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Abstract: In this paper, we propose the method of Maximum product of spacings for point estimation of parameter of generalized
inverted exponential distribution (GIED). The aim of this paper is to analyse the small sample behaviour of proposed estimators.
Further, we have also proposed asymptotic confidence intervals of the parameters and the estimates of reliability and hazard function
using Maximum Product Spacings (MPS) method and compared with corresponding asymptotic confidence intervals and the estimates
of reliability and hazard function of Maximum Likelihood estimation (MLEs). A comparative study among the method of MLE, method
of least square (LSE) and the method of maximum product of spacings (MPS) is performed on the basis of simulated sample of GIED.
The MPS method outperforms the method of MLE and the method ofLSE. Furthermore, comparison of different estimation method
have been proposed on the basis of K-S distance and AIC. For numerical illustration one real data set has been considered.

Keywords: GIED, Reliability characteristic, method of Maximum Product Spacings, method of Maximum Likelihood Estimation,
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1 Introduction

In statistical inference problem, we are given a set of observationsx1,x2, · · · ,xn. These are the values taken by some
random phenomena about whose distribution we have some knowledge. For parameter estimation, various estimation
methods are widely discussed in literature. One often uses traditional estimation methods such as the method of
moments, method of least square, method of weighted least square and maximum likelihood estimation (MLE). Each of
them having their own advantages and limitations but among these methods the most popular method of estimation is
maximum likelihood estimation method. Which can be justified on the ground of its various useful properties like
consistency, sufficiency, invariance and asymptotic efficiency and its easy computations. The MLE method works
efficiently if each contribution to the likelihood functionis bounded above. It is the situation with all discrete
distributions. However, having such nice properties and better applicability it also has some weakness as mentioned by
various authors in different context. Its greatest weakness is that it can not work for ‘heavy tailed’ continuous distribution
with unknown location and scale parameters (Pitman, 1979 , p. 70). It also creates problem in situations where there is
only mixture of continuous distribution and then MLE methodcan break down. It was established by some authors that
MLE does not always provide precise estimates for certain distributions such as gamma, Weibull, and log normal
distributions. In all these cases the critical difficulty isthat there are paths in parameter space with location parameter
tends to smallest observation along which the likelihood becomes infinite. Unfortunately in such situations estimatesof
other parameters becomes inconsistent. Harter and Moore [5] suggests a alternative way to use local maxima as an
alternative of global maxima, this can be effective but not full proof there being some weakness as pointed out by Cheng
for this see [1].

In the context of Harter and Moore, Huzurbazar [19] has shown that no stationary point (and hence no local
maximum) can provide a consistent estimator, when the concern distribution is J-shaped, for example in the case of
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Weibull and gamma distributions when the shape parameter isless than unity. Thus whether we consider a global or a
local maximum, Maximum Likelihood estimation is bound to fail. The practical problem is that even if the distribution is
not J-shaped, so that parameters can in principle be consistently estimated by local Maximum Likelihood estimation as
the sample size tends to infinity, it can happen that, with fixed sample size, a particular random sample gives rise to a
likelihood function with no local maximum at all (Griffiths,[20]), this occur mainly when shape parameter equal to
unity.

Several authors has suggested alternative methods to MLE, either involving modification to MLE method or method
of moments or percentiles. Despite of the above problems when MLE is applied it outperforms the alternative methods.

In order to overcome these shortcomings and having better applicability in such types of situations which possess
properties similar to MLE, Cheng and Amin [1] introduced the Maximum Product of Spacings (MPS) method asan
alternative to MLE for the estimation of parameters of continuous univariate distributions. Cheng and Amin proposed to
replace the likelihood function by an product of spacings and conjectured that it retains most of the properties of the
method of maximum likelihood. Ranneby [3] independently developed the same method as an approximation to the
Kullback-Leibler measure of information. The approach of Cheng and Amin is more intuitively attractive and can, to
some extent, be regarded as a practical solution to the problems linked with likelihood (Titterington, [15]), but that of
Ranneby is more powerful theoretically and allows the derivation of the properties of MPS estimators. It may be noted
that MPS method is especially suited to the cases where one ofthe parameter has an unknown shifted origin, as it is the
case in three parameter lognormal, gamma and Weibull distributions or to the distributions having J-shape..

In order to make a general idea of advantages of MPS estimation over MLE, we first list some good properties of
MPS estimation, which were showed by Cheng and Amin [1], including sufficiency, consistency and asymptotic
efficiency. In certain cases, it is possible to obtain the distributional behaviour of an MPS estimator for all sample sizesn.
Thus, for the uniform distribution with unknown endpoints,the MPS estimators are precisely the MVU estimators and so
their distribution is known exactly solved by Cheng and Amin[1].

