Coupled Coincidence Point Results on Partial Metric Spaces

Reza Arab*
Department of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran

Received: 7 Jun. 2012, Revised: 21 Sep. 2012, Accepted: 23 Sep. 2012
Published online: 1 Jan. 2015

Abstract

In this paper, we consider a new class of pairs of generalized contractive type mappings defined in partial metric spaces. Some coincidence and common fixed point results for these mapping are presented.

Keywords: Partial metric space, coincidence point, coupled fixed point, common coupled fixed point, Generalized contraction principle.

1 Introduction and Preliminaries

In 1992, Matthews $[16,17]$ introduced the notion of a partial metric space which is a generalized metric space in which each object does not necessarily have to have a zero distance from itself.
First, we start with some preliminaries definitions on the partial metric spaces $[1,2,3,4,5,6,8,10,11,12,13,14,16$, $17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32]$.

Definition 1.[16, 17] A partial metric on a nonempty set X is a function $p: X \times X \longrightarrow R^{+}$such that for all $x, y, z \in X$:
$\left(P_{1}\right) x=y \Leftrightarrow p(x, x)=p(x, y)=p(y, y)$,
$\left(P_{2}\right) p(x, x) \leq p(x, y)$,
$\left(P_{3}\right) p(x, y)=p(y, x)$,
$\left(P_{4}\right) p(x, y) \leq p(x, z)+p(z, y)-p(z, z)$.
A partial metric space is a pair (X, p) such that X is a nonempty set and p is a partial metric on X.

Remark.It is clear that, if $p(x, y)=0$, then from $\left(P_{1}\right)$ and $\left(P_{2}\right) x=y$. But if $x=y, p(x, y)$ may not be 0 .

Example 1.Let a function $p: R^{+} \times R^{+} \longrightarrow R^{+}$be defined by $p(x, y)=\max \{x, y\}$ for any $x, y \in R^{+}$. Then, $\left(R^{+}, p\right)$ is a partial metric space.

Example 2.If $X=\{[a, b]: a, b \in R, a \leq b\}$, then $p \quad: \quad X \quad \times \quad X \quad \longrightarrow \quad R^{+} \quad$ defined by $p([a, b],[c, d])=\max \{b, d\}-\min \{a, c\}$ defines a partial metric on X.

Each partial metric p on X generates a T_{0} topology τ_{p} on X which has as a base the family open p-balls $\left\{B_{p}(x, \varepsilon): x \in\right.$ $X, \varepsilon>0\}$, where $B_{p}(x, \varepsilon)=\{y \in X: p(x, y)<p(x, x)+\varepsilon\}$ for all $x \in X$ and $\varepsilon>0$.
If p is a partial metric on X, then the function $p^{s}: X \times$ $X \longrightarrow R^{+}$given by

$$
\begin{equation*}
p^{s}(x, y)=2 p(x, y)-p(x, x)-p(y, y) \tag{1}
\end{equation*}
$$

is a metric on X.
Definition 2.[16, 17]
(i)A sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) converges to a point $x \in X$ if

$$
p(x, x)=\lim _{n \longrightarrow \infty} p\left(x, x_{n}\right),
$$

(ii) a sequence $\left\{x_{n}\right\}$ in a partial metric space (X, p) is called a Cauchy sequence if there exists (and is finite)

$$
\lim _{n, m \longrightarrow \infty} p\left(x_{m}, x_{n}\right),
$$

(iii) a partial metric space (X, p) is said to be complete if every Cauchy sequence $\left\{x_{n}\right\}$ in X converges, with respect to τ_{p}, to a point $x \in X$ such that

$$
p(x, x)=\lim _{n, m \longrightarrow \infty} p\left(x_{m}, x_{n}\right) .
$$

Remark.It is easy to see that, every closed subset of a complete partial metric space is complete.

[^0]Lemma 101[16, 17] Let (X, p) be a partial metric space. Then
(a) $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space $\left(X, p^{s}\right)$.
(b)A partial metric space (X, p) is complete if and only if the metric space $\left(X, p^{s}\right)$ is complete. Furthermore,

$$
\lim _{n \longrightarrow \infty} p^{s}\left(x_{n}, x\right)=0
$$

if and only if

$$
p(x, x)=\lim _{n \longrightarrow \infty} p\left(x, x_{n}\right)=\lim _{n, m \longrightarrow \infty} p\left(x_{m}, x_{n}\right) .
$$

Lemma 102[4] A mapping $f: X \longrightarrow X$ is said to be continuous at a $\in X$, iffor every $\varepsilon>0$, there exists $\delta>0$ such that $f(B(a, \delta)) \subset B(f(a), \varepsilon)$.

