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1 Introduction and Preliminaries If pis a partial metric orX, then the functiorp®: X x

. S . ) X — R* given by
In spite of its simplicity, the Banach fixed point theorem

still seems to be the most important result in metric fixed p3(X,Y) = 2p(X,Y) — p(X,X) — p(Y,Y) (1)
point theory. Fixed point theorems are very useful in the

existence theory of differential equations, integral ,

equations, functional equations and other related areadS & Metric orX.

Existence of a fixed point for contraction type mappings Definition 2.[24,26,27] Let (X,p) be a partial metric
in partially metric spaces and its applications has beerspace. Then

considered recently by many authdrg,4,5,7,11,21,25,

28,30,32,37]. Consistent with ¢,24], the following ; int < if q N if
definitions and results will be needed in the sequel. converges 1o a point e It and only |
P(X,X) = liMp_—s0 P(X, Xn)-

Definition 1.[24] A partial metric on a nonempty set X is  (ji)A sequencedx,} in a partial metric spaceX, p) is

(i)A sequence{xn} in a partial metric space(X,p)

a function p: X x X — R" such that for all xy,z€ X called a Cauchy sequence if there exists (and is finite)
(P)x=y & p(x,Xx) = p(X,y) = p(Y.y), limnm—se P(Xm, Xn)- o _
(P2) p(x,x) < p(X,Y), (iii )A partial metric spacéX, p) is said to be complete if
(Ps)p(x,y) = p(Y,X), every Cauchy sequenég,} in X converges to a point
(Py)p(x,y) < p(x,2)+ p(zy) — p(z 2). x € X, thatis gx,x) = liMmnm—sc P(Xm, Xn)-

A partial metric space is a paifX,p) such that X is a Remarkit is easy to see that, every closed subset of a
nonempty setand p is a partial metric on X. complete partial metric space is complete.

Remarkt is clear that, ifp(x,y) = 0, then from(P1) and  Example 320 If X = 0,1 U [23 and define
(P) x=Yy. Butif x=y, p(x,y) may not be 0. P:X x X —s [0,00) by

defined byp(x,y) = maxx,y} for anyx,y € R*. Then, X—y| if {xy}c[0,1].

Example 124] Let a functionp : R x R* — R* be maxix.v! if {xvin[2.31£0
p(x,y):{ Xy} it {(xy}n[23]#0,
(R", p) is a partial metric space.
Then (X, p) is a complete partial metric space.

Example 724 If X = {[a,b] : a,b € R.a < b}, thenp:
X x X — R* defined byp([a,b], [c,d]) = maxXb,d} — Lemma 1][24,25,26]Let (X, p) be a partial metric space.
min{a,c} defines a partial metric oX. Then
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(a){xn} is a Cauchy sequence {iX, p) if and only if itis  Aydi [8] obtained the following result.
a Cauchy sequence in the metric sp&kep®). i
(b)A partial metric spacéX, p) is complete if and only if 1heorem 1{8] Let (X, <x) be a partially ordered set and

the metric spacéX, p®) is complete. Furthermore, let p be a partial metric on X such théx, p) is'complete.
) < Let f: X — X be a nondecreasing map with respect to
lim p>(%n,x) =0 <x. Suppose that the following conditions hold: foxy,
we have
if and only if 0)
. . P(f(x), (y) < p(xy) — #(P(x.Y)), (3)

P(X,X) = lim p(X, X)) = lim p(Xm,Xn).

e n,m—oo where ¢ : [0,0) — [0,0) is a continuous and

Lemma 2[4] A mapping f: X — X is said to be non-decreasing function such that it is positive[@co),
continuous at a& X, if for everye > 0, there existsy > 0 $(0) =0andlime_ ¢(t) = o;

such that {B(a,8)) c B(f(a), ). (ii) there exist ¥ € X such that ¥ <x fXo;
(B(,9)) (f@.€) (iii) f is continuous in(X, p), or;
The following result is easy to check. (iv) if a non-decreasing sequen¢®, } converges to ¥ X,

then % <x x for all n. Then f has a fixed point@ X.

Lemma3Let (X,p) be a partial metric space. Moreover, fu, u) = 0.