The consistency of MPS estimators have been discussed in detail by Cheng and Amin [16]. In brief, asymptotically
MPS are at least as efficient as MLE estimators when they exit.For distribution where the end points are unknown and
the density is J-shaped then MLE is bound to fail, but MPS gives asymptotically efficient estimators. MPS estimators
will not necessarily be function of sufficient statistics ingeneral. However, for the case when the support of density
functions are known, MPS estimator will show the same asymptotic properties as ML estimators including the one of
asymptotic sufficiency.

1.1 The Model

The random variable X has a generalized inverted exponential distribution with two parameterα and λ if it has a
probability density function of the form:

f (x) =

(

αλ
x2

)(

exp−
λ
x

)[

1−exp

(

−
λ
x

)](α−1)

, x ≥ 0, λ ,α > 0 (1)

Whereα is shape parameter andλ is scale parameter, and its CDF is given by

F (x) = 1−

[

1−exp

(

−
λ
x

)]α
, α,λ > 0 (2)

The model can be considered as another useful two-parametergeneralization of the Inverted exponential distribution
(IED). This lifetime distribution can model various shapesof failure rates and hence various shapes of ageing criteria. It
is noted that the GIED is reduced to the IED forα = 1. In literature, estimation of parameters in the two parameter GIED
is discussed extensively, but no one has performed comparison of MLE and MPS. Readers are referred to the following
references: Abouammah and Alshingiti [12], Gupta and Kundu [14], Gupta and Kundu [13]. Various properties of the
GIED like reliability and hazard function, mean and mode is discussed extensively by Abouammah and Alshingiti [12].

In this paper, the method of product of spacings is applied for estimating the parameters in a two parameter GIED.
The purpose here is to examine MPS estimates of the parameters of the GIED and we also construct 95% confidence
interval using MLE and MPS. The method of product of spacingsis compared with the method of Least squares
estimates (LSE) and the method of MLE using simulation. MSE and K-S distance are calculated and on the basis of K-S
distance through maximum product of spacings method is better fitted than MLE to the considered real data. AIC is
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calculated for MPS and MLE and both are compared.

The main objective of this paper is to analyse the small sample behaviour of MPS. As we all know that it is impossible
to analyse the whole data set due various reasons like cost factor, time factor etc.

The organisation of the paper is as follows:
In section 2, Different estimation procedures are mentioned and estimates of reliability and hazard functions using MPS
method is proposed and compared with MLE. In section 3, asymptotic confidence intervals of the parameters using MPS
method is proposed and compared with MLE. In section 4, real data illustration and its application is discussed, and
comparison of estimation procedure based on K-S statisticsis proposed. In section 5, a comparison is conducted using
simulation study. Finally concluding remarks are presented in section 6.

2 Parameter estimation

For the considered distribution, we use two very known and popular method namely least squares method and the
maximum likelihood estimation method and one which is not very common i.e MPS method for estimating the
parametersα andλ .

2.1 Least square estimation

Let x1 < x2 < · · ·< xn ben ordered random sample of any distribution with CDF F(x), we get

E(F(xi)) = i/(n+1) (3)

The least squares estimates are obtained by minimizing

P(α,λ ) =
n

∑
i=1

(F(xi)− i/(n+1))2 (4)

Putting the cdf of GIED in equation (4) we get

P(α,λ ) =
n

∑
i=1

(

1−

(

1− exp

(

−
λ
xi

))α
− i/(n+1)

)2

(5)

In order to minimize Equation (5), we have to differentiate it with respect toλ andα , which gives the following equation:

n

∑
i1

(α)exp
(

− λ
xi

)(

1−exp
(

− λ
xi

))α−1(

1−
(

1−exp
(

− λ
xi

))α
− i/(n+1)

)

xi
= 0 (6)

n

∑
i1

[(

1−

(

1−exp

(

−
λ
xi

))α
− i/(n+1)

)(

1−exp

(

−
λ
xi

))α
ln

(

1−exp

(

−
λ
xi

))]

= 0 (7)

The above Likelihood equation cannot be solved analytically therefore we can use any iterative procedure such as Newton-
Rapson method, to get the solution.