The following result is easy to check.
Lemma 103Let (X, p) be a partial metric space and T : $X \longrightarrow X$ be a given mapping. Suppose that T is continuous at x_{0}. Then, for all sequence $\left\{x_{n}\right\} \subseteq X$, if $\left\{x_{n}\right\}$ converges to x_{0} in (X, p) implies $\left\{T x_{n}\right\}$ converges to $T x_{0}$ in (X, p).

Definition 3.[9] An element $(x, y) \in X \times X$ is said to be a coupled fixed point of the mapping $T: X \times X \rightarrow X$ if
$T(x, y)=x$ and $T(y, x)=y$.
Definition 4.[15] An element $(x, y) \in X \times X$ is called a coupled coincidence point of a mapping $T: X \times X \rightarrow X$ and $g: X \longrightarrow X$ if
$T(x, y)=g x$ and $T(y, x)=g y$.
Definition 5.[15] Let X be a non-empty set and $T: X \times$ $X \rightarrow X$ and $g: X \longrightarrow X$. We say T and g are commutative if for all $x, y \in X$,
$g(T(x, y))=T(g x, g y)$.
H. Aydi[7] obtained the following.

Theorem 1.Let (X, p) be a complete partial metric space. Suppose that the mapping $T: X \times X \longrightarrow X$ satisfies the following contractive condition for all $x, y, u, v \in X$

$$
\begin{equation*}
p(T(x, y), T(u, v)) \leq k p(x, u)+l p(y, v), \tag{2}
\end{equation*}
$$

where k and l are nonnegative constants with $k+l<1$. Then, T has a unique coupled fixed point.

The main purpose of this article is to present a generalization of Theorem 1.

2 Existence and uniqueness of coupled coincidence points

In this section, we will prove the existence and uniqueness of the coupled coincidence point. Our first main result is the following:

Theorem 2.Let (X, p) be a complete partial metric space. Assume there exist $a_{1}, a_{2}, a_{3} \geq 0$ with $2 a_{1}+3 a_{2}+3 a_{3}<2$ and also suppose $T: X \times X \longrightarrow X$ and $g: X \longrightarrow X$ are such that

$$
\begin{align*}
& p(T(x, y), T(u, v)) \\
& \leq a_{1} \frac{p(g x, g u)+p(g y, g v)}{2} \\
& +a_{2} \frac{p(g x, T(x, y))+p(g u, T(u, v))+p(g y, g v)}{2} \tag{3}\\
& +a_{3} \frac{p(g x, T(u, v))+p(g u, T(x, y))+p(g y, g v)}{2}
\end{align*}
$$

for all $x, y, u, v \in X$. Also Suppose $T(X \times X) \subseteq g(X), g$ is continuous and commutes with T. Then there exist $x, y \in X$ such that
$g x=T(x, y)$ and $g y=T(y, x)$,
that is, T and g have a unique coupled coincidence point.
Proof.Let x_{0}, y_{0} be two arbitrary elements in X. Since $T(X \times X) \subseteq g(X)$, we can choose $x_{0}, y_{0} \in X$ such that $g x_{1}=T\left(x_{0}, y_{0}\right)$ and $g y_{1}=T\left(y_{0}, x_{0}\right)$. Again from $T(X \times X) \subseteq g(X)$ we can choose $x_{1}, y_{1} \in X$ such that $g x_{2}=T\left(x_{1}, y_{1}\right)$ and $g y_{2}=T\left(y_{1}, x_{1}\right)$. Continuing this process, we can construct two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ in X such that

$$
\begin{equation*}
g x_{n+1}=T\left(x_{n}, y_{n}\right) \text { and } g y_{n+1}=T\left(y_{n}, x_{n}\right) \text { for all } n \geq 0 \tag{4}
\end{equation*}
$$

