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Abstract: Maximum likelihood and Bayes estimators of the unknown pet@rs of an extension of the exponential (EE) distribution
have been obtained for Progressive Type-1l Censored dabaBinomial removals. Markov Chain Monte Carlo (MCMC) methis
used to compute the Bayes estimates of the parameters fgnt€he General Entropy Loss Function (GELF) and Squarest Eoss
Function (SELF) have been considered for obtaining the Bagtimators. Comparisons are made between Bayesian arichiax
likelihood estimators (MLESs) via Monte Carlo simulationn Axample is discussed to illustrate its applicability.
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1 Introduction

In life testing and reliability problems, the role of hazaate is very important because many phenomenon in reatisitua
are modeled by the probability distribution. In early aggya@nential distribution was the most popular distributzrd
has been frequently used to analyze the life time data dueeio ¢constant hazard rate and computational ease. In real
situation, constant hazard rate does not occurs commotlyt lmecurs in monotonic or non monotonic form as for
example mortality of child with their age distribution aradlfire of electric products with respect to time etc, seesbiel
[15], Lawless [L4] and Barlow and Proschaid§. Initially gamma and Weibull distribution have been prgpd as a
generalization of exponential distribution and extengiused for the situation when hazard rate is not constaritbBihn
distributions have their own advantages and disadvantsee$lurthy et al.J]. Considering disadvantages of gamma
distribution, Gupta and Kundul.{] proposed a new exponentiated exponential distributioaraalternative to gamma
distribution and has many property like gamma distributiath addition to closed form of distribution function and
hazard function. For more details see Gupta and Kuf@ [n the same context, Haghighi and Sadedhidroposed EE
distribution which is an alternative to gamma, Weibull amg@nentiated exponential distribution and having addaio
important feature of an increasing hazard function wheir tespective probability density functions are monotaiiic
decreasing. However, gamma, Weibull and exponentiatedrexgial distribution only allow for decreasing or congtan
hazard rate when their respective probability density fions are monotonically decreasing. The more applicagbilit
EE distribution has discussed by Haghighi and Sadetjlsiid Nadarajah and HaghigHig].

The survival function of EE distribution is given as

S(x) = exp[1— (1+Ax)7], (1)

fora > 0,A > 0 andx > 0. The corresponding cumulative distribution functionf{cdrobability density function (pdf)
and the quantile function are given as.

F(x) =1—exp[l— (1+Ax)7], (2)
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f(x) = aA(1+Ax)* Texp[l— (14 Ax)7], (3)

and

Q(P)=3 {(1—-log(1—p)Y},0<p<1,
respectively. The hazard function (hrf) is given by

h(x) = aA(1+Ax)“. 4)

Now, Fora = 1, equation 8) reduced to exponential distribution (see, Nadarajh)[ Equation 8) has showed the
attractive feature of always having the zero mode and yetvallg for increasing, decreasing and constant hrfs. Haghig
and Sadeghi4] and Nadarajahl[8] have been obtained the MLEs for complete as well as censasel but none of
them has paid attention for Bayes analysis under Progeesgde-11 censoring with Binomial removals. But now a days
Progressive type-Il censoring with Binomial removals baes very popular and practicable in medical and engineering
field.

In life testing experiments, situations do arise when uaiitslost or removed from the experiments while they are still
alive; i.e, we get censored data from the experiment. The dbsinits may occur due to time constraints giving type-

| censored data. In such censoring scheme, experimentnisn@ied at specified time. Sometimes, the experiment is
terminated after a prefixed number of observations due tocoostraints and we get type-1l censored data. Besides thes
two controlled causes, units may drop out of the experimamidomly due to some uncontrolled causes. For example,
consider that a doctor perform an experiment wittancer patients but after the death of first patient, soniergdeave

the experiment and go for treatment to other doctor/ hdsi@tmilarly, after the second death a few more leave and so
on. Finally the doctor stops taking observation as soonapihdetermined number of deaths (sgyare recorded.

