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Abstract: In this paper, we propose the method of Maximum product o€isga for point estimation of parameter of generalized
inverted exponential distribution (GIED). The aim of thiaper is to analyse the small sample behaviour of proposémhatsts.
Further, we have also proposed asymptotic confidence aigeof the parameters and the estimates of reliability azaddsfunction
using Maximum Product Spacings (MPS) method and compartédoairesponding asymptotic confidence intervals and ttimates

of reliability and hazard function of Maximum Likelihoodtesation (MLES). A comparative study among the method of Mhtethod

of least square (LSE) and the method of maximum product afisga (MPS) is performed on the basis of simulated sampld BDG
The MPS method outperforms the method of MLE and the methddS&. Furthermore, comparison of different estimation radth
have been proposed on the basis of K-S distance and AIC. [roenieal illustration one real data set has been considered.

Keywords: GIED, Reliability characteristic, method of Maximum Pratl&pacings, method of Maximum Likelihood Estimation,
method of Least Squares Estimates and Interval Estimation.

1 Introduction

In statistical inference problem, we are given a set of alsg&Emsxy, Xy, -+ ,X,. These are the values taken by some
random phenomena about whose distribution we have somel&dge: For parameter estimation, various estimation
methods are widely discussed in literature. One often ussltibnal estimation methods such as the method of
moments, method of least square, method of weighted leaats@nd maximum likelihood estimation (MLE). Each of
them having their own advantages and limitations but ambege methods the most popular method of estimation is
maximum likelihood estimation method. Which can be juddifan the ground of its various useful properties like
consistency, sufficiency, invariance and asymptotic efficy and its easy computations. The MLE method works
efficiently if each contribution to the likelihood functiois bounded above. It is the situation with all discrete
distributions. However, having such nice properties artebapplicability it also has some weakness as mentioned by
various authors in different context. Its greatest weagkigethat it can not work for ‘heavy tailed’ continuous distriion

with unknown location and scale parameters (Pitman, 19797Q). It also creates problem in situations where there is
only mixture of continuous distribution and then MLE methezth break down. It was established by some authors that
MLE does not always provide precise estimates for certadtridutions such as gamma, Weibull, and log normal
distributions. In all these cases the critical difficultytiigt there are paths in parameter space with location paeame
tends to smallest observation along which the likelihoocbibges infinite. Unfortunately in such situations estimates
other parameters becomes inconsistent. Harter and M&prgufjgests a alternative way to use local maxima as an
alternative of global maxima, this can be effective but mditgroof there being some weakness as pointed out by Cheng
for this see 1].

In the context of Harter and Moore, Huzurbaza®|[ has shown that no stationary point (and hence no local
maximum) can provide a consistent estimator, when the candistribution is J-shaped, for example in the case of
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Weibull and gamma distributions when the shape parametesssthan unity. Thus whether we consider a global or a
local maximum, Maximum Likelihood estimation is bound td.f&he practical problem is that even if the distribution is
not J-shaped, so that parameters can in principle be censlisestimated by local Maximum Likelihood estimation as
the sample size tends to infinity, it can happen that, withdfisemple size, a particular random sample gives rise to a
likelihood function with no local maximum at all (Griffith§20]), this occur mainly when shape parameter equal to
unity.

Several authors has suggested alternative methods to MihEr évolving modification to MLE method or method
of moments or percentiles. Despite of the above problems&WHeE is applied it outperforms the alternative methods.

In order to overcome these shortcomings and having betgicapility in such types of situations which possess
properties similar to MLE, Cheng and Amid][introduced the Maximum Product of Spacings (MPS) methodras
alternative to MLE for the estimation of parameters of comdius univariate distributions. Cheng and Amin proposed to
replace the likelihood function by an product of spacingd eanjectured that it retains most of the properties of the
method of maximum likelihood. Rannebg][independently developed the same method as an approgimiatithe
Kullback-Leibler measure of information. The approach die€g and Amin is more intuitively attractive and can, to
some extent, be regarded as a practical solution to the gmablinked with likelihood (Titterington,15]), but that of
Ranneby is more powerful theoretically and allows the dgidn of the properties of MPS estimators. It may be noted
that MPS method is especially suited to the cases where athe glarameter has an unknown shifted origin, as it is the
case in three parameter lognormal, gamma and Weibull loligioins or to the distributions having J-shape..