Now, let $a=\frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2}$ and $\lambda=\frac{2\left(a_{1}+a_{2}+a_{3}\right)}{2-a_{2}-a_{3}}$. Then, by (3), we have

$$
\begin{aligned}
p & \left(g x_{1}, g x_{2}\right)=p\left(T\left(x_{0}, y_{0}\right), T\left(x_{1}, y_{1}\right)\right) \\
\leq & a_{1} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& +a_{2} \frac{p\left(g x_{0}, T\left(x_{0}, y_{0}\right)+p\left(g x_{1}, T\left(x_{1}, y_{1}\right)\right)+p\left(g y_{0}, g y_{1}\right)\right.}{2} \\
& +a_{3} \frac{p\left(g x_{0}, T\left(x_{1}, y_{1}\right)+p\left(g x_{1}, T\left(x_{0}, y_{0}\right)\right)+p\left(g y_{0}, g y_{1}\right)\right.}{2} \\
= & a_{1} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& +a_{2} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g x_{1}, g x_{2}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& +a_{3} \frac{p\left(g x_{0}, g x_{2}\right)+p\left(g x_{1}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
\leq & a_{1} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& +a_{2} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g x_{1}, g x_{2}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& +a_{3} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g x_{1}, g x_{2}\right)+p\left(g y_{0}, g y_{1}\right)}{2} .
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
p\left(g x_{1}, g x_{2}\right) & \leq \frac{2\left(a_{1}+a_{2}+a_{3}\right)}{2-a_{2}-a_{3}} \cdot \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& =\lambda a .
\end{aligned}
$$

Also, one can get

$$
\begin{aligned}
& p\left(g y_{1}, g y_{2}\right)=p\left(T\left(y_{0}, x_{0}\right), T\left(y_{1}, x_{1}\right)\right) \\
& \leq a_{1} \frac{p\left(g y_{0}, g y_{1}\right)+p\left(g x_{0}, g x_{1}\right)}{2} \\
&+a_{2} \frac{p\left(g y_{0}, T\left(y_{0}, x_{0}\right)+p\left(g y_{1}, T\left(y_{1}, x_{1}\right)\right)+p\left(g x_{0}, g x_{1}\right)\right.}{2} \\
&+a_{3} \frac{p\left(g y_{0}, T\left(y_{1}, x_{1}\right)+p\left(g y_{1}, T\left(y_{0}, x_{0}\right)\right)+p\left(g x_{0}, g x_{1}\right)\right.}{2} \\
&= a_{1} \frac{p\left(g y_{0}, g y_{1}\right)+p\left(g x_{0}, g x_{1}\right)}{2} \\
&+a_{2} \frac{p\left(g y_{0}, g y_{1}\right)+p\left(g y_{1}, g y_{2}\right)+p\left(g x_{0}, g x_{1}\right)}{2} \\
&+a_{3} \frac{p\left(g y_{0}, g y_{2}\right)+p\left(g y_{1}, g y_{1}\right)+p\left(g x_{0}, g x_{1}\right)}{2} \\
& \leq a_{1} \frac{p\left(g y_{0}, g y_{1}\right)+p\left(g x_{0}, g x_{1}\right)}{2} \\
&+a_{2} \frac{p\left(g y_{0}, g y_{1}\right)+p\left(g y_{1}, g y_{2}\right)+p\left(g x_{0}, g x_{1}\right)}{2} \\
&+a_{3} \frac{p\left(g y_{0}, g y_{1}\right)+p\left(g y_{1}, g y_{2}\right)+p\left(g x_{0}, g x_{1}\right)}{2} .
\end{aligned}
$$

Thus, we obtain

$$
\begin{aligned}
& p\left(g y_{1}, g y_{2}\right) \\
& \leq \frac{2\left(a_{1}+a_{2}+a_{3}\right)}{2-a_{2}-a_{3}} \cdot \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2}=\lambda a .
\end{aligned}
$$

Similar to the above proof, one can show that

$$
\begin{aligned}
& p\left(g x_{n}, g x_{n+1}\right) \\
& \leq \frac{2\left(a_{1}+a_{2}+a_{3}\right)}{2-a_{2}-a_{3}} \cdot \frac{p\left(g x_{n-1}, g x_{n}\right)+p\left(g y_{n-1}, g y_{n}\right)}{2} \\
& =\lambda \frac{p\left(g x_{n-1}, g x_{n}\right)+p\left(g y_{n-1}, g y_{n}\right)}{2} \\
& \leq \lambda^{2} \frac{p\left(g x_{n-2}, g x_{n-1}\right)+p\left(g y_{n-2}, g y_{n-1}\right)}{2} \\
& \vdots \\
& \leq \lambda^{n} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& =\lambda^{n} a,
\end{aligned}
$$