It may be assumed here that each stage the participatirengmtnay independently decide to leave the experiment
and the probability p) of leaving the experiment is same for all the patients. Tiesrtumber of patients who leave
the experiment at a specified stage will follow Binomial dizition with probability of succes§). The experiment is
similar to a life test experiment which starts witlunits. At the first failureXy,r1 (random) units are removed randomly
from the remainingn — 1) surviving units. At second failur&y, r, units from remainingy— 2 —ry units are removed,
and so on; tillm" failure is observed i.e. ati" failure all the remainingm =n—m—ry —ro-- -y 1 UNIts are removed.
Note that, heremis pre-fixed and;sare random. Such a censoring mechanism is termed as Priogtgpe-1l censoring
with Binomial removals. If we assume that probability of @rals of a unit at every stage sfor each unit them; can
be considered to follow a Binomial distribution i.g.~ B(n—m— zi;(l)n ,p) fori=12 3, ---m—1and withro = 0. For
further details, readers are referred to Balakrishi2haiid Singh et al§]. In last few years, the estimation of parameters
of different life time distribution based on Progressives@ed samples have been studied by several authors such as
Childs and Balakrishnar®], Balakrishnan and Kannag]j Mousa and Jheeri}], Ng et al. R0]. The Progressive type-I|
censoring with random removals has been considered by Yaaig[22] for Weibull distribution, Wu and Changf] for
exponential distribution. Under the Progressive typeehsoring with random removals, Wu and Chagg [and Yuen
and Tse 28] developed the estimation problem for the Pareto distidouand Weibull distribution respectively, when the
number of units removed at each failure time has a discreferumdistribution, the expected time of this censoringmpla
is discussed and compared numerically.

In this paper, we have proposed Bayes estimators for the armanpeter EE based on Progressive type-Il censoring
with Binomial removals. Bayes estimators are obtained usé# F and GELF. Rest of the paper is organized as follows:
Section 2, provides the likelihood function. In section 3,Band Bayes estimators have been obtained. MCMC method
is used to compute Bayes estimatesraindA. The comparison of MLEs and corresponding Bayes estimatergiven
in section 4. Comparisons are based on simulation studieislofaverage loss over sample space) of the estimators.
Section 5, illustrate an example by using the real data s®dlli, conclusions are presented in the last section.

2 Likelihood Function

Let (X1,R1),(X2,R2),(X3,Rs),- -+, (Xm,Rm), denote a Progressive type-Il censored sample with Binomsiaovals,
whereX; < X < X, -+, Xm. With pre-determined number of removals, $&y=r1,R, =r2,R3 =r3,--- , Ry =rm, the
conditional likelihood function can be written as, Coh&h [

L(a;A;xIR:r)=C*|_lf(Xi)[S(Xi)]”a ©
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wherec* =n(n—ry—1)(n—ry—ra—2)(Nn—ry —rp—rz3—3)---(N—ry —rp —rg,--- ,rm—m+1), and 0< r; <
(N—m—ry—rp—r3---ri_1), fori =1,2,3...,m— 1. Substituting 1) and(3) into (5), we get
m .
L(a,A;xR=r)=c" |_|O{)\ (L14+A%)% fexp[1— (14 Ax)?]]" ©)

Suppose that an individual unit being removed from the tetheit" failure,i = 1,2,--- (m— 1) is independent of
the others but with the same probabilppy That is no R of the unit removed at" failurei = 1,2,--- (m— 1) follows a
Binomial distribution with parametet(m m— zl 1r| , p) therefore,

P(Ri=r1;p)= (nr—lm> p(1—p)" M, (7)

andfori=2,3,--- ., m—1,

PRp =PR=riR-1=ri_1,--Ri=r1)
- (n_m_z_ér') (1 p) B, o

fi

Now, we further assume th& is independent oX; for all i. Then using above equations, we can write the full likelithoo
function as in the following form

L(av/\vp;xar):ALl(av/\)LZ(p)a (9)
where
m
La(aiA) =[] oA (L+2%)H[explL— (1+Ax) )", (10)
=
Lo (p) = pEia'Ti (1 — p)m-Dn-m—5T3Hm=i)i (11)
andA = cih-m! ___ does notdepend on the parameter andp.