2.2 Maximum likelihood estimators

The likelihood function for a sample of sizen from GIED (1) is given by:

L(θ ) = (αnλ n)exp

(

−λ
n

∑
i=1

(1/xi)

)

n

∏
i=1

(1/x2
i )

[(

1−exp

(

−
λ
xi

))]α−1

, t ≥ 0, α,λ > 0 (8)

and the log likelihood function is given as

M = lnL(θ ) = n lnλ + n lnα +
n

∑
i=1

ln
(

1/x2
i

)

−λ
n

∑
i=1

ln(1/xi)+ (α −1)
n

∑
i=1

ln

[

(1−exp

(

−
λ
xi

)

)

]

, (9)
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After differentiating the above equation with respect to parameterα andλ and then equating them to zero we got the
normal equation as follows:

(n/α)+
n

∑
i=1

ln

[

1−exp

(

−
λ
xi

)]

= 0 (10)

(n/λ )−
n

∑
i=1

(1/x)+ (α −1)
n

∑
i=1

(1/xi)exp(−λ/xi)

[1−exp(−λ/xi)]
= 0 (11)

The above normal equations are not in nice closed form, therefore we can use any iterative procedure such as Newton-
Rapson method, to get the solution.

2.3 Maximum Product of spacings estimators

Here, the method of maximum product of spacings is describedbriefly as follows:

Considering a univariate distribution F(x|θ ) with density f(x|θ ) where it is required to estimateθ . The density is
assumed to be strictly positive in an interval (α, β ) and zero elsewhere,α andβ may also be elements ofθ , α= -∞ and
β=∞ are included. That is F(x|θ )=0 and f(x|θ )=0 for x < α:, F(x|θ )=1. and f(x|θ )=0 for x > β . Let x1 < x2.... < xn be a
complete ordered sample, further definex0 = α , xn+1 = β .

The spacings are defined as follows:
D1 = F(x1:n,θ ) , Dn+1 = 1−F(xn:n,θ ) , Di = F(xi:n,θ )−F(xi−1:n,θ ), i = 2,3, · · · ,n as the spacings of the sample.

Clearly the spacings sum to unity i.e∑Di = 1. The MPS method is to chooseθ which maximizes the geometric mean of
the spacings i.e G =(∏n+1

i=1 Di)
1/n+1 ,

or equivalently , its logarithm S = log G. The main aim for maximizing G (or S) is that the maximum , which is bounded
above because of the condition∑Di = 1, is found only when allD′

is are equal. Cheng and Amin [1] showed that
maximizing S as a method of parameter estimation is as efficient as ML estimation. Additionally, they showed that ties
present in data would not be a matter of concern in parameter estimation.
The CDF of the GIED is given by the equation (2) and the spacings are defined as follows:

D1 = F(x1) = 1−
[

(1−exp(−λ/x1))
α] (12)

D(n+1) = 1−F(xn) =
[

(1−exp(−λ/xn))
α] (13)

And the general term of spacings is given by,

Di = F(xi)−F(x(i−1)) =
[(

1−exp−λ/x(i−1)

)α]
−
[(

1−exp−λ/xi)
)α]

(14)

Such that∑Di = 1,
MPS method chooseθ which maximizes the product of spacings or in other words to maximize the geometric mean of
the spacings i.e

G =

(

n+1

∏
i=1

Di

)1/n+1

(15)

Taking the logarithm of G we get,

S = 1/(n+1)
n+1

∑
i=1

lnDi (16)

Or we may write S as

S =
1

(n+1)

{

lnD1+
n

∑
i=2

lnDi + lnDn+1

}

=
1

(n+1)

{

ln
[

1− (1− e−λ/x1)
α
]

+
n

∑
i=2

ln
[

(1− e−λ/xi−1)
α
− (1− e−λ/xi)

α
]

}

+
1

(n+1)

{

ln
[

(1− e−
λ
xn )

α
]}

(17)
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After differentiating the above equation with respect to parameters and then equating them to zero we get the normal
equation as follows:

S
′

α =
1

n+1

[

−
(1− e−λ/x1)α ln(1− e−λ/x1)

1− (1− e−λ/x1)α − ln(1− e−λ/xn))

]

+

1
n+1





n

∑
i=2

(1− e
−λ

xi−1 )α ln(1− e
−λ

xi−1 )− (1− e
−λ
xi )α ln((1− e

−λ
xi ))

(1− e
−λ

xi−1 )α − (1− e
−λ
xi )α



= 0

(18)

S
′

λ =
1

n+1





−(α/x1)((1− e
−λ
x1 )α−1)(e

−λ
x1 )

1− (1− e
−λ
x1 )α





+
1

n+1

n

∑
i=2





−(α/xi−1)((1− e
−λ

xi−1 )α−1)(e
−λ

xi−1 )− (α/xi)((1− e
−λ
xi )α−1)(e

−λ
xi−1 )

(1− e
−λ

xi−1 )α − (1− e
−λ
xi )α





+
1

n+1

[

−(α/xn)((1− e
−λ
xn )α−1)(e

−λ
xn )

(1− e
−λ
xn )α

]

= 0

(19)

The above normal equations cannot be solved analytically therefore we can use Newton-Rapson method, in order to get
the solution.