and

$$
\begin{aligned}
& p\left(g y_{n}, g y_{n+1}\right) \\
& \leq \frac{2\left(a_{1}+a_{2}+a_{3}\right)}{2-a_{2}-a_{3}} \cdot \frac{p\left(g x_{n-1}, g x_{n}\right)+p\left(g y_{n-1}, g y_{n}\right)}{2} \\
& =\lambda \frac{p\left(g x_{n-1}, g x_{n}\right)+p\left(g y_{n-1}, g y_{n}\right)}{2} \\
& \leq \lambda^{2} \frac{p\left(g x_{n-2}, g x_{n-1}\right)+p\left(g y_{n-2}, g y_{n-1}\right)}{2} \\
& \vdots \\
& \leq \lambda^{n} \frac{p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)}{2} \\
& =\lambda^{n} a .
\end{aligned}
$$

If $p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)=0$, then from remark 1 , we get $g x_{0}=g x_{1}=T\left(g x_{0}, g y_{0}\right)$ and $g y_{0}=g y_{1}=T\left(g y_{0}, g x_{0}\right)$, meaning that $\left(x_{0}, y_{0}\right)$ is a coupled coincidence point of T and g. Now, let $p\left(g x_{0}, g x_{1}\right)+p\left(g y_{0}, g y_{1}\right)>0$. For each $m \geq n$ we have in view of the condition $\left(p_{4}\right)$

$$
\begin{aligned}
& p\left(g x_{m}, g x_{n}\right) \\
& \leq p\left(g x_{m}, g x_{m-1}\right)+p\left(g x_{m-1}, g x_{m-2}\right)-p\left(g x_{m-1}, g x_{m-1}\right) \\
& \quad+p\left(g x_{m-2}, g x_{m-3}\right)+p\left(g x_{m-3}, g x_{m-4}\right)-p\left(g x_{m-3}, g x_{m-3}\right) \\
& \quad+\ldots+p\left(g x_{n+2}, g x_{n+1}\right)+p\left(g x_{n+1}, g x_{n}\right)-p\left(g x_{n+1}, g x_{n+1}\right) \\
& \leq p\left(g x_{m}, g x_{m-1}\right)+p\left(g x_{m-1}, g x_{m-2}\right)+\ldots+p\left(g x_{n+1}, g x_{n}\right) \\
& \leq\left(\lambda^{m-1}+\lambda^{m-2}+\ldots+\lambda^{n}\right) a \\
& \leq \frac{\lambda^{n}}{1-\lambda} a .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
p\left(g y_{m}, g y_{n}\right) & \leq\left(\lambda^{m-1}+\lambda^{m-2}+\ldots+\lambda^{n}\right) a \\
& \leq \frac{\lambda^{n}}{1-\lambda} a .
\end{aligned}
$$

Then
$\lim _{n, m \longrightarrow \infty} p\left(g x_{m}, g x_{n}\right)=0$ and $\lim _{n, m \longrightarrow \infty} p\left(g y_{m}, g y_{n}\right)=0$.
By (1), we have $p^{s}(x, y) \leq 2 p(x, y)$, so for any $m \geq n$
$p^{s}\left(g x_{m}, g x_{n}\right) \leq 2 p\left(g x_{m}, g x_{n}\right) \leq 2 \frac{\lambda^{n}}{1-\lambda} a$,
$p^{s}\left(g y_{m}, g y_{n}\right) \leq 2 p\left(g y_{m}, g y_{n}\right) \leq 2 \frac{\lambda^{n}}{1-\lambda} a$.
So,
$\lim _{n, m \longrightarrow \infty} p^{s}\left(g x_{m}, g x_{n}\right)=0$ and $\lim _{n, m \longrightarrow \infty} p^{s}\left(g y_{m}, g y_{n}\right)=0$.(6)
Then $\left\{g x_{n}\right\}$ and $\left\{g y_{n}\right\}$ are Cauchy sequences in $\left(X, p^{s}\right)$. Since the partial metric space (X, p) is complete hence thanks to Lemma 101, the metric $\left(X, p^{s}\right)$ is complete, so there exist $x, y \in X$ such that
$\lim _{n \longrightarrow \infty} p^{s}\left(g x_{n}, x\right)=0$ and $\lim _{n \longrightarrow \infty} p^{s}\left(g y_{n}, y\right)=0$.
On the other hand, we have
$p^{s}\left(g x_{n}, x\right)=2 p\left(g x_{n}, x\right)-p\left(g x_{n}, g x_{n}\right)-p(x, x)$.
Letting $n \longrightarrow \infty$ in the above equation, we get
$\lim _{n \longrightarrow \infty} p\left(g x_{n}, x\right)=\frac{1}{2} p(x, x)$.
On the other hand, we have $p(x, x) \leq p\left(g x_{n}, x\right)$ for all $n \in$ N.
On letting $n \longrightarrow \infty$. We get that
$p(x, x) \leq \lim _{n \longrightarrow \infty} p\left(g x_{n}, x\right)$.
Using (8) and (9), we get that
$p(x, x)=\lim _{n \longrightarrow \infty} p\left(g x_{n}, x\right)=0$.