In order to make a general idea of advantages of MPS estimatier MLE, we first list some good properties of
MPS estimation, which were showed by Cheng and Aniij [ncluding sufficiency, consistency and asymptotic
efficiency. In certain cases, it is possible to obtain th&ithistional behaviour of an MPS estimator for all sampleesiz
Thus, for the uniform distribution with unknown endpoirttee MPS estimators are precisely the MVU estimators and so
their distribution is known exactly solved by Cheng and Arfiih

The consistency of MPS estimators have been discussedadil lbietCheng and Amin6]. In brief, asymptotically
MPS are at least as efficient as MLE estimators when they eadtdistribution where the end points are unknown and
the density is J-shaped then MLE is bound to fail, but MPS gyasymptotically efficient estimators. MPS estimators
will not necessarily be function of sufficient statisticsgaeneral. However, for the case when the support of density
functions are known, MPS estimator will show the same asgtigpproperties as ML estimators including the one of
asymptotic sufficiency.

1.1 The Model

The random variable X has a generalized inverted exponatisaibution with two parametea and A if it has a
probability density function of the form:

(a-1)
()t 2] e nee o

Wherea is shape parameter aidis scale parameter, and its CDF is given by

F(X)=1- [1—exp<—)‘;)]a, a,A >0 (2)

The model can be considered as another useful two-paragesteralization of the Inverted exponential distribution
(IED). This lifetime distribution can model various shapdgailure rates and hence various shapes of ageing criléria
is noted that the GIED is reduced to the IED o 1. In literature, estimation of parameters in the two parenGIED
is discussed extensively, but no one has performed congpanisMLE and MPS. Readers are referred to the following
references: Abouammah and Alshingit?], Gupta and Kundul4], Gupta and Kundul3]. Various properties of the
GIED like reliability and hazard function, mean and modeisedssed extensively by Abouammah and Alshingif] [

In this paper, the method of product of spacings is applie@&imating the parameters in a two parameter GIED.
The purpose here is to examine MPS estimates of the parantdtére GIED and we also construct 95% confidence
interval using MLE and MPS. The method of product of spacimgsompared with the method of Least squares
estimates (LSE) and the method of MLE using simulation. MB& 8-S distance are calculated and on the basis of K-S
distance through maximum product of spacings method igbétted than MLE to the considered real data. AIC is
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calculated for MPS and MLE and both are compared.

The main objective of this paper is to analyse the small samghaviour of MPS. As we all know that it is impossible
to analyse the whole data set due various reasons like aist,fime factor etc.

The organisation of the paper is as follows:
In section 2, Different estimation procedures are menticared estimates of reliability and hazard functions usingSMP
method is proposed and compared with MLE. In section 3, asyticconfidence intervals of the parameters using MPS
method is proposed and compared with MLE. In section 4, ratd dlustration and its application is discussed, and
comparison of estimation procedure based on K-S statistipsoposed. In section 5, a comparison is conducted using
simulation study. Finally concluding remarks are presgiresection 6.

2 Parameter estimation
For the considered distribution, we use two very known angdupar method namely least squares method and the

maximum likelihood estimation method and one which is notyveommon i.e MPS method for estimating the
parametersr andA.

2.1 Least sguare estimation

Letx; < X2 < --- < X, ben ordered random sample of any distribution with CDF F(x), & g

E(F(x))=i/(n+1) ©)
The least squares estimates are obtained by minimizing

]

P(a,A) =Y (F(x)—i/(n+1))> (4)

Putting the cdf of GIED in equation (4) we get

P(a,)\)z_n 1-(1-exp —A_ a—i/(n+1) i (5)
Z\ Xi

In order to minimize Equation (5), we have to differentiateith respect to\ anda , which gives the following equation:

i (a)exp(—%) (1— exp(—%))alxgl— (1— eXp(—%))a —i/(n+ 1)) o (©)

11

$[(1- (oo 2)) - vioen) (on( ) en( )] o

The above Likelihood equation cannot be solved analytitaéirefore we can use any iterative procedure such as Newton
Rapson method, to get the solution.