T : X — X is continuous if and only if given a sequence

{Xn} € X and xe X such that px,x) = limp_—. p(Xn, X), Choudhury 3] introduced the following definition.

then gTX TX) = liMp_—0 P(T %, TX). o ] ]
Definition 7.A mapping T: X — X, where(X,d) is a

Lemma 4[33] Consider X = [0,») endowed with the metric space is said to be weakly-Contractive (or a

partial metric p: X x X — [0,0) defined by weakC-contraction) if forall xy e X,

p(x,y) = maxx,y} for all x,y > 0. Let F: X — X be a .

non-decreasing function. If F is continuous with respect =+ _

to the standard metric &,y) = [x—y| for all x,y > O, d(TxTy) < 2[d(x,Ty)+d(y,Tx)] PAGTY), d. X)),

then F is continuous with respect to the partial metric p. Where @ : [0,00) x [0,e) —» [0,e0) s a continuous

Definition 3.Let X be a set, T and g are selfmaps of X. function such thagp(x,y) = 0if and only if x=y = 0.
A point x in X is called a coincidence point of T and g if
Tx= gx. We shall call w= Tx= gx a point of coincidence

of T and g. 2 Main results

Definition 4.[12] Let (X, <) be a partially ordered set and
F,g: X — X are mappings of X into itself. One says F is
g-non-decreasing if for,y € X, we have

SetW[0,00) = { : [0,00) — [0,00) : Y is continuous and
nondecreasing mapping with(t) = 0 if and only ift = 0}.
Ouir first main result is the following.

9(x) < 9(y) = F(x) <F(y). Theorem 2Let (X,<) be a partially ordered set and
suppose there is a partial metric p on X such (&t p)
is a complete partial metric space. Assume there is a
continuous functiom : [0,0) — [0, ) with ¢(t) <t for
each t> 0 and also suppose,§: X — X are such that
TX C gX, T is a g-non-decreasing and for every two
(b1)p(x,x) = 0 then dgx,gx) =0, elements » € X which gx and gy are comparable, we
(b2)limp_—e P(T(9%),9(TX%)) = 0 whenever{x,} is a  have

sequence in X such that Tx—t and gx — t for

some te X. Yp(TXTY) < PY(M(x,y)) — @(p(gx gy), p(gX’TX))@)

Definition 5.[33] Let (X, p) be a partial metric space and
T,9: X — X are mappings of X into itself. We say that
the pair {T,g} is partial compatible if the following
conditions is hold:

Alber and Guerre-Delabriere 3] defined weakly \yhere
contractive mappings on a Hilbert spaces and established

a fixed point theorem for such maps. M(x,y) = max ¢ (p(gx.gy)), ¢ (p(gx Tx)), d (P(aYy, Ty))75
Definition 6.[3] Let (X,d) be a metric space. A o( P(gx Ty) + P(%. TX) )} ®)
selfmapping f on X is said to be weakly contractive if 2
Y € W[0,0) and@: [0, ) x [0,c0) — [0, c0) is continuous
d(fx, fy) <d(xy) —¢(d(x,y)) (2)  mapping such thap(x,y) = 0if and only if x=y = 0. Also

for all x,y € X, where¢ : [0,00) — [0, ) is a continuous suppose either

and nondecreasing function such tiggt) = 0 if and only ()T, g are two continuous self-mappings of X &fid g}
ift =0. is partial compatible or
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(i )if gX is closed anc[g(xn)} X is a non-decreasing
sequence with (&) — g(x) in g(X) then
9(*n) <9(x), 9(x) <g(g(x)) vn

holds.

If there exists anxe X with gXg) < T(xo) then T and g
have a coincidence point.

Proof. Note that if T, g have a coincidence poiit then

p(Tz Tz = p(gzgz) =0. Indeed, assume thptgz gz) >
0. Then from @) with x =y = z, we have
W(p(9292) = Y(p(TzT2) ©)
<Y(M(z,2)) - 9(p(9292),p(9z2 T 2),
where
M(z,z) = max ¢ (p(9292),9(P(92T2),$(p(9z T 2),
P(9zT2) +p(9z T2
o( > )}
=max ¢(p(9292),$(p(9292),¢(p(9292)),
o p(9z 92); p(9z92) 1
=¢(p(9292).