Similarly, one can show that
$p(y, y)=\lim _{n \longrightarrow \infty} p\left(g y_{n}, y\right)=0$.
Thus, we have
$p(x, x)=\lim _{n \longrightarrow \infty} p\left(g x_{n}, x\right)=0$
and
$p(y, y)=\lim _{n \longrightarrow \infty} p\left(g y_{n}, y\right)=0$.
From (10) and continuity of g,
$p(g x, g x)=\lim _{n \longrightarrow \infty} p\left(g g x_{n}, g x\right)=0$
and
$p(g y, g y)=\lim _{n \longrightarrow \infty} p\left(g g y_{n}, g y\right)=0$.
From (4) and commutativity of T and g,
$g g x_{n+1}=g\left(T\left(x_{n}, y_{n}\right)\right)=T\left(g x_{n}, g y_{n}\right)$
and
$g g y_{n+1}=g\left(T\left(y_{n}, x_{n}\right)\right)=T\left(g y_{n}, g x_{n}\right)$.
We now show that $g x=T(x, y)$ and $g y=T(y, x)$.

$$
\begin{aligned}
& p(g x, T(x, y)) \\
& \leq p\left(g x, g\left(g x_{n+1}\right)\right)+p\left(g\left(g x_{n+1}\right), T(x, y)\right) \\
&-p\left(g\left(g x_{n+1}\right), g\left(g x_{n+1}\right)\right) \\
& \leq p\left(g x, g\left(g x_{n+1}\right)\right)+p\left(g\left(T\left(x_{n}, y_{n}\right)\right), T(x, y)\right) \\
& \leq p\left(g x, g\left(g x_{n+1}\right)\right)+p\left(T\left(g x_{n}, g y_{n}\right), T(x, y)\right) \\
& \leq p\left(g x, g\left(g x_{n+1}\right)\right)+a_{1} \frac{p\left(g x, g g x_{n}\right)+p\left(g y, g g y_{n}\right)}{2} \\
&+a_{2} \frac{p(g x, T(x, y))+p\left(g g x_{n}, T\left(g x_{n}, g y_{n}\right)\right)+p\left(g y, g g y_{n}\right)}{2} \\
&+a_{3} \frac{p\left(g x, T\left(g x_{n}, g y_{n}\right)\right)+p\left(g g x_{n}, T(x, y)\right)+p\left(g y, g g y_{n}\right)}{2} \\
& \leq p\left(g x, g\left(g x_{n+1}\right)\right)+a_{1} \frac{p\left(g x, g g x_{n}\right)+p\left(g y, g g y_{n}\right)}{2} \\
&+a_{2} \frac{p(g x, T(x, y))+p\left(g g x_{n}, T\left(g x_{n}, g y_{n}\right)\right)+p\left(g y, g g y_{n}\right)}{2} \\
&+a_{3}\left[\frac{p\left(g x, T\left(g x_{n}, g y_{n}\right)\right)+p\left(g g x_{n}, g x\right)}{2}\right. \\
&\left.+\frac{p(g x, T(x, y))+p\left(g y, g g y_{n}\right)}{2}\right] .
\end{aligned}
$$

Taking the limit as $n \longrightarrow \infty$ in above inequality, (11) and (12) we get
$p(g x, T(x, y)) \leq \frac{a_{2}+a_{3}}{2} p(g x, T(x, y))<p(g x, T(x, y))$,
which is a contradiction. Thus, we have $p(g x, T(x, y))=0$, which implies that $g x=T(x, y)$. Similarly one can show that $g y=T(y, x)$. Thus we proved that T and g have a coupled coincidence point.
Suppose that (x, y) and (z, t) are coupled coincidence points of T and g, that is
$g x=T(x, y), g y=T(y, x), g z=T(z, t)$ and $g t=T(t, z)$.