(nfmfzi;iri)! |‘|i”;11ri!

3 Classical and Bayesian Estimation of Parameters

3.1 Maximum Likelihood Estimation

The MLE of a andA are the simultaneous solution of following normal equation

m m m
E+i;In(1+)\X. Zl+r. JL1+2A%)%IN(1+Ax%)=0 (12)

and

(a—1) Zlﬂ. i;x.(1+r.)(1+)\xi)"*l:0. (13)

It may be noted that12) and (13) can not be solved simultaneously to provide a nice closeu for the estimators.
Therefore, we use fixed point iteration method for solvingsth equations. For details about the proposed method
readers may refer Jain et alg and Rao 21].
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3.2 Bayes procedure

Since the parametesandA both are unknown, a natural choice for the prior distribngiofa andA are independent
gamma distributions as the following fornis4) and(15).

blale—bla aal—l

; 14
Far ; O<a<oeo, b;>0 a>0 (14)

a1 (a)

ap —bz)\ ap—1
M) =2 AT A e b0, a0 (15)
ra
whereas, by, anday, by, are chosen to reflect prior knowledge abawndA . It may be noted that, the gamma prgan(a)
andgp (A) are chosen instead of the exponential prioaandA were used by Nassar and Eis&8][ Jung et al. 11] and
Singh et al. §] because the gamma prior is wealthy enough to cover the peief of the experimenter. Thus the joint
prior pdf of a andA is

g(a,A)=g1(a)g(A) ; a>0, A>0 (16)

Combining the priors given byl4) and (15) with likelihood given by(9), we can easily obtain joint posterior pdf of

(a,A) asmr(a,A|xr) = 3 where

m
Jp = qMai)ma-le-biagbaA { rl(l+)\>q ) exp[1— (1+Ax )"H“”} : 7

andJo = [y’ Jo’ hdadA. Hence, the respective marginal posterior pdfs@indA are given by

nl(cr|x7r):/0 j—éd/h (18)
and
m(AlXr) = /m ﬂd01 (19)
o b
Usually the Bayes estimators are obtained under SELF
l1(.¢) =€1 (9— @)*; €1>0 (20)

Where is the estimate of the parameigrand the Bayes estimatqg of ¢ comes out to bé&y[¢], whereE, denotes the posterior
expectation. However, this loss function is symmetric osetion and can only be justified, if over estimation andemelstimation

of equal magnitude are of equal seriousness. A number ofrasyric loss functions are also available in statisticalrfiture. Let us

consider the GELF, proposed by Calabria and Pul&hidefined as follows :

I2(@, @) =€ ((2)5—6In <2) —1>; €2>0 (21)

The constand, involved in(21), is its shape parameter. It reflects departure from symmétingnd > 0, it considers over estimation
(i.e., positive error) to be more serious than under estandt.e., negative error) and converse &« 0. The Bayes estimatag: of ¢
under GELF is given by,

ie=[ea(97)] @)

provided the posterior expectation exits. It may be notae bt ford = —1, the Bayes estimator under logl) coincides with the
Bayes estimator under SEILE Expressions for the Bayes estimatagsandAg for a andA respectively under GELF can be given as

d = {/Oma*‘snl(amr)da} (7%)7 (23)

and

S
N

Ao = U(;m)\‘snl()\x,r)d)\}( , (24)
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It is to mention here that from equatidi23) and (24), the Bayes estimator@g and Ag are not reducible in nice closed form.
Therefore, we use the numerical techniques for obtainiagtimates. We propose to use the MCMC method for obtainm@ayes
estimates of the parameters. In MCMC technique, Gibbs sam#id Metropolis-Hastings algorithm to generate samples f
posterior distributions and compute the Bayes estimatbs. Gibbs sampler is best applied on problems where the nadrgin
distributions of the parameters of interest are difficult&dculate, but the conditional distributions of each partengiven all the
other parameters and data have nice forms. If conditiorstilditions of the parameters have standard forms, then dae be
simulated easily. But generating samples from full cooditils corresponding to joint posterior is not easily manbtg therefore we
consider mixing of Metropolis-Hastings for those full cdimhal in the hybrid sampling i.e., Metropolis step is usedextract
samples from some of the full conditional to complete a cyol&ibbs chain. For more details about this method, see Chib a
Greenberg24], Gelfand and Smith43] and Gamerman and Lop&4&]. Thus utilizing the concept of Gibbs sampling procedure as
mentioned above, generate sample from the posterior génsittion under the assumption that parameteandA has independent
gamma density function with hyper parametexsb;, and ap,by, respectively. To corporate this technique we consider full
conditional posterior densities aof andA,