Then we have

Lﬂ(p(gz92>) W(p(Tz2T2)
W(9(p(9z92))) — @(p(9z2 92), p(9z 92))
w(p(9z92) — @(p(9z 92), p(9292))
qo(p(gzgz),p(gzgz)) < 0, a contradiction. Hence

P(TzT2 =p(gz92 =0

Let xg be an arbitrary point oK such thag(xp) < T (Xo).
Since TX C gX we can choosex; € X so that
g(x1) = T(xp). Again from TX C gX we can choose
X2 € X so that g(x) = T(x1). Since
g(x) < T(x) = g(xq) and T is g—non-decreasing, we
haveT (xp) < T(x1).

Continuing this process we can choose a sequéxgen
X such that

9(%n1) =T (%) n=0,1,2,...,

T(X) <T(x) <T(X) <
Therefore,

g(x1) <g(x2) <9(X3) < ... <g(Xn) < YXny1) < ..o (7)

If there exists € N such thatp(T Xy, T X,11) = 0, then by
(p1) and(p2) we havegx, 1= TX) = T X 1. Hencexn 1

is a coincidence ofT and g. So we assume that
P(T %, TXa1) > 0, for all n € N. We will show that

P(TX, TXr1) < P(TX-1,T%) Vn=>1. (8)
From @) with x = X, andy = xn+1, we have

W(P(TX0, TXns1))
<YM (Xn, %nr1)) —
= Y(M(Xn,Xn11)) —

e ST(Xn) < T (Xpp1) < .o

P(P(9%; G%+1), P(T%, TX))  (9)
P(P(TX-1, TX%), P(T X1, T %)),

where
M (Xn, Xn+1)
=max ¢ (p(g%,9%+1)), §(P(G%, TX)), #(P(I¥n+1, T Xnt1))s

o( P(9%, T X 1) er P(9%11, T %) )

=max ¢ (P(Tx-1,T%)), d(P(Tx-1,T%)), D (P(T%, TXn11)),

— max( 9 (p(T %01, T).
§(p(To, o)), (P2 T) T TN T,

—f M(%n,Xn11) = @ (P(T*-1,TX)), by (9) and using
the fact thatp (t) < t fort > 0, we have
Y(P(Tx, Txas1))
< YO (P(Tx-1,Tx))) —
< Yo (P(Tx-1.Txn)))
<YP(P(Tx-1,Tx)).
Then @) holds.
—f M(Xn, Xnt1) =
Y(P(Tx, Txas1))
S Y@ (P(Tx, Txy1))) —
S Y@ (P(Tx, Txr1))),

since we suppose thafTx,, Tx,+1) > 0and asp(t) <
tfort > 0, thenp(T Xy, Tx11) < ¢ (P(T %0, TXys1)) it
is impossible.
T 1, Tx1) + P(T%, T
—If M(xn,xn+1):¢(p( -1 Xn+12) P(Tx Xn))’

OP(Tx-1, TX), P(TX-1, T%))

¢ (P(T %, TX111)), then we have

OP(TX-1, TX), P(TX-1, T %))

we get

YP(T%, TX1))

< W p(Txn_l,T><n+12) + p(Txn,Txn>))

—0(P(TX-1,T*), P(TX-1, T X))

< w(q&(p(Tml,Tmle p(Txn,Txn)))

( P(TX-1, TXop1) + p(Txn,TXn))
2 9

<y

thus, we have

P(T X1, TX11) + P(T %, T %)
5 .

On the other hand, by the triangular inequality in
partial metric space, we have

P(T X1, Txay1) <

P(Tx-1,TX1) + P(TX0, Txa) _ P(TX01,T0) +
2 = 2
so, we have

P(T %, TXe11)

p(T X{‘I*LTXH) +
2

O(T X T011) < p(TXnaTXle)’

which implies that

P(T %, TXnr1) < P(TX—1, T Xn)-
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Therefore, we proved tha8) holds. Then, the sequence Takingk — « in (16) and (L7) and using 12), (13) and
{P(T*, TX+1)} of real numbers is monotone decreasing. (15) we get

Hence there exists a real numigepr 0 such that,

Iim p(Txa, Txai) = 0. (10)

We show thatd = 0. Suppose, to the contrary, that> 0.
Then from continuityp and Q) gives that

lim_ @(p(T o, Txo1))