2.2 Maximum likelihood estimators

The likelihood function for a sample of sizefrom GIED (1) is given by:

L(6) = (a"A ”)exp<—/\ iil(l/Xi)> i|j(1/x1-2) [(1— exp(—%))]al,t >0, a,A>0 (8)

and the log likelihood function is given as
n

M=InL(68) =nInA +n|na+_i|n (1/x) — A _iln(l/xi)jL (a— 1)_len {(1—exp(—%>)} , 9)
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After differentiating the above equation with respect togmaetera andA and then equating them to zero we got the
normal equation as follows:
n A
na)+SIn{l—exp(—— )| =0 10
/e i; [ p( Xi)] (10)

-3 A+ a1y SUREEIA o 11)

[1—exp(—A/x)]

The above normal equations are not in nice closed form, fimereve can use any iterative procedure such as Newton-
Rapson method, to get the solution.

2.3 Maximum Product of spacings estimators

Here, the method of maximum product of spacings is descihibiefly as follows:

Considering a univariate distribution @) with density fi/8) where it is required to estimat®. The density is
assumed to be strictly positive in an interval, (3) and zero elsewhere, and3 may also be elements éf o= - and
B=c are included. That is K(0)=0 and f§ 8)=0 forx < a:, F(x|8)=1. and f&|6)=0 forx > B . Letx; < Xp.... < Xn be a
complete ordered sample, further defige= a , x,,1 = 8.

The spacings are defined as follows:

D1 =F(x1n,0) , Dpy1 =1—F(Xqn, 8) , Di = F(Xin, ) — F(Xi—1n,0),i = 2,3,--- ,n as the spacings of the sample.
Clearly the spacings sum to unity i5eD; = 1. The MPS method is to chooSewhich maximizes the geometric mean of
the spacings i.e G {1} Dj)¥/"1,
or equivalently , its logarithm S = log G. The main aim for nrakiing G (or S) is that the maximum , which is bounded
above because of the conditighD; = 1, is found only when alD{s are equal. Cheng and Amiri][showed that
maximizing S as a method of parameter estimation is as affiei® ML estimation. Additionally, they showed that ties
present in data would not be a matter of concern in paramstienation.

The CDF of the GIED is given by the equation (2) and the spacarg defined as follows:

D1=F(x1) =1— [(1—exp(—A/x1))“] (12)
Dini) = 1= F(xn) = [(1— exp(—=A /%))"] (13)

And the general term of spacings is given by,
Di = F (%)~ F(xi-p) = [ (1-expxi0) "] - [(1-exp /%)) (14)

Such thaty D; =1,
MPS method choos@ which maximizes the product of spacings or in other words &ximize the geometric mean of

the spacingsi.e
nel 1/n+1
G= D; (15)
(Fie)

Taking the logarithm of G we get,

S=1/(n+ 1)Ejln D, (16)
Or we may write S as .
S= ! InD ; InD; +InD
SRCrE) n 1+i;n i +INDps1
SN [1—(1—e—“x1)“} S [(1—e—A/’H)" —(1—e‘A/X‘)“] (17)
(n+1) Zz

+ (nj:l) {inf@—e=)]}
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After differentiating the above equation with respect togoaeters and then equating them to zero we get the normal
equation as follows:

, 1 1-e M) n(1—e /M -
L = i—(1)—£(A/x1;r L in(1—e )|+
(1-e71)9In(1—e71)— (1—e% )7 In((1-e*)) o)
1 N (1—ei1)n(l—eX-1)—(1—e% )%In((1—e%
A ) =0
”“LZ (1-eT1)0—(1-e%)a }
¢ 1 |-lap(a-es)rhed)
SRS 1—(1—e?_f)a
(o /% 1)((1— € 1)3 ) (e 1) — (a/x)(1—e™ ) L)1) (19)
”+1zz (1-e71)—(1-ex )o
L1 —(a/xnx(l—exf)“)(exhlzo
n+1 (1—ew)a

The above normal equations cannot be solved analyticadietbre we can use Newton-Rapson method, in order to get
the solution.