16 (alA,xr) O gmrale { ﬁ(1+m“ [exp[1— (1+m>”ﬂ“”} (25)

and

m
B (Ala,xr) DA™ e et {l_!(l'f‘/\xi)l[eXp[l_ (1+Am"n”“} (26)
respectively. The Gibbs algorithm consist the followingjpst

I. Set the initial guess aif andA sayap andAg

II. Seti =1
Ill. Generateq; from 77 (a|Ai_1,%,r) andA; from 15 (A |ai, X, 1)
IV. Repeat steps II-11l, N times

V. Obtain the Bayes estimates @fandA under GELF as

Gg = [E(a*5|da1a)r — [ﬁ ziN:NOHa(‘S]% and

1
Ae = [E()\fé\daia)] = [ﬁ ZiN:NOH)‘fﬂ i
Where,(Np ~ 5000 is the burn-in-period of Markov Chain. Substitutidgequal to -1 in step V, we get Bayes estimates @ind
A under SELF.

VI. To compute the HPD interval af andA, order the MCMC sample af andA (sayaq,a»,Qs, -+, 0N asayy, oy, Az, 7a[N])
and @1,A2,A3,---,AN @s )\[1],)\[2],)\[3],--- ,)\[N]). Then construct all the 100(@)% credible intervals ofa and A say
(g, o) +2)s - (A, ) @nd (Arg Anga—y) 1)+

)‘[Nwlv)‘[N])) respectively. HeréxH denotes the largest integer less than or equal Tdhen the HPD interval ofr andA are that
interval which has the shortest length.
VII. Using the asymptotic normality property of MLES, we cemnstruct approximate 100{@)% confidence intervals far andA as

a +2zy5(y/var(a)) andA 2y 5( vér(f\)) Wherezy, , is the 1001 — ¢//2)% upper percentile of standard normal variate.

1
3

1
3

4 Simulation Study

The estimatorsiy and ;\M denote the MLEs of the parametemsand A respectively, whileds and ;\s are corresponding Bayes
estimators under SELF arig: andAg are the corresponding Bayes estimators under GELF. We aertipaestimators obtained under
GELF with corresponding Bayes estimators under SELF and $10Be comparisons are based on the simulated risks (aviesge
over sample space) under GELF and SELF both. Heogs (@uc<), (AL Auc)) and (@n ayn), (ALn Ayn)) represent 10 — )% CI
and HPD intervals ofr andA respectively. It may be mentioned here that the exact esjmes for the risks can not be obtained as
estimators are not found in nice closed form. Thereforeritthe of the estimators are estimated on the basis of MoatéeGimulation
study of 5000 samples. It may be noted that the risks of thmagirs will depend on values ofm, p,a,A andd. Also, the choice of
hyper parametar andA can be taken in such a way that if we consider any two indepemd@rmations as prior mean and variance of
o andA are(py = % ,01= %) and(uz = ﬁ—; ,00 = g—g) respectively, wheregs, and s, are considered as true values of the parameters
a andA for different confidence in terms of smaller and larger waces. In order to consider variation in the values of thesechawe
obtained the simulated risks for effective sampies- 15,18 21 and 27,0 = 2 = py(say, prior mean ofr), o = 1,10 (say, prior
variance ofar) andd = +4. Similarly, these variation is apply on the scale paramkete 3 = p(say, prior mean ok ), o, = 1,10 (say,
prior variance ofA) andd = +4. Figurel & 2 shows the risks of an estimators@mfandA for different values o® under GELF and
Figure 3— 6 shows the risk of estimators afandA for variation of the effective sample sing where the other rest of the parameters
are fixed, which is mention under the Figures. Tdb& 2 represent the Cl, HPD intervals and percentage of covenadpility in all
considered situation. It is to be mention here that consitiéhe value of hyper parameters such as prior mean is talkguesas value
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m=1 m=231 a=4 a2;=0 by=2 b:=3 mn=30 =1 m=H ay=4 a:=0 b;=2 b:=3 n=30

10
L

ks
gk

5

a0

Fig. 1: Risks of Estimators ofr andA under GELF for different values af.