2.4 Reliability and hazard function

In this section, we propose the estimation of reliability and hazard function using MPS for specified value of time say
(t=4). Cheng and Amin [1] and Coolen and Newby [17] had mentioned in their paper that MPS also shows the invariance
property just like MLE. So on this basis using the invarianceproperty we estimate the reliability and hazard function.

The MPS estimates of the reliability and hazard function is given as:

R̂MPS(t) =

(

1− e−
λ̂
t

)α̂
, α,λ , t > 0 (20)

ĤMPS(t) =

α̂λ̂
t2

(

e−
λ̂
t

)

(

1− e−
λ̂
t

) , α,λ , t > 0 (21)

respectively, wherêα = α̂mp andλ̂ = λ̂mp are the MPS estimates of the parameterα andλ respectively. In equation (20)
and (21) putting the estimates of MLE, we can get the expression for the reliability and hazard function using MLE.

3 Asymptotic confidence intervals

In this section, we propose the asymptotic confidence intervals using MPS, as it was mentioned by Cheng and Amin
[1] and Stanislav Anatolyevin and Grigory Kosenok [18] in their papers that the MPS method also shows asymptotic
properties like the Maximum likelihood estimator. Keepingthis in mind, we may propose the asymptotic confidence
intervals using MPS. The exact distribution of the MPS cannot be obtained explicitly. Therefore, the asymptotic properties
of MPS can be used to construct the confidence intervals for the parameters.I(α̂, λ̂ ) is the observed Fishers information
matrix and is define as:

I(α̂, λ̂ ) =
[

−S
′′

αα −S
′′

αλ
−S

′′

λ α −S
′′

λ λ

]

(α=α̂mp,λ=λ̂mp)

(22)
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Fig. 1

Variation of sample size with respect to MSE for different choices ofα and for fixed value ofλ = 1

Fig. 2: Mean Square Error of the estimates forα = 0.5,1 andλ = 1 with variation of sample size (n)
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The first derivatives of the product of spacings i.e the function S with respect to parameterα andλ are given by Equations
(18) and (19) and hence the second derivatives are calculated as follows:
The second derivative of the function S with respect toα is given as:

S
′′

αα =
1

n+1

[

F(x1,α,λ )F ′′

αα(x1,α,λ )−F
′

α(x1,α,λ )
2

F(x1,α,λ )2

]

+
1

n+1





n

∑
i=2

{F(xi,α,λ )−F(xi−1,α,λ )}
{

F
′′

αα(xi,α,λ )−F
′′

αα(xi−1,α,λ )
}

{F(xi,α,λ )−F(xi−1,α,λ )}2





−
1

n+1







{

F
′

α(xi,α,λ )−F
′

α(xi−1,α,λ )
}2

{F(xi,α,λ )−F(xi−1,α,λ )}2







−
1

n+1







{1−F(xn,α,λ )}F
′′

αα(xn,α,λ )+
{

F
′

α(xn,α,λ )
}2

{1−F(xn,α,λ )}2







(23)

The second derivative of the function S with respect toλ is given as,

S
′′

λ λ =
1

n+1





F(x1,α,λ )F ′′

λ λ (x1,α,λ )−F
′

λ (x1,α,λ )
2

F(x1,α,λ )2





+
1

n+1





n

∑
i=2

{F(xi,α,λ )−F(xi−1,α,λ )}
{

F
′′

λ λ (xi,α,λ )−F
′′

λ λ (xi−1,α,λ )
}

{F(xi,α,λ )−F(xi−1,α,λ )}2





−
1

n+1







{

F
′

λ (xi,α,λ )−F
′

λ (xi−1,α,λ )
}2

{F(xi,α,λ )−F(xi−1,α,λ )}2







−
1

n+1







{1−F(xn,α,λ )}F
′′

λ λ (xn,α,λ )+
{

F
′

λ (xn,α,λ )
}2

{1−F(xn,α,λ )}2







(24)

and the second derivative of the function S with respect toα,λ is given as:

S
′′

αλ = S
′′

λ α =
1

n+1

[

F(x1,α,λ )F ′′

αλ (x1,α,λ )−F
′

α(x1,α,λ )F ′

λ (x1,α,λ )
F(x1,α,λ )2

]