2.4 Reliability and hazard function

In this section, we propose the estimation of reliabilitgldrazard function using MPS for specified value of time say
(t=4). Cheng and Amin]] and Coolen and Newbyi[7] had mentioned in their paper that MPS also shows the invegia
property just like MLE. So on this basis using the invariapoaperty we estimate the reliability and hazard function.

The MPS estimates of the reliability and hazard functionvsigas:

A a
Rups(t) = <1—e‘%> ,a,A,t>0 (20)

a2 A
S )
HMPS(t):i‘v aa)‘vt>o (21)

respectively, wheré& = @mp andA = ﬁmp are the MPS estimates of the parametemdA respectively. In equation (20)
and (21) putting the estimates of MLE, we can get the exppadsi the reliability and hazard function using MLE.

3 Asymptotic confidence intervals

In this section, we propose the asymptotic confidence iaterwsing MPS, as it was mentioned by Cheng and Amin
[1] and Stanislav Anatolyevin and Grigory Kosendlg] in their papers that the MPS method also shows asymptotic
properties like the Maximum likelihood estimator. Keepitigs in mind, we may propose the asymptotic confidence
intervals using MPS. The exact distribution of the MPS caedmbtained explicitly. Therefore, the asymptotic proiesr

of MPS can be used to construct the confidence intervals éopéinameterd(a, A ) is the observed Fishers information
matrix and is define as:

} (22)
(a=Gimp.A =Amp)
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ECDF Plot for the real data
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The first derivatives of the product of spacings i.e the fiomc® with respect to parameterandA are given by Equations
(18) and (19) and hence the second derivatives are calddatiollows:
The second derivative of the function S with respeat tis given as:

v 1
C{C{_n+1

F(x0, @, A e (%, 0, A ) — Fl(xa, a2 )
F(xl,a,/\)

1 [ (Foan) - (xi_l,a,A)}{F;’a(xi,a,/\)_Fga(xi_l,a,/\)}

n+1 {F(,a,A)—F(X_1,0,A)}?

_|_

M

1 {Fo,( Xi,a,A) (xi,l,a,)\)}z (23)
n+l {F(Xu,a,)\)—F(m_l,a,)\)}z

" , 2
1 {1—F(xn,a,)\)}Faa(xn,a,)\)+{Fa(xn,a,)\)}
n+1 {1—F (%, a,A)}2

The second derivative of the function S with respect tig given as,

2
v 1 F(xg,a,A) M(xl,or A)— A(xl,a,)\)
M n+l F(xy,a,A)2

1 [0 (Foea0) —F(x 1,a, A)}{ Fr 06, a,A) — Fr (61,0, )\)}
+n+1 I% {F(Xivaa)\)_ ()(i—lvav)\)}

, 2
1 {F/\ Xi,a,A) (X| 1,0, )\)}
Cn+1 | R, a,A) - F(x_1,a,A))

L [ Foa e )} (@A) + {F (xn,or/\)}2
o n+l {1—F(n,0,A)}

and the second derivative of the function S with respect,fois given as:

(24)

/! /! 1
Scr)\ :S)\cr = nt1

F(xq,aq, /\)2
1 [ (Foxan)— (xi_l,a,)\)}{F;A(m,a,)\)—F(';A(m-_l,a,/\)}
_|_

n+1 ; {F(,a,A)—F(Xi_1,0,A)}?

1 {F X, @A) = Fa(x1,0,2) } {F (x,0,2) = Fj (% 1,01)\)}] (25)

F (%0, 0, A)Fo ) (X1, 0,A) — Fo (X, 0, A)F, (1, @, )\)]

T h+1 {F(x,a,A) —F(x_1,a,A)}?

1 [{=Faa, V)Y FL (6 a,d) + {F (%, 0, )\)}{ (%, @, )\)}
S+l {1—F(xn,a,1)}?