< Jim (9 (p(Tx01.Tx0)

= lIm_o(p(Tx-1,TX0), P(TX-1,TXa)),

which implies that

W(d) <yY(9(3)) - (3.9),
which is possible only whed = 0. Therefore, we proved

that

lim p(TX, TX1) =0. (11)
n—o0

Fromp(T X, T%), P(TX41, TX11) < P(T %, T Xq1) @nd

(11), we have

Im p(Tx, Tx) = lIm p(Tx11, Txr1) = 0. (12)
From (11), (12) and (1), we have
lim p>(T%), TXy41) = 0. (13)
n—o

Now, we prove that
A, p(Txn To) =0

If not, then there exists an> 0 and subsequences, }
and {Xmi} of {xn} with n(k) > m(k) > k such that

lim p(T Xk Txmig) = im (T X -

=E&.

15 T Xm(k)—1)
(18)

P(T X115 T X)) + P(T Xmi—1 T X))
< P(T Xak)—15 T Xmik)—1) + PT Xk -1, T X))
= P(TXmk) -1, T Xmik)—1) + P(T Xmiky—15 T Xn(k)—1)
+ P(T X1 T X)) — P(T Xk -1 T Xk —1)-
Now using inequality4), we have
W) < Y(P(T Xk TXn)))
<YM Xnk)» Xm(k)))
- (P( p(gxn(k) s PXmk))s PPk T Xn(i)))
<YM Xy Xm(k))
= @(P(T Xq(i)—

(19)

(20)

1 T —1)s P(T X0 -1, T X))
where
M (Xn (k) » Xm(k) )
= max @ (P(P(k)> IXmk)))> @ (P(FXnk)> T Xaik)))s

¢ (P(IXmk)> T Xmik)))

P(IXn(ky» T Xmk)) + P(Pmikys T Xncky)

o( 5 )}

= max @ (P(T Xk)—1> T Xn(k)—1))5
O (P(T X -1, T Xk ))ad’( (T Xm(k)—

(p(Txn )—15 T Xm) + P(T Xm(k)—laTXn(k)))}
> .

1: T Xm(k)))

Letting k — o in the above inequality and usirikf}) and

P(T Xk, TXmi) = € and p(T X1, TXmy) < €- Then  (19) we obtain
we have Ete
£ < P(TXyk, T im MOt Xog) = max( 9 (€),6.(0). 9(0). ¢(——)}
< P(Tx) T><n ~1) + P(MXk—15 T Xmiky) (14) = ¢(e).
= P(TX—1, T Xk 1) As k — oo, inequality @0) becomes,
< P(T Xk T X —1) + € = P(T Xn(k)—15 T Xn(i)—1)- wie) < W(e(e)) — (e, 0)
Takingk — o in (14) and using {1) and (L2) we get < (e) — @(g,0)
l!im P(T Xa(k), T X)) = (15)  which is a contradiction by virtue of a property @fand
—»00
w.
Thus from the definitiop we have Thus, we obtain that lifn e P(Txm,T¥) = 0, ie.,
{Tx} is a cauchy sequence {iX,p), and hence in the
P(T Xmi, k) metric space(X,p°) by Lemmal. Since (X,p) be a
< P(T Xk Témiky—1) + P(T Xy —15 T Xk -1) 1s) complete partial metric space, then, from lemrba
+ (T Xt 1. Tk (16) (X, p°) is also complete, so the sequerdex,} converges
in the metric spacéX, p®), so there existin X such that
= P(T X1, TXmi—1) — P(T X1, T Xk - 1), o g
lim p*(Txn,2) = lim p*(g%n1,2) = 0.
P(T X —15 T Xa(k)—1) .
- p(TXm(k) ) TXm(k)) n p(TXm(k> TXn(k)) Again, from Lemmal, we get
a ’ ’ (17)  p(zz)= lim p(Tx,2) = lim p(gx1,2)
+ P(TXk)> Tk 1) n-—eo n—e (1)
= P(T Xk T Xmiky) — P(T Xk T X)) = pim_,P(T%, Txn) = 0.
(@© 2015 NSP
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because limm—wo P(T X%, TXm) = 0.

Suppose that the assumpti@h holds. Now we show that
zis a coincidence point of andg.