Table 1: Under smaller prior variancg; = 1 ando, = 1 the 95% CI, HPD intervals and % of coverage probability fffecent samples
mfor fixedn=30,0a =2,A =3,a1 = 4,2 =9,b; = 2 andby, = 3.

m a A

opc Oye apn ayn % cov.prob  Ape Aue Ah Auh %cov.prob
15 0.5321 8.1728 1.4077 2.7687 93.9 0.7668 11.9473 1.8208303. 93.6
18 0.6427 7.6259 1.4649 2.7355 94.2 1.5638 11.2735 1.888800G. 93.6
21 0.6409 7.0113 1.4984 2.6761 95 15735 10.7623 1.9602 8B3.88 94.1
27 1.0324 6.4232 15726 2.6427 96.7 2.0115 9.6552 2.0195598.7 97.4

of the parametera andA, when prior variance is small and large respectively. Frafldl & 2, it is observed that HPD intervals are
shorter length than Cl and length of the intervals decreas@screment of the effective sample sim@nd also observed that, there is
increment in coverage probability of Cl and HPD.

5 Real data Analysis

For real data illustration, we have taken the following ditan Linhart and Zucchini I2] which shows failure times of the air
conditioning system of an airplane: 23, 261, 87, 7, 120, 2448, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 1111416, 90,
1, 16, 52, 95. We have obtained Kolmogrov-Smirnov (K-S)istias, Akaike’s information criterion (AIC) and Bayesiarformation
criterion (BIC) for EE, Weibull, gamma and exponentiate@a@xential distributions for given data set and the valuessammarized
in Table 3. Considered criterion, we observed that EE distributicovjale better fit than the other three distributions. Hende, E
model can be considered as an alternative to all three motleésefore, we use this data to illustrate the our proposequiures.
For this a Progressive type-IlI censoring with Binomial remie are generated from the given data set under variousngshevhich
are summarized in Tabkke We have obtained the MLES, Bayes estimates (using nonniaftive prior), 95% CI and HPD intervals
for the parametera andA respectively under SELF and GELF fér= +4 and value of the hyper parameterandA are taken as
a; = 0.00001b; = 0.0001 anda, = 0.00001 b, = 0.0001 respectively, which are summerized in Tebbnd Tabler. Table5, shows
the MLEs and Bayes estimators afandA under SELF, GELF and 95% CI/HPD intervals based on complata set. On every
censored sample schemes the length of HPD intervals argsless than ClI.
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Fig. 3: Risks of Estimators off under GELF for different values @n.

Table 2: Under larger prior variance; = 10 ando, = 10 the 95% CI, HPD intervals and % of coverage probabilitydifierent
samplesnfor fixedn=30,0 =2,A =3,a0 =0.4,a, = 0.9,b; = 0.2 andb, =0.3.

m a A
ape aye On ayn % cov.prob  Apc Ay Ah Auh %cov.prob
15 0 8.0839 1.3520 2.9879 92.3 0 121325 1.6044 4.1632 93.2
18 0 7.6110 1.4325 2.9406 94.3 0 11.3435 1.6920 4.0549 93.9
21 0 7.1227 1.4868 2.8800 94.9 0 10.5829 1.7599 3.9473 95
27 6.09E-05 6.5543 1.5714 2.8129 96.2 0 9.6984 1.8692 3.826297.1
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Table 3;: Goodness of fit for various data