Where

Fa(xa,A)=—(1—e /X% n1—e?/x
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"

Faa(xv aa)‘) = (1_ e_A/X)“(In(l— e‘“x))z
F)/\ (X, 0,A) = _%(1_ e—)\/x)a—le_/\/x
Faa(r.4) = _% {GT_l(l_eA/x)az(e’\/x)z— 1(1—e)‘/x)ale)\/x}

X

e /X

Fr (% aA) = ———(1— e”‘/X)"’l{a(a ~DIn(l—e )+ 1}

The asymptotic confidence intervals of the parameters oDGl&ng MLE is already calculated by A. M.Abouammoh
and Arwa M. Alshingiti [L2]. the first derivatives of the log likelihood function of GIEusing MLE with respect to
parameters are given by equation (10) and (11), and the detmivatives are as follows:

" n
(lnl-)aor = a2 (26)
n e*% n
(lnL))\)\Z(a—l)Z - 1 _ﬁ (27)
=1 x2(1—e %)
and the second derivative with respecttd\ is given as:
n n e_x_l
(INL)gy = 21 — (28)
i=1 [ xe X

So on the basis of these derivatives, we obtain the infoonatiatrix I@,A). The approximat¢l — 3)100% confidence
intervals for the parametersandA is given asg + yp /V () andA + Vs \/V(ﬁ) respectively, wherg; is the upper
2z 2 y

(%) percentile of standard normal distributial = Gmp andA = ﬁmp are the MPS estimates of the parameteand A
andV (@) andV(A) are elements df 1(a,A).

4 Real data illustration

The data set considered in this section for illustratiomtaims strengths of glass polished aeroplane window. Taefis
this data set is described by Fuller et al. (1994) to pretietifetime for a glass aeroplane window. Since the data were
used in a study to predict failure times, such type of studyfierm of reliability analysis. The data are as follows:

18.83, 20.8, 21.657, 23.03, 23.23, 24.05, 24.321, 25.52%5.8, 26.69, 26.77, 26.78, 27.05, 27.67, 29.9, 31.11,
33.2,33.73, 33.76, 33.89, 34.76, 35.75, 35.91, 36.98838M009, 39.58, 44.045, 45.29, 45.381.
The above data set is already fitted to GIED and the K-S statidtetween the fitted and the empirical distribution is
also calculated and estimates of the parameter using MLIBades calculated by Abouammoh and Alshingite].
MLE of the parameters of the GIED andA are 90.855 and 148.412 respectively and for the same dateeseave
calculated the estimates of the parameter through MPS miethd the estimates afg,, = 60.642 and\y,p, = 135.714
respectively, and corresponding K-S distance calculasathestimates of MLE and MPS respectively, and it comes out
0.137462 and 0.1207925 respectively. So on the basis ofi@&sts and K-S statistics, for the considered data set MPS fits
better as compared to MLE. The result of these distancessstimt/MPS serve better than MLE in this data set.

As K-S statistics, is extensively used for different mod®mhparison and is considered one of the best way of model
comparison, but no one had paid attention on comparisonffefelint estimation procedure based on K-S statistics. In
literature several authors have discussed K-S methoddtmggifferent model comparison in terms of distances for a
given data set. Considering the similar approach on thesh#sihe K-S statistics, here, we propose comparison of
estimation procedure or method as least K-S distance peevite better method of estimation for given data set. For the
above data set we notice that K-S distance through MPS idamtfaén K-S distance through MLE. In the support of the
above proposition empirical cumulative distribution ftino (ECDF) plot has been given below for MPS and MLE. AIC
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Fig. 3: Figure 2: Mean Square Error of the estimatesdor 1.5,2 andA = 1 with variation of sample size (n)

is also calculated using both MLE and MPS for this real datasd it comes out smaller when estimates were provided
from MPS as compare to MLE. Since MPS provides lesser K-&uigt and AIC, we may say that MPS serve better
than MLE for the considered data set. Thus we propose to astimmethod comparison on the basis of K-S statistic.