We are going to show that $g x=g z$ and $g y=g t$. From condition (3) we have

$$
\begin{aligned}
& p(g x, g z)=p(T(x, y), T(z, t)) \\
& \leq a_{1} \frac{p(g x, g z)+p(g y, g t)}{2} \\
&+a_{2} \frac{p(g x, T(x, y))+p(g z, T(z, t))+p(g y, g t)}{2} \\
&+a_{3} \frac{p(g x, T(z, t))+p(g z, T(x, y))+p(g y, g t)}{2} \\
&= a_{1} \frac{p(g x, g z)+p(g y, g t)}{2} \\
&+a_{2} \frac{p(g x, g x)+p(g z, g z)+p(g y, g t)}{2} \\
&+a_{3} \frac{p(g x, g z)+p(g z, g x)+p(g y, g t)}{2} \\
&=\left(\frac{a_{1}}{2}+a_{3}\right) p(g x, g z)+\left(\frac{a_{1}}{2}+\frac{a_{2}}{2}+\frac{a_{3}}{2}\right) p(g y, g t) \\
&+\frac{a_{2}}{2}(p(g x, g x)+p(g z, g z)) \\
& \leq\left(\frac{a_{1}}{2}+a_{3}\right) p(g x, g z)+\left(\frac{a_{1}}{2}+\frac{a_{2}}{2}+\frac{a_{3}}{2}\right) p(g y, g t) \\
&+\frac{a_{2}}{2}[p(g x, g z)+p(g x, g z)] \\
&=\left(\frac{a_{1}}{2}+a_{2}+a_{3}\right) p(g x, g z)+\left(\frac{a_{1}}{2}+\frac{a_{2}}{2}+\frac{a_{3}}{2}\right) p(g y, g t) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
p(g y, g t) & \leq\left(\frac{a_{1}}{2}+a_{2}+a_{3}\right) p(g y, g t) \\
& +\left(\frac{a_{1}}{2}+\frac{a_{2}}{2}+\frac{a_{3}}{2}\right) p(g x, g z) .
\end{aligned}
$$

Then above inequality and the property $\left(p_{2}\right)$, we have

$$
\begin{aligned}
& p(g x, g z)+p(g y, g t) \\
& \leq\left(a_{1}+\frac{3 a_{2}}{2}+\frac{3 a_{3}}{2}\right)[p(g x, g z)+p(g y, g t)] \\
& <p(g x, g z)+p(g y, g t)
\end{aligned}
$$

which is a contradiction. Thus $p(g x, g z)+p(g y, g t)=0$. It implies that $p(g x, g z)=0$ and $p(g y, g t)=0$.

An immediate consequence of Theorem 1 are the following results.
Corollary 201Let (X, p) be a complete partial metric space. Assume there exist $0 \leq k<1$ and $T: X \times X \longrightarrow X$ and $g: X \longrightarrow X$ are such that

$$
\begin{equation*}
p(T(x, y), T(u, v)) \leq \frac{k}{2}[p(g x, g u)+p(g y, g v)] \tag{13}
\end{equation*}
$$

for all $x, y, u, v \in X$. Also Suppose $T(X \times X) \subseteq g(X), g$ is continuous and commutes with T. Then there exist $x, y \in X$ such that
$g x=T(x, y)$ and $g y=T(y, x)$,
that is, T and g have a unique coupled coincidence point.

Proof.If T and g satisfies (13), then T and g satisfies (3) with $a_{1}=k$ and $a_{2}=a_{3}=0$.

Then, the result follows from Theorem 1.
Corollary 202Let (X, p) be a complete partial metric space. Assume there exist $a_{1}, a_{2}, a_{3} \geq 0$ with $2 a_{1}+3 a_{2}+3 a_{3}<2$ and also suppose that $T: X \times X \longrightarrow X$ is such that

$$
\begin{align*}
& p(T(x, y), T(u, v)) \\
& \leq a_{1} \frac{p(x, u)+p(y, v)}{2} \\
& \quad+a_{2} \frac{p(x, T(x, y))+p(u, T(u, v))+p(y, v)}{2} \tag{14}\\
& \quad+a_{3} \frac{p(x, T(u, v))+p(u, T(x, y))+p(y, v)}{2}
\end{align*}
$$

for all $x, y, u, v \in X$. Then there exist $x, y \in X$ such that $x=T(x, y)$ and $y=T(y, x)$,
that is, T have a unique coupled fixed point.
Proof.Putting $g=I$ (I the identity mapping) in Theorem 1, we obtain corollary 202.