SinceT andg are continuous, fron2() and using Lemma
3, we get

p(TzT2) = lim p(T(Tx),T2)
and
P(9z92) = lim p(9(T*n:1),92)-

(22)

Since T and g are partial compatible mappings, this

implies that

p(9z92 =0and lim p(T(9(+1)),9(T (*n+1))) = 0.
(23)
The condition(ps), we obtain
P(Tz92) < p(TZT(TX)) + P(T(T*),9(TX+1))
+P(A(T%+1),92 — P(T(TX), T(TX))
— P(9(TX14+1),9(TX41))
=p(TZT(Tx)) + P(T(9%+1),9(T Xnt1))
+P(9(T*11),92)
= P(T(T%), T(T%)) — P(I(TX+1),9(T Xn1-1))-

Lettingn — oo in the above inequality and using2)and
(23), we have

P(Tz92 <p(TzT2+p(9292 =p(TzT2. (24)

Now, we will prove thatp(T z gz) = 0. Suppose that this is

not the case. Then, frord)with y =x=z, we get

Y(p(TzT2) < YM(z2) - @(p(9292),p(92 T 2)),
where
M(z,z) = max ¢ (p(9292),9(P(92T2),¢(p(9z T 2),

P(0z T2+ p(gzTzZ
p(POT2 02T,
=¢(p(g2T2) < p(9zT2).
Therefore, from24) and the above inequality, we have

P9z T2 < p(9z T2,

a contradiction. Henc@(gz T2 = 0 which implies that
Tz= gz that is,z is a coincidence point o and g.

Suppose now thdii) holds. Since[Tx,} C gX andgX is

closed, there exists € X such thatz= gx. From (7) and
hypothesigii), we have

g% < gx foralln, gx<g(gx). (25)

Now, we claim thak is a coincidence point of andg. We
have

P(9X TX) < P(9X G%n+1) + P(G%n+1. TX) — P(PXn+1,0%0+1)
= P(z.9%+1) + P(T X0, TX) — P(P+1,9%n+1),
P(9%, TX) < p(g%,9x) + P(gx T X) — p(gx gx)
= p(9%,2) + P(gx, TX) — p(gx gX).

Takingn — « in the above inequality, we have

POXTX) < lim p(Tx), Tx), (26)

Jim (9, Tx) < p(gx TX). (27)
By property ofyy and using 26), we have
Y(p(gxTX)) < lim @(p(TxTx))
< Jim_[WM(xx0)) = @(P(g% 9%), P(X TX))]
< Jim_ @M% %)) — @(0, p(gx Tx)
= ( lim M(xxn)) — (0, p(gx TX))
where
nIi_rT>1mM(x,xn)
[max{ ¢ (p(gx 9%)), ¢ (P(9X TX)),

P(9X T X) + P(g%, TX) 1]
2

= im,
O (P(9%, Tx)), & (

=¢(p(gx,TX)),

hence

Y(p(OxTX) < P(p(gx TX)) — @0, p(gx, TX)).

which is possible only whep(gx, T x) = 0, which implies
thatTx= gx, that is,x is a coincidence point of andg.

Theorem 3Adding to the hypotheses of Theor@nthe
following condition:

if T and g commute at their coincidence points, we obtain

the unigueness of the common fixed point of T and g.

Proof. Suppose thaf andg commute ak. Sety = Tx=
gx. Then

Ty=T(gx) =9(Tx) =gy,
from (4) we get
Y(p(TXTY) < Y(M(xy)) -
where

M(xy) = max{ ¢ (p(gx.gy)), d (P(gx Tx)), (p(gy. Ty)),

¢(p(gx,Ty)+ p(gy,TX))}
2
=max o (p(TxTy)),d(p(TXTX)),d(p(TY, Ty)),
¢(p(T>sTy)+p(TMTX))}
2

(28)

@(p(gx,gy), p(gx Tx)) (29)

=¢(P(TXTy)).
Suppose thap(Tx Ty) > 0, from (29), we get
P(P(TXTY) < Y(M(xy)) — @(p(gx gy), P(9% Tx))

