [0,∞)−→ [0,∞) with ϕ(t)< t for
each t> 0 and suppose T: X −→ X be a non-decreasing
function for all comparable x,y∈ X, we have

ψ(p(Tx,Ty))≤ ψ(M(x,y))−θ (max{p(x,y), p(x,Tx)}),

where

M(x,y) = max{ϕ(p(x,y)),ϕ(p(x,T x)),

ϕ(p(y,Ty)),ϕ(
p(x,Ty)+ p(y,Tx)

2
)},

ψ ∈ Ψ [0,∞) and θ : [0,∞) −→ [0,∞) is continuous
mapping such thatθ (t) = 0 if and only if t = 0. Also
suppose either

(i)T is continuous or
(ii)X has the following proprety :

if a non-decreasing sequence xn −→ x, then
xn ≤ x ∀ n.

If there exists an x0 ∈X with x0 ≤T(x0) then have a unique
fixed point x∈ X. Moreover, p(x,x) = 0.

Proof.In Theorem2, takingφ(x,y) = θ (max{x,y}) for all
x,y∈ [0,∞), we get Corollary1.

Corollary 2.Let (X,≤) be a partially ordered set and
suppose there is a partial metric p on X such that(X, p)
is a complete partial metric space. Assume there is a
continuous functionϕ : [0,∞)−→ [0,∞) with ϕ(t)< t for
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each t> 0 and suppose T: X −→ X be a non-decreasing
function for all comparable x,y∈ X, we have

ψ(p(Tx,Ty))≤ ψ(M(x,y))−θ (p(x,y)+ p(x,Tx)),

where

M(x,y) = max{ϕ(p(x,y)),ϕ(p(x,Tx)),ϕ(p(y,Ty)),

ϕ(
p(x,Ty)+ p(y,Tx)

2
)},

ψ ∈ Ψ [0,∞) and θ : [0,∞) −→ [0,∞) is continuous
mapping such thatθ (t) = 0 if and only if t = 0. Also
suppose either

(i)T is continuous or
(ii)X has the following proprety :

if a non-decreasing sequence xn −→ x, then
xn ≤ x ∀ n.

If there exists an x0 ∈X with x0 ≤T(x0) then have a unique
fixed point x∈ X. Moreover, p(x,x) = 0.

Proof.In Theorem2, takingφ(x,y) = θ (x+y) for all x,y∈
[0,∞), we get Corollary2.

Corollary 3.Let (X,≤) be a partially ordered set and
suppose there is a partial metric p on X such that(X, p)
is a complete partial metric space. Assume there is a
continuous functionϕ : [0,∞)−→ [0,∞) with ϕ(t)< t for
each t> 0 and suppose T: X −→ X be a non-decreasing
function for all comparable x,y∈ X, we have

ψ(p(Tx,Ty))≤ ψ(M(x,y))−φ(p(x,y), p(x,T x)),

where

M(x,y) = max{ϕ(p(x,y)),ϕ(p(x,Tx)),ϕ(p(y,Ty)),

ϕ(
p(x,Ty)+ p(y,Tx)

2
)},

ψ ∈Ψ [0,∞) andφ : [0,∞)× [0,∞)−→ [0,∞) is continuous
mapping such thatφ(x,y) = 0 if and only if x= y= 0. Also
suppose either

(i)T is continuous or
(ii)X has the following proprety :

if a non-decreasing sequence xn −→ x, then
xn ≤ x ∀ n.

If there exists an x0 ∈X with x0 ≤T(x0) then have a unique
fixed point x∈ X. Moreover, p(x,x) = 0.

Remark.The following condition

ψ(p(Tx,Ty))≤ ψ [ϕ(max{p(gx,gy), p(gx,Tx), p(gy,Ty),

p(gx,Ty)+ p(gy,Tx)
2

})]

−φ(p(gx,gy), p(gx,Tx)),
(31)

implies condition (4). We observe also that condition (31)
is equivalent to condition (4) if we suppose thatϕ is a non-
decreasing function.
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