+
1

n+1





n

∑
i=2

{F(xi,α,λ )−F(xi−1,α,λ )}
{

F
′′

αλ (xi,α,λ )−F
′′

αλ (xi−1,α,λ )
}

{F(xi,α,λ )−F(xi−1,α,λ )}2





−
1

n+1





{

F
′

α(xi,α,λ )−F
′

α(xi−1,α,λ )
}{

F
′

λ (xi,α,λ )−F
′

λ (xi−1,α,λ )
}

{F(xi,α,λ )−F(xi−1,α,λ )}2





−
1

n+1





{1−F(xn,α,λ )}F
′′

αλ (xn,α,λ )+
{

F
′

α(xn,α,λ )
}{

F
′

λ (xn,α,λ )
}

{1−F(xn,α,λ )}2





(25)

Where

F
′

α(x,α,λ ) =−(1− e−λ/x)α ln(1− e−λ/x)
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F
′′

αα(x,α,λ ) = (1− e−λ/x)α(ln(1− e−λ/x))2

F
′

λ (x,α,λ ) =−
α
x
(1− e−λ/x)α−1e−λ/x

F
′′

λ λ (x,α,λ ) =−
α
x

{

α −1
x

(1− e−λ/x)α−2(e−λ/x)2−
1
x
(1− e−λ/x)α−1e−λ/x

}

F
′′

λ α(x,α,λ ) =−
e−λ/x

x
(1− e−λ/x)α−1

{

α(α −1) ln(1− e−λ/x)+1
}

The asymptotic confidence intervals of the parameters of GIED using MLE is already calculated by A. M.Abouammoh
and Arwa M. Alshingiti [12]. the first derivatives of the log likelihood function of GIED using MLE with respect to
parameters are given by equation (10) and (11), and the second derivatives are as follows:

(lnL)
′′

αα =−
n

α2 (26)

(lnL)
′′

λ λ = (α −1)
n

∑
i=1





e
− λ

xi

x2
i (1− e

− λ
xi )



−
n

λ 2 (27)

and the second derivative with respect toα,λ is given as:

(lnL)
′′

αλ =
n

∑
i=1





e
− λ

xi

xie
− λ

xi



 (28)

So on the basis of these derivatives, we obtain the information matrix I(α,λ ). The approximate(1−β )100% confidence

intervals for the parametersα andλ is given as,α̂ ± γ β
2

√

V (α̂) andλ̂ ± γ β
2

√

V (λ̂ ) respectively, whereγ β
2

is the upper

(β
2 ) percentile of standard normal distribution,α̂ = α̂mp andλ̂ = λ̂mp are the MPS estimates of the parameterα andλ

andV (α̂) andV (λ̂ ) are elements ofI−1(α̂ , λ̂ ).

4 Real data illustration

The data set considered in this section for illustration, contains strengths of glass polished aeroplane window. The use of
this data set is described by Fuller et al. (1994) to predict the lifetime for a glass aeroplane window. Since the data were
used in a study to predict failure times, such type of study isa form of reliability analysis. The data are as follows:

18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.5, 25.52, 25.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.9, 31.11,
33.2, 33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98, 37.08, 37.09, 39.58, 44.045, 45.29, 45.381.
The above data set is already fitted to GIED and the K-S statistics, between the fitted and the empirical distribution is
also calculated and estimates of the parameter using MLE method is calculated by Abouammoh and Alshingiti [12].
MLE of the parameters of the GIED̂α and λ̂ are 90.855 and 148.412 respectively and for the same data setwe have
calculated the estimates of the parameter through MPS method and the estimates arêαmp = 60.642 and̂λmp = 135.714
respectively, and corresponding K-S distance calculated using estimates of MLE and MPS respectively, and it comes out
0.137462 and 0.1207925 respectively. So on the basis of estimates and K-S statistics, for the considered data set MPS fits
better as compared to MLE. The result of these distances shows that MPS serve better than MLE in this data set.

As K-S statistics, is extensively used for different model comparison and is considered one of the best way of model
comparison, but no one had paid attention on comparison of different estimation procedure based on K-S statistics. In
literature several authors have discussed K-S methodologyfor different model comparison in terms of distances for a
given data set. Considering the similar approach on the basis of the K-S statistics, here, we propose comparison of
estimation procedure or method as least K-S distance provides the better method of estimation for given data set. For the
above data set we notice that K-S distance through MPS is smaller than K-S distance through MLE. In the support of the
above proposition empirical cumulative distribution function (ECDF) plot has been given below for MPS and MLE. AIC
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Fig. 3: Figure 2: Mean Square Error of the estimates forα = 1.5,2 andλ = 1 with variation of sample size (n)

is also calculated using both MLE and MPS for this real data set and it comes out smaller when estimates were provided
from MPS as compare to MLE. Since MPS provides lesser K-S distance and AIC, we may say that MPS serve better
than MLE for the considered data set. Thus we propose to estimation method comparison on the basis of K-S statistic.