AlCvLE = 9.234804
AlCyips = 9.138706

5 Simulation studies

In order to compare the MPS, the MLE and the LSE methods innpetier estimation, a set of simulation was done
based on GIED. We have generated five thousand samples fr&@D @ir different parameters settings. It may be
mentioned here that the exact expression of MSE can not l@@neblt because estimates are not found in nice close
forms. It may be also noted here that MSE will depend on sarsigken, scale parametex and shape parameter
respectively. In this study different variation of sampleeg¢n) say n(=20,40,60,80,100,120), shape paranosesay o ( =
1,2,3,4,5,6,7) and scale parameiesay A (=1,2,3,4,5,6,7) have been considered. To study the effecriation of the
sample size n we have considered the simulated MSE famdA . Firstly, sample siza is varied i.e different values of

are taken for fixed value of scale parametetaken as 1 and 2, for different choices of shape parantetas a(=
0.5,1,1.5,2,3,4). Secondly, we varied shape paranaeierdifferent values ofr for two different choices of sample sizes
(n=30 and n=50) for fixed values of scale paramatasA ( = 1,2), thirdly, we varied the scale parameier.e different
values ofA is taken for two different choices of sample sizes (n=30 a0y for fixed values of shape parametens

(a =2,3), corresponding graphs are attached. For all the admmv&dered choices graph of MSE is plotted and attached.
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Fig. 5: Variation of sample size with respect to MSE for differenticies ofa andA =2

We have chosen sample sire= 30 in second and third case becausa at 30 changes are more visible in terms of
MSE. We have also estimates the reliability and hazard fanstfor a and A = 1,2 and 3, for sample size
n = 20,30,50,80 considering MLE and MPS both, for this see Table 1, 2. Funtte have constructed the confidence
interval and coverage probability for different choicesodndA = 1,2 and 3 and for sample sire= 20,30, 50,80 for
this see table 2,3,4 and 5. We have also compared the averagih bf confidence intervals of MPS with corresponding
MLEs. R software is used in all computations.

On the basis of the results summarized in graphs and talnhes sonclusions can be drawn which are stated as follows:

1: It is observed that as sample size increases for fixed valfie andA the mean square error of the estimates
decreases in all the three considered methods and for lmegefs i.e aftern = 80 all of them are nearly equivalent but
MPS performs better than other two considered method, speds 1 and 2. It is also observed thahdscreases MSE
of reliability and hazard function follows the similar trélas stated above and here also MPS perform better than MLE
(see Table 1). Furthermore, it is noticed that the averaggtheof confidence interval decreases as sample rsize
increases in both the considered case of MLE as well as MP$hbuaverage length is smaller in case of MPS as
compared to MLE. The coverage probability obtained hemyfattains the prescribed confidence interval. This is also
true for small sample size, see Tables 2-5.

2: From graph and table, it is observed that as shape panametereases for fixed sample simendA the MSE of
the estimates of shape parameteincreases for all the three considered cases but MSE of MB®adler than LSE as
well as MLE (see figure 3). It is noticed that for smaller valwd shape parameter all of them are equally good but for
larger value of shape parameter MPS is better than other®@egaerally, shape parameters are difficult to estimate in
most of the cases but here in case of GIED, one should use MRHl frhoices ofA andn. It is also observed that for
fixed value ofA as the shape parameteiincreases MSE of reliability decreases but reverse trentained in the case
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Fig. 6: Variation of a for different choices of sample size (n=30,50) ane- 1,2

of hazard, it is true for MPS and MLE both but here also MPS esémtter than MLE in terms of MSE. The average
length of confidence interval increases as we increase Hyegbarametear in both the case of MPS and MLE . Further
more, it is also observed that the coverage probabilityinbthhere fairly attains the prescribed confidence interval

3: It is observed that as scale parameétancreases for fixed sample sineand shape parametarthe MSE of the
estimates of scale paramefeincreases and MPS performs better in terms of MSE in congratisother two methods.
It is also observed that for smaller valueofall of them are equivalent but for larger value oMPS is far better than
LSE as well as MLE see figure 4. It is also observed that for fisdde ofa as the scale paramet&rincreases MSE of
reliability decreases but reverse trend is obtained in #s& ©f hazard in case of MLE and MPS both see Table 1. The
average length of confidence interval increases as we isetba scale paramet&ffor fixed value of shape parameter
similar trend has been observed in both the case of MPS and (gkd=Table 2-5). Further more, it is also observed that
the coverage probability obtained here fairly attains trespribed confidence interval and no any specific trend has be
observed.