Corollary 203Let (X, p) be a complete partial metric space. Assume there exist $0 \leq k<1$ and $T: X \times X \longrightarrow X$ and $g: X \longrightarrow X$ are such that

$$
\begin{equation*}
p(T(x, y), T(u, v)) \leq \frac{k}{2}[p(x, u)+p(y, v)] \tag{15}
\end{equation*}
$$

for all $x, y, u, v \in X$. Then T has a unique coupled fixed point.

Corollary 204Let (X, p) be a complete partial metric space. Assume there exist $0 \leq k<1$ and also suppose $T: X \times X \longrightarrow X$ and $g: X \longrightarrow X$ are such that

$$
\begin{align*}
& p(T(x, y), T(u, v)) \\
& \leq \frac{k}{2}[p(g x, T(u, v))+p(g u, T(x, y))+p(g y, g v)] \tag{16}
\end{align*}
$$

for all $x, y, u, v \in X$. Also Suppose $T(X \times X) \subseteq g(X), g$ is continuous and commutes with T. Then there exist $x, y \in X$ such that
$g x=T(x, y)$ and $g y=T(y, x)$,
that is, T and g have a unique coupled coincidence point.
Example 3.Let $X=[0,1]$ endowed with the usual partial metric p defined by $p(x, y)=\max \{x, y\}$. Since

$$
\begin{aligned}
p^{s}(x, y) & =2 p(x, y)-p(x, x)-p(y, y) \\
& =\max \{x, y\}-x-y \\
& =|x-y|,
\end{aligned}
$$

is Euclidean metric, then $\left(X, p^{s}\right)$ is complete. So it is clear that (X, p) is a complete partial metric space. Define T :
$X \times X \longrightarrow X$ as $T(x, y)=\frac{x+y}{16}$ for all $x, y \in X$ and $g:$ $X \longrightarrow X$ be defined by $g x=\frac{1}{2} x$. We show that condition (3) is satisfied.

If $x, y \in X$, then we have

$$
\begin{aligned}
p(T(x, y), T(u, v)) & =\max \left\{\frac{x+y}{16}, \frac{u+v}{16}\right\} \\
& \leq \frac{1}{16}[\max \{x, u\}+\max \{y, v\}] \\
& \leq \frac{1}{4} \times \frac{\max \{g x, g u\}+\max \{g y, g v\}}{2} \\
& \leq a_{1} \frac{p(g x, g u)+p(g y, g v)}{2} \\
& \leq a_{1} \frac{p(g x, g u)+p(g y, g v)}{2} \\
& +a_{2} \frac{p(g x, T(x, y))+p(g u, T(u, v))+p(g y, g v)}{2} \\
& +a_{3} \frac{p(g x, T(u, v))+p(g u, T(x, y))+p(g y, g v)}{2} .
\end{aligned}
$$

Thus all the conditions of theorem 1 are satisfied. Moreover, $(0,0)$ is the unique coupled coincidence point of T and g.