AICMLE = 9.234804

AICMPS = 9.138706

5 Simulation studies

In order to compare the MPS, the MLE and the LSE methods in parameter estimation, a set of simulation was done
based on GIED. We have generated five thousand samples from GIED for different parameters settings. It may be
mentioned here that the exact expression of MSE can not be obtained because estimates are not found in nice close
forms. It may be also noted here that MSE will depend on samplesize n, scale parameterλ and shape parameterα
respectively. In this study different variation of sample size(n) say n(=20,40,60,80,100,120), shape parameterα sayα( =
1,2,3,4,5,6,7) and scale parameterλ sayλ (=1,2,3,4,5,6,7) have been considered. To study the effectof variation of the
sample size n we have considered the simulated MSE forα andλ . Firstly, sample sizen is varied i.e different values ofn
are taken for fixed value of scale parameterλ taken as 1 and 2, for different choices of shape parameterα as α(=
0.5,1,1.5,2,3,4). Secondly, we varied shape parameterα i.e different values ofα for two different choices of sample sizes
(n=30 and n=50) for fixed values of scale parameterλ asλ ( = 1,2), thirdly, we varied the scale parameterλ i.e different
values ofλ is taken for two different choices of sample sizes (n=30 and n=50) for fixed values of shape parameterα as
(α = 2,3), corresponding graphs are attached. For all the aboveconsidered choices graph of MSE is plotted and attached.
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Fig. 4: Mean Square Error of the estimates forα = 3,4 andλ = 1 with variation of sample size (n)
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Fig. 5: Variation of sample size with respect to MSE for different choices ofα andλ = 2

We have chosen sample sizen = 30 in second and third case because atn = 30 changes are more visible in terms of
MSE. We have also estimates the reliability and hazard functions for α and λ = 1,2 and 3, for sample size
n = 20,30,50,80 considering MLE and MPS both, for this see Table 1, 2. Further we have constructed the confidence
interval and coverage probability for different choices ofα andλ = 1,2 and 3 and for sample sizen = 20,30,50,80 for
this see table 2,3,4 and 5. We have also compared the average length of confidence intervals of MPS with corresponding
MLEs. R software is used in all computations.

On the basis of the results summarized in graphs and table, some conclusions can be drawn which are stated as follows:
1: It is observed that as sample size increases for fixed values of α andλ the mean square error of the estimates

decreases in all the three considered methods and for large size of n i.e aftern = 80 all of them are nearly equivalent but
MPS performs better than other two considered method, see Figures 1 and 2. It is also observed that asn increases MSE
of reliability and hazard function follows the similar trend as stated above and here also MPS perform better than MLE
(see Table 1). Furthermore, it is noticed that the average length of confidence interval decreases as sample sizen
increases in both the considered case of MLE as well as MPS butthe average length is smaller in case of MPS as
compared to MLE. The coverage probability obtained here fairly attains the prescribed confidence interval. This is also
true for small sample size, see Tables 2-5.

2: From graph and table, it is observed that as shape parameter α increases for fixed sample sizen andλ the MSE of
the estimates of shape parameterα increases for all the three considered cases but MSE of MPS issmaller than LSE as
well as MLE (see figure 3). It is noticed that for smaller values of shape parameter all of them are equally good but for
larger value of shape parameter MPS is better than other two.Generally, shape parameters are difficult to estimate in
most of the cases but here in case of GIED, one should use MPS for all choices ofλ andn. It is also observed that for
fixed value ofλ as the shape parameterα increases MSE of reliability decreases but reverse trend isobtained in the case
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Fig. 6: Variation ofα for different choices of sample size (n=30,50) andλ = 1,2

of hazard, it is true for MPS and MLE both but here also MPS serve better than MLE in terms of MSE. The average
length of confidence interval increases as we increase the shape parameterα in both the case of MPS and MLE . Further
more, it is also observed that the coverage probability obtained here fairly attains the prescribed confidence interval.