=@ (p(TxTY))) — @(p(gx,gy), P(9% TX))
< Y@ (p(TxTy))),

by property ofy and¢, we have
PTXTY) < @ (p(TxTy)) < p(TxTy),
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which is a contradiction. Hencp(Tx Ty) = 0, that is,
p(y,Ty) = 0. Therefore,

Ty=gy=yY. (30)
Thus we proved thak andg have a common fixed point.
Uniqueness: Let andw be two common fixed points of
T andg. (i.e) v=Tv=gvandw = Tw= gw. Using
inequality @), we have

YP(TWTV) < P(M(W,V)) — @(p(gw, gv), p(gw, Tw)),
where
M(w,v) = max ¢ (p(gwgv)), ¢ (p(gw Tw)),
6(plouTv), o PINTV T POUTW
= ¢ (p(W,v)).
Therefore,
Y(p(w,v)) = P(p(TwTv))
< W(P(p(w,V))) — @(p(gw gv), p(gw Tw))

which is possible only whew = v. HenceT andg have
an unique common fixed point.

Example 4.et X = [0,1] be endowed with usual order

and let p be the complete partial metric on X defined by

p(x,y) = maxx,y} forall x,y € X. LetT,g: X — X and
Y,¢ :[0,00) — [0,00) and @ : [0, ) x [0,00) — [0,00)

be given byT x= 3Xi9, gx= X+23, Pt) =t @(st) =

and¢(t) = t . Clearlyy is continuous and nondecreasmg
Yit)=0if and only ift =0. ¢ and¢ are continuous and
¢(s,t) = 0if and only ift = 0. We show that conditior4)
is satisfied.
If x,y € X with x <y, then we have
x3 y3
Y(p(TxTy)) = W(max{ma m})
x3 y3
= max 3 9319
1 A
=3ma x+3 y+ yr3
1
= 3Ploxgy) = §¢(p(g>s ay))
< w(M(x,y)) — @(p(9x 9Y), P(gX TX)).

Note that, T and g satisfy all the conditions given in

Theorem2. Moreover, 0 is a unique common fixed point

of T andg.
If we replacep by pSin (4) of Theorem2, thenT andg
do not satisfy 4) of Theoren2, because

P°(X,Y) = 2p(X,y) — P(X,X) — p(Y;y) =
= |X - y| 5

2max{x,y} —x—y

and

M(1,0)
=max ¢ (p*(91,90)), ¢ (p*(91,T1)),

p3(g1,TO) + p*(g0,T1)

¢(p*(90,T0)), ¢( 3 )}
= max(8 (p°(7,0)).9(p°(, 25).
0(5°0.0), ¢ FEOT PO D))y
1,1
— max(6(3).9(2).9(0),9(+ 1))
1
=
P(P°(gL 90). P(GL.TD) = 9(p°(5,0). (5. 1))
115
(Z’é)_7_27
Y(M(1,0)) - @(p*(g1,90), p(g1, T1)) = —.

Now, we will show that many results can be deduced
from our previous obtained results.

An immediate consequence of Theoreth are the
following results.

Corollary 1.Let (X,<) be a partially ordered set and
suppose there is a partial metric p on X such t(t p)

is a complete partial metric space. Assume there is a

continuous functiom : [0,) — [0,0) with ¢ (t) <t for
each t> 0 and suppose TX — X be a non-decreasing
function for all comparable y € X, we have

W(RTXTY)) < WM(Y)) ~ B(max(p(xy), pix T},

where

M(xy) = max($ (p(xy)). #(p(x. Tx)).
6(ply.Ty), ¢ (PETILPUTX

Y € W[0,0) and 6 : [0,00) — [0,0) is continuous
mapping such thaB(t) = 0 if and only if t= 0. Also
suppose either

()T is continuous or

(ii)X has the following proprety :
if a non-decreasing sequence, X— X,
Xn <X Vn.

then
If there exists anxe X with ¥y < T (xg) then have a unique
fixed point xc X. Moreover, f§x,x) = 0.

Proofln Theorem2, taking ¢(x,y)
X,y € [0,00), we get Corollaryl.

= 6(maxx,y}) for all

Corollary 2.Let (X,<) be a partially ordered set and
suppose there is a partial metric p on X such t(t p)

is a complete partial metric space. Assume there is a

continuous functio : [0,) — [0,0) with ¢ (t) <t for
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