4: From the plot of ECDF and the value of AIC, it is observed #stiimates of MPS fits better than the estimates of
MLE.

6 Conclusion
This paper involved the comparison of estimates obtaineBg, MLE, and LSE method using GIED. For smaller

sample size it is advised to use MPS as it perform better ti&has well as MLE. In this paper we have considered the
problem of point estimation, confidence interval and it aigcoduces comparison of different estimation procedure o
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the basis of K-S statistic, for this a real data has been pwrated and ECDF plot is also given. From the graphs, it is
observed that all the estimates appears to be consistemtavtage length of confidence interval using MPS is smaller
than that of MLE. We have found that MPS method outperforresatner two method with smaller mean square error.
The findings of this paper will be very useful to researchstiagjstician and engineers where such types of things were
required and also in cases where we have small sample sinaligsa and exclusively where GIED is used.
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Table 1: Average estimates and corresponding MSEs of the religlititl hazard function using MLE and MPS respectively at igeciime say(t=4) for different parameter settings
and sample size.

Reliability and hazard using MLE,t=4

n=20 n=30 n=50 n=80
Para rt ht rt ht rt ht rt ht
1,1 0.2134 0.0058 0.2499 0.0076 0.2161 0.0038 0.2392 0.0032180 0.0023 0.2306 0.0019 0.2194 0.0014 0.2261 0.0010
1,2 0.3914 0.0080 0.2118 0.0042 0.3898 0.0051 0.2057 0.0028923 0.0030 0.1997 0.0011 0.3928 0.0018 0.1969 0.0006
1,3 0.5296 0.0081 0.1800 0.0024 0.5294 0.0050 0.1750 0.000.3283 0.0030 0.1724 0.0007 0.5291 0.0018 0.1705 0.0004
2,1 0.0487 0.0012 0.5252 0.0536 0.0476 0.0008 0.4950 0.0229487 0.0005 0.4677 0.0110 0.0491 0.0003 0.4561 0.0060
2,2 0.1495 0.0042 0.4447 0.0314 0.1490 0.0029 0.4265 0.0134518 0.0017 0.4063 0.0068 0.1529 0.0011 0.3985 0.0039
2,3 0.2715 0.0066 0.3762 0.0159 0.2743 0.0044 0.3619 0.0082761 0.0026 0.3509 0.0042 0.2774 0.0016 0.3449 0.0023
3,1 0.0124 0.0002 0.8143 0.1636 0.0119 0.0001 0.7557 0.07@0117 0.0001 0.7097 0.0316 0.0112 0.0000 0.6950 0.0178
3,2 0.0594 0.0016 0.6956 0.0999 0.0589 0.0010 0.6533 0.0480606 0.0006 0.6147 0.0198 0.0601 0.0004 0.6023 0.0105
3,3 0.1418 0.0042 0.5877 0.0573 0.1436 0.0027 0.5527 0.0254441 0.0016 0.5334 0.0123 0.1458 0.0010 0.5205 0.0068

MAXIMUM PRODUCT SPACINGS R(t) H(t) (MPS)