3: It is observed that as scale parameterλ increases for fixed sample sizen and shape parameterα the MSE of the
estimates of scale parameterλ increases and MPS performs better in terms of MSE in comparison to other two methods.
It is also observed that for smaller value ofλ all of them are equivalent but for larger value ofλ MPS is far better than
LSE as well as MLE see figure 4. It is also observed that for fixedvalue ofα as the scale parameterλ increases MSE of
reliability decreases but reverse trend is obtained in the case of hazard in case of MLE and MPS both see Table 1. The
average length of confidence interval increases as we increase the scale parameterλ for fixed value of shape parameterα
similar trend has been observed in both the case of MPS and MLE(see Table 2-5). Further more, it is also observed that
the coverage probability obtained here fairly attains the prescribed confidence interval and no any specific trend has been
observed.

4: From the plot of ECDF and the value of AIC, it is observed that estimates of MPS fits better than the estimates of
MLE.

6 Conclusion

This paper involved the comparison of estimates obtained byMPS, MLE, and LSE method using GIED. For smaller
sample size it is advised to use MPS as it perform better than LSE as well as MLE. In this paper we have considered the
problem of point estimation, confidence interval and it alsointroduces comparison of different estimation procedure on
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Fig. 7: Variation ofλ for different choices of sample size (n=30,50) andα = 2,3

the basis of K-S statistic, for this a real data has been incorporated and ECDF plot is also given. From the graphs, it is
observed that all the estimates appears to be consistent. The average length of confidence interval using MPS is smaller
than that of MLE. We have found that MPS method outperforms the other two method with smaller mean square error.
The findings of this paper will be very useful to researchers,statistician and engineers where such types of things were
required and also in cases where we have small sample size to analyse and exclusively where GIED is used.
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Table 1: Average estimates and corresponding MSEs of the reliability and hazard function using MLE and MPS respectively at specified time say(t=4) for different parameter settings
and sample sizen.

Reliability and hazard using MLE,t=4

n=20 n=30 n=50 n=80
Para rt ht rt ht rt ht rt ht
1,1 0.2134 0.0058 0.2499 0.0076 0.2161 0.0038 0.2392 0.00380.2180 0.0023 0.2306 0.0019 0.2194 0.0014 0.2261 0.0010
1,2 0.3914 0.0080 0.2118 0.0042 0.3898 0.0051 0.2057 0.00240.3923 0.0030 0.1997 0.0011 0.3928 0.0018 0.1969 0.0006
1,3 0.5296 0.0081 0.1800 0.0024 0.5294 0.0050 0.1750 0.00130.5283 0.0030 0.1724 0.0007 0.5291 0.0018 0.1705 0.0004
2,1 0.0487 0.0012 0.5252 0.0536 0.0476 0.0008 0.4950 0.02450.0487 0.0005 0.4677 0.0110 0.0491 0.0003 0.4561 0.0060
2,2 0.1495 0.0042 0.4447 0.0314 0.1490 0.0029 0.4265 0.01540.1518 0.0017 0.4063 0.0068 0.1529 0.0011 0.3985 0.0039
2,3 0.2715 0.0066 0.3762 0.0159 0.2743 0.0044 0.3619 0.00850.2761 0.0026 0.3509 0.0042 0.2774 0.0016 0.3449 0.0023
3,1 0.0124 0.0002 0.8143 0.1636 0.0119 0.0001 0.7557 0.07400.0117 0.0001 0.7097 0.0316 0.0112 0.0000 0.6950 0.0178
3,2 0.0594 0.0016 0.6956 0.0999 0.0589 0.0010 0.6533 0.04810.0606 0.0006 0.6147 0.0198 0.0601 0.0004 0.6023 0.0105
3,3 0.1418 0.0042 0.5877 0.0573 0.1436 0.0027 0.5527 0.02560.1441 0.0016 0.5334 0.0123 0.1458 0.0010 0.5205 0.0068

MAXIMUM PRODUCT SPACINGS R(t) H(t) (MPS)