exponentiated exponential

Weibull

gamma

EE

Log-likelihood
K. S. statistics
AIC
BIC

-152.2013
0.29585

308.4026

311.2050

-151.937
0.15390
307.8740
310.6764

-152.943
0.17186
309.8859
312.6883

-151.5815
0.13187

307.1630

309.9654
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Table 4: Failure time vector Y Xy», ...,y30) under different PT-Il CBR censoring schengsén : m)
Scheme i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
S5(30:27) R; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Yi 1 3 5 7 11 11 11 12 14 14 14 16 16 20 21 23 42 47
19 20 21 22 23 24 25 26 27
0 1 0 0 1 0 1 0 0
52 62 71 87 90 120 120 246 261
$4(30:24 R 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
Yi 1 3 7 11 11 11 12 14 14 16 16 20 21 23 42 47 52 71
2 0 0 1 0 0
71 95 120 120 246 261
S$3(30:2)) R 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 2 0
Yi 1 3 7 11 11 11 12 14 14 16 20 21 42 47 52 62 71 90
92 2125 2061
$y(30:18 R 0 1 0 1 0 0 1 0 0 0 0 0 2 2 2 2 1 0
Vi 1 3 7 11 11 12 14 14 16 16 20 21 23 52 71 95 225 261
$1(30:19 R 0 0 0 0 0 0 0 0 0 0 2 0 6 7 0
Yi 1 3 5 7 11 11 11 12 14 14 14 20 21 71 261
Table 5. Bayes and ML estimates based on real data set for n = 30; p = 0.5.
Parameter MLE Bayes Estimates(MCMC) Inteval Estimates
SELF GELF 95 ClI 95 HPD
5=4 0=-4 LC uc L un
a 0.59854 0.59732 0.59029 0.60147 0.23078 0.96631 0.5179677381
A 0.04339 0.04286 0.04060 0.04413 0.00000 0.09911 0.0313854@2
Table 6: Bayes and ML estimates, Cl and HPD credible intervalofevith fixed n = 30 and p = 0.5 under PT-1l CBR.
Scheme MLE Bayes Estimates(MCMC) Interval Estimates
SELF GELF 95% ClI 95% HPD
o0=4 o0=-4 aLc ayc (o) (o)
S(30:15 0.309636 0.308854 0.301217 0.313206 0.047172 0.57210147360 0.365271
$(30:18 0.369187 0.368289 0.361281 0.372343 0.092626 0.445748067168 0.411130
$3(30:21) 0.451995 0.450888 0.442590 0.455687 0.114703 0.46098884&13 0.459988
$(30:24 0.562338 0.561553 0.551595 0.567371 0.240013 0.57155320602 0.567553
S5(30:27 0.528935 0.522843 0.515776 0.526962 0.289157 0.57893550%48 0.579776
Table 7: Bayes and ML estimates, Cl and HPD credible intervals\favith fixed n = 30 and p = 0.5 under PT-1l CBR.
Scheme MLE Bayes Estimates(MCMC) Interval Estimates
SELF GELF 95% ClI 95% HPD
0=4 0=-4 ALe Auc Ah apn
S(30:15 0.095069 0.092577 0.082717 0.097497 0.000000 0.25319757@16 0.127248
$(30:18 0.064836 0.063485 0.057888 0.066383 0.000000 0.16489041442 0.085406
$(30:21) 0.047855 0.046958 0.043210 0.048955 0.000000 0.12046930M40 0.062327
$(30:24 0.040020 0.039330 0.036510 0.040873 0.000000 0.09904326&32 0.051844
S5(30:27 0.051559 0.046062 0.042827 0.047844 0.000000 0.08805436@83 0.060970
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Fig. 6: Risks of Estimators oh under SELF for different values of.
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Fig. 7: Probability Plot for real data set example.

6 Conclusion

After an extensive study of the results of simulation, we roagclude that in most of the cases, under both losses, opoged
estimatorag and Ag perform better than all the considered competitive estinsadf a and A respectively ford > 0 (when over
estimation is more serious than under estimation). On therdtand ford < 0 (when under estimation is more serious than over
estimation)as and Ag have minimum risk than all the competitive estimatorsaoéndA. Therefore, the proposed estimafar is
recommended for both losses, if under estimation is moielsethan over estimation vice-versa.
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