1,1 0.2425 0.0057 0.1991 0.0034 0.2383 0.0038 0.2040 0.0022333 0.0023 0.2066 0.0013 0.2301 0.0014 0.2098 0.0008
1,2 0.4048 0.0065 0.3128 0.0180 0.4002 0.0044 0.3187 0.0183993 0.0027 0.3255 0.0190 0.3977 0.0017 0.3301 0.0198
1,3 0.5263 0.0064 0.3700 0.0429 0.5270 0.0042 0.3767 0.0486265 0.0026 0.3843 0.0477 0.5278 0.0017 0.3898 0.0497
2,1 0.0717 0.0023 0.2275 0.0497 0.0648 0.0013 0.2308 0.0484606 0.0007 0.2326 0.0446 0.0574 0.0005 0.2361 0.0425
2,2 0.1801 0.0048 0.3545 0.0072 0.1721 0.0032 0.3612 0.0084679 0.0019 0.3655 0.0025 0.1641 0.0012 0.3710 0.0015
2,3 0.2952 0.0058 0.4174 0.0107 0.2921 0.0041 0.4254 0.010@883 0.0025 0.4325 0.0108 0.2860 0.0016 0.4376 0.0113
3,1 0.0239 0.0006 0.2560 0.1711 0.0201 0.0003 0.2580 0.168P172 0.0002 0.2599 0.1626 0.0148 0.0001 0.2653 0.1574
3,2 0.0850 0.0027 0.4009 0.0432 0.0780 0.0016 0.4046 0.0302739 0.0009 0.4081 0.0326 0.0694 0.0005 0.4142 0.0291
3,3 0.1723 0.0048 0.4706 0.0106 0.1667 0.0030 0.4747 0.0081601 0.0018 0.4825 0.0035 0.1570 0.0011 0.4873 0.0021
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Table 2: Average estimates, coverage probability (in the braclatd)corresponding confidence intervals of the parametensd A
using MPS for different choices of parameter and for samplkers=20 and 30.

CI AND COVERAGE PROBABILITY MPS

n=20 n=30

Para a(CP) A(CP) a(CP) A(CP)
11 0.9228 (0.9654)  0.8999 (0.964)  0.9298 (0.9636) 0.9174K4BY

' (0.2395,1.4505) (0.1284,1.2788) (0.8975,1.8539)  ((BH4983)
12 0.9294 (0.966) 1.8253 (0.9628)  0.9355 (0.966) 1.8516 ®).95

' (0.1571,1.4442) (0.1775,2.5652) (0.6109,1.5836) (1&06929)
13 0.9234 (0.9656) 2.7147 (0.9618)  0.9352 (0.965) 2.764%0).9

' (0.4953,1.7380) (2.0397,5.5381) (0.0923,1.0677) (QWIB1775)
51 1.8310 (0.9642) 0.9134 (0.9482) 1.8581 (0.9634) 0.930135(B)

' (0,2.8277) (0.1480,1.1370)  (0.2349,2.4415) (0.5779(18)
29 1.8480 (0.9714) 1.8184 (0.9566) 1.8453 (0.9648) 1.8585]0.

' (0,3.0538) (0.6993,2.6476) (0.7629,3.0160)  (1.0252,29%
23 1.8430 (0.966) 2.7441 (0.9596) 1.8522 (0.9666) 2.782018%P

' (1.1893,4.1223) (1.6403,4.6007) (0.5983,2.8156) ((B3BB675)
31 2.7630 (0.9668) 0.9145 (0.9596) 2.7674 (0.9682) 0.93195§0.

' (0.3334,5.4452) (0.7535,1.6584) (2.2181,5.9873)  ((®ELAE533)
32 2.7461 (0.963) 1.8299 (0.953) 2.7542 (0.967) 1.8553 (Gtp47

' (0,3.9963) (0.5667,2.3851) (0,3.6252) (0.9020,2.3533)
33 2.7456 (0.963) 2.7479 (0.953) 2.7661 (0.9698)  2.7930 Gup4

' (0,4.9593) (1.7279,4.5179) (0.7889,4.5274)  (1.5608£5Y
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Table 3: Average estimates, coverage probability (in the braclatd)corresponding confidence intervals of the parametensd A
using MPS for different choices of parameter and for samplkers=50 and 80.

CI AND COVERAGE PROBABILITY MPS
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Table 4: Average estimates, coverage probability (in the braclatd)corresponding confidence intervals of the parametensd A

using MLE for different choices of parameter and for sampte 15=20 and 30.

CI AND COVERAGE PROBABILITY MLE

n=20 n=30
Para a(CP) A(CP) a(CP) A(CP)
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