References

[1] T. Abdeljawad, E. Karapinar, K. Tas, Existence and uniqueness of a common fixed point on partial metric spaces, Applied Mathematics Letters. 2011, 24(11):1900-1904.
[2] A. Aghajani, R. Arab,Some fixed point results for generalized contractions on partial metric spaces, European Journal of Scientific Research, Volume 107 Issue 1,(2013).
[3] Ya.I. Alber, S. Guerre-Delabrere, Principle of weakly contractive maps in Hilbert spaces, in: I. Gohberg, Yu. Lyubich (Eds.), New Results in Operator Theory, in: Advances and Appl., vol. 98, Birkhuser Verlag, Basel, 1997, pp. 722.
[4] I. Altun, A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl 2011, 10.
[5] I. Altun, F. Sola, H. Simsek, Generalized contractions on Partial metric spaces, Topology and its Applications.157(2010) 2778-2785.
[6] H. Aydi, Some fixed point results in ordered partial metric spaces, Accepted in J. Nonlinear Sci. Appl, (2011).
[7] H. Aydi, some coupled fixed point results on partial metric spaces, International Journal of Mathematics and Mathematical Sciences, Article ID 647091, 11 pages, 2011.
[8] M. Bukatin, R. Kopperman, S. Matthews, H. Pajoohesh, Partial metric spaces. Am. Math. Mon. 116, 708-718(2009).
[9] T. Gnana Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric spaces and applications, Nonlinear Analysis. 65 (2006) 1379-1393.
[10] S. Gulyaz, E. Karapinar, A Coupled Fixed Point Result in Partially Ordered Partial Metric Spaces Through Implicit Function, Hacettepe Journal of Mathematics and Statistics, Volume 42(4) (2013), 347357.
[11] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures 7 (1999) 7183.
[12] E. Karapinar, M. E. Inci, Fixed point theorems for operators on partial metric spaces. Appl Math Lett 2011, 24(11):18941899.
[13] Z. Kadelburg, S. Radenović, Fixed points under $\psi-\alpha-$ β - conditions in ordered partial metric spaces, International Journal of Analysis and Applications, Volume 5, Number 1 (2014), 91-101.
[14] Z. Kadelburg, H.K. Nashine, and S. Radenović, Some new coupled fixed point results in 0-complete ordered partial metric spaces, J. Adv. Math. Studies Vol. 6 (2013), No. 1, 159-172.
[15] V. Lakshmikantham, Lj. Ćirić, Coupled fixed point theorems for nonlinear contrac- tions in partially ordered metric spaces, Nonlinear Analysis 70 (2009) 4341-4349.
[16] S. G. Matthews, Partial metric topology. Research Report 212. Department of Computer Science, University of Warwick 1992.
[17] S. G. Matthews, Partial metric topology, in: Proc. 8th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 728,1994, pp. 183-197.
[18] S. Oltra, O. Valero, Banachs fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste 36 (2004) 17-26.
[19] S. J. ONeill, Two topologies are better than one, Tech. report, University of Warwick, Coven-try, UK, http : //www.dcs.warwick.ac.uk/reports/283.html,1995.
[20] S. J. ONeill, Partial metrics, valuations and domain theory, in: Proc. 11th Summer Conference on General Topology and Applications, in: Ann. New York Acad. Sci., vol. 806, 1996, pp. 304-315.
[21] S. Radenović, Remarks on some coupled fixed point results in partial metric spaces, Nonlinear Funct. Anal. and Appl. Vo;1.18, No. 1 (2013), 39-50.
[22] S. Radenović, Coincidence point results for nonlinear contraction in ordered partial metric spaces, Journal of Indian Math. soc. Vol. 81, Nos. X-X, (2014), XX-YY.
[23] V. Ć. Rajić, S. Radenovi, W. Shatanawi, N. Tahat, Common fixed point results for weakly isotone increasing mappings in partially ordered partial metric spaces, Le Matematiche Vol. LXVIII (2013)-Fasc. II, pp. 191-204.
[24] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010(Article ID 493298), 6 (2010).
[25] S. Romaguera, M. Schellekens, Partial metric monoids and semivaluation spaces, Topology Appl. 153 (5-6) (2005), 948962.
[26] S. Romaguera, O. Valero, A quantitative computational model for complete partialmetric spaces via formal balls, Math. Structures Comput. Sci. 19 (3) (2009), 541-563.
[27] B. Samet, M. Rajovic, R. Lazovi, R. Stoiljkovic, Common Fixed Point Results For Nonlinear Contractions in Ordered Partial Metric Spaces.Fixed Point Theory Appl. 2011.doi:10.1186/1687-1812-2011-71.
[28] M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004), 135-149.
[29] H. Sheng Ding, L. Li, coupled fixed point theorems in partialy orderd con metric spaces, Faculty of Sciences and Mathematics, University of Niš, Serbia, (2011), 137-149.
[30] S. Shukla, S. Radenović, C. Vetro, Set-valued HardyRogers type contraction in 0-complete partial metric spaces, International Journal of Mathematics and Mathematical Sciences, Volume 2014, Article ID 652925, 9 pages.
[31] S. Shukla, S. Radenović, Some common fixed point theorems for F-contraction type mappings in 0-complete partial metric spaces, Journal of Mathemnatics, Volume 2013, Article ID 878730, 7 pages.
[32] O. Valero, On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol, 6 (2) (2005) 229-240.

Reza Arab, He has a great experience in teaching Mathematics as a lecturer in Islamic Azad university, Sari branch, since 1999 and now He is a head of Department of Mathematics. His favorite field of study is Mathematical Analysis and He is really interested in Fixed point theorems and Measure of non-compactness. His PhD thesis entitled Fixed and coupled fixed point theorems on complete metric spaced and applications last year.

[^0]: * Corresponding author e-mail: mathreza.arab@iausari.ac.ir