1,1 0.2425 0.0057 0.1991 0.0034 0.2383 0.0038 0.2040 0.00220.2333 0.0023 0.2066 0.0013 0.2301 0.0014 0.2098 0.0008
1,2 0.4048 0.0065 0.3128 0.0180 0.4002 0.0044 0.3187 0.01820.3993 0.0027 0.3255 0.0190 0.3977 0.0017 0.3301 0.0198
1,3 0.5263 0.0064 0.3700 0.0429 0.5270 0.0042 0.3767 0.04500.5265 0.0026 0.3843 0.0477 0.5278 0.0017 0.3898 0.0497
2,1 0.0717 0.0023 0.2275 0.0497 0.0648 0.0013 0.2308 0.04640.0606 0.0007 0.2326 0.0446 0.0574 0.0005 0.2361 0.0425
2,2 0.1801 0.0048 0.3545 0.0072 0.1721 0.0032 0.3612 0.00440.1679 0.0019 0.3655 0.0025 0.1641 0.0012 0.3710 0.0015
2,3 0.2952 0.0058 0.4174 0.0107 0.2921 0.0041 0.4254 0.01060.2883 0.0025 0.4325 0.0108 0.2860 0.0016 0.4376 0.0113
3,1 0.0239 0.0006 0.2560 0.1711 0.0201 0.0003 0.2580 0.16620.0172 0.0002 0.2599 0.1626 0.0148 0.0001 0.2653 0.1574
3,2 0.0850 0.0027 0.4009 0.0432 0.0780 0.0016 0.4046 0.03720.0739 0.0009 0.4081 0.0326 0.0694 0.0005 0.4142 0.0291
3,3 0.1723 0.0048 0.4706 0.0106 0.1667 0.0030 0.4747 0.00610.1601 0.0018 0.4825 0.0035 0.1570 0.0011 0.4873 0.0021
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Table 2: Average estimates, coverage probability (in the brackets)and corresponding confidence intervals of the parametersα andλ
using MPS for different choices of parameter and for sample sine n=20 and 30.

CI AND COVERAGE PROBABILITY MPS
n=20 n=30

Para α(CP) λ (CP) α(CP) λ (CP)

1,1
0.9228 (0.9654) 0.8999 (0.964) 0.9298 (0.9636) 0.9174 (0.9548)
(0.2395,1.4505) (0.1284,1.2788) (0.8975,1.8539) (0.5718,1.4983)

1,2
0.9294 (0.966) 1.8253 (0.9628) 0.9355 (0.966) 1.8516 (0.953)
(0.1571,1.4442) (0.1775,2.5652) (0.6109,1.5836) (1.8005,3.6929)

1,3
0.9234 (0.9656) 2.7147 (0.9618) 0.9352 (0.965) 2.7648 (0.956)
(0.4953,1.7380) (2.0397,5.5381) (0.0923,1.0677) (0.9450,3.81775)

2,1
1.8310 (0.9642) 0.9134 (0.9482) 1.8581 (0.9634) 0.93018 (0.9528)

(0,2.8277) (0.1480,1.1370) (0.2349,2.4415) (0.5779,1.37016)

2,2
1.8480 (0.9714) 1.8184 (0.9566) 1.8453 (0.9648) 1.8577 (0.95)

(0,3.0538) (0.6993,2.6476) (0.7629,3.0160) (1.0253,2.6279)

2,3
1.8430 (0.966) 2.7441 (0.9596) 1.8522 (0.9666) 2.7820 (0.9484)
(1.1893,4.1223) (1.6403,4.6007) (0.5983,2.8156) (0.5318,2.8675)

3,1
2.7630 (0.9668) 0.9145 (0.9596) 2.7674 (0.9682) 0.9317 (0.95)
(0.3334,5.4452) (0.7535,1.6584) (2.2181,5.9873) (0.6909,1.4533)

3,2
2.7461 (0.963) 1.8299 (0.953) 2.7542 (0.967) 1.8553 (0.9474)

(0,3.9963) (0.5667,2.3851) (0,3.6252) (0.9020,2.3533)

3,3
2.7456 (0.963) 2.7479 (0.953) 2.7661 (0.9698) 2.7930 (0.9456)

(0,4.9593) (1.7279,4.5179) (0.7889,4.5274) (1.5604,3.7566)
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Table 3: Average estimates, coverage probability (in the brackets)and corresponding confidence intervals of the parametersα andλ
using MPS for different choices of parameter and for sample sine n=50 and 80.

CI AND COVERAGE PROBABILITY MPS
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Table 4: Average estimates, coverage probability (in the brackets)and corresponding confidence intervals of the parametersα andλ
using MLE for different choices of parameter and for sample sizen=20 and 30.

CI AND COVERAGE PROBABILITY MLE
n=20 n=30

Para α(CP) λ (CP) α(CP) λ (CP)

1,1
1.1618 (0.9706) 1.1246 (0.9538) 1.1001 (0.9568) 1.0827 (0.9502)
(0.4667,1.8570) (0.5008,1.7484) (0.5712,1.6290) (0.5865,1.5788)
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Table 5: Average estimates, coverage probability (in the brackets)and corresponding confidence intervals of the parametersα andλ
using MLE for different choices of parameter and for sample sizen=50 and 80.

CI AND COVERAGE PROBABILITY MLE
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Para α(CP) λ (CP) α(CP) λ (CP)
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