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Abstract: Maximum likelihood and Bayes estimators of the unknown parameters of an extension of the exponential (EE) distribution
have been obtained for Progressive Type-II Censored data with Binomial removals. Markov Chain Monte Carlo (MCMC) method is
used to compute the Bayes estimates of the parameters of interest. The General Entropy Loss Function (GELF) and Squared Error Loss
Function (SELF) have been considered for obtaining the Bayes estimators. Comparisons are made between Bayesian and Maximum
likelihood estimators (MLEs) via Monte Carlo simulation. An example is discussed to illustrate its applicability.
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1 Introduction

In life testing and reliability problems, the role of hazardrate is very important because many phenomenon in real situation
are modeled by the probability distribution. In early age, exponential distribution was the most popular distributionand
has been frequently used to analyze the life time data due to their constant hazard rate and computational ease. In real
situation, constant hazard rate does not occurs commonly but it occurs in monotonic or non monotonic form as for
example mortality of child with their age distribution and failure of electric products with respect to time etc, see Nelson
[15], Lawless [14] and Barlow and Proschan [13]. Initially gamma and Weibull distribution have been proposed as a
generalization of exponential distribution and extensively used for the situation when hazard rate is not constant. But both
distributions have their own advantages and disadvantagessee Murthy et al. [1]. Considering disadvantages of gamma
distribution, Gupta and Kundu [10] proposed a new exponentiated exponential distribution asan alternative to gamma
distribution and has many property like gamma distributionwith addition to closed form of distribution function and
hazard function. For more details see Gupta and Kundu [10]. In the same context, Haghighi and Sadeghi [4] proposed EE
distribution which is an alternative to gamma, Weibull and exponentiated exponential distribution and having additional
important feature of an increasing hazard function when their respective probability density functions are monotonically
decreasing. However, gamma, Weibull and exponentiated exponential distribution only allow for decreasing or constant
hazard rate when their respective probability density functions are monotonically decreasing. The more applicability of
EE distribution has discussed by Haghighi and Sadeghi [4] and Nadarajah and Haghighi [18].

The survival function of EE distribution is given as

S(x) = exp[1− (1+λ x)α], (1)

for α > 0, λ > 0 andx > 0. The corresponding cumulative distribution function (cdf), probability density function (pdf)
and the quantile function are given as.

F(x) = 1− exp[1− (1+λ x)α], (2)
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f (x) = αλ (1+λ x)α−1exp[1− (1+λ x)α], (3)

and

Q(p)=1
λ
{

(1− log(1− p))1/α} ,0< p < 1,

respectively. The hazard function (hrf) is given by

h(x) = αλ (1+λ x)α . (4)

Now, For α = 1, equation (3) reduced to exponential distribution (see, Nadarajah [18]). Equation (3) has showed the
attractive feature of always having the zero mode and yet allowing for increasing, decreasing and constant hrfs. Haghighi
and Sadeghi [4] and Nadarajah [18] have been obtained the MLEs for complete as well as censoredcase but none of
them has paid attention for Bayes analysis under Progressive type-II censoring with Binomial removals. But now a days
Progressive type-II censoring with Binomial removals becomes very popular and practicable in medical and engineering
field.
In life testing experiments, situations do arise when unitsare lost or removed from the experiments while they are still
alive; i.e, we get censored data from the experiment. The loss of units may occur due to time constraints giving type-
I censored data. In such censoring scheme, experiment is terminated at specified time. Sometimes, the experiment is
terminated after a prefixed number of observations due to cost constraints and we get type-II censored data. Besides these
two controlled causes, units may drop out of the experiment randomly due to some uncontrolled causes. For example,
consider that a doctor perform an experiment withn cancer patients but after the death of first patient, some patient leave
the experiment and go for treatment to other doctor/ hospital. Similarly, after the second death a few more leave and so
on. Finally the doctor stops taking observation as soon as the predetermined number of deaths (saym) are recorded.

It may be assumed here that each stage the participating patients may independently decide to leave the experiment
and the probability(p) of leaving the experiment is same for all the patients. Thus the number of patients who leave
the experiment at a specified stage will follow Binomial distribution with probability of success(p). The experiment is
similar to a life test experiment which starts withn units. At the first failureX1,r1 (random) units are removed randomly
from the remaining(n−1) surviving units. At second failureX2,r2 units from remainingn−2− r1 units are removed,
and so on; tillmth failure is observed i.e. atmth failure all the remainingrm = n−m− r1− r2 · · · rm−1 units are removed.
Note that, here,m is pre-fixed andr,is are random. Such a censoring mechanism is termed as Progressive type-II censoring
with Binomial removals. If we assume that probability of removals of a unit at every stage isp for each unit thenri can
be considered to follow a Binomial distribution i.e.,ri ≈ B(n−m−∑i−1

l=0 rl , p) for i = 1,2,3, · · ·m−1 and withr0 = 0. For
further details, readers are referred to Balakrishnan [2] and Singh et al.[8]. In last few years, the estimation of parameters
of different life time distribution based on Progressive censored samples have been studied by several authors such as
Childs and Balakrishnan [6], Balakrishnan and Kannan [3], Mousa and Jheen [17], Ng et al. [20]. The Progressive type-II
censoring with random removals has been considered by Yang et al. [22] for Weibull distribution, Wu and Chang [26] for
exponential distribution. Under the Progressive type-II censoring with random removals, Wu and Chang [27] and Yuen
and Tse [28] developed the estimation problem for the Pareto distribution and Weibull distribution respectively, when the
number of units removed at each failure time has a discrete uniform distribution, the expected time of this censoring plan
is discussed and compared numerically.

In this paper, we have proposed Bayes estimators for the two parameter EE based on Progressive type-II censoring
with Binomial removals. Bayes estimators are obtained under SELF and GELF. Rest of the paper is organized as follows:
Section 2, provides the likelihood function. In section 3, MLE and Bayes estimators have been obtained. MCMC method
is used to compute Bayes estimates ofα andλ . The comparison of MLEs and corresponding Bayes estimatorsare given
in section 4. Comparisons are based on simulation studies ofrisk (average loss over sample space) of the estimators.
Section 5, illustrate an example by using the real data set. Finally, conclusions are presented in the last section.

2 Likelihood Function

Let (X1,R1),(X2,R2),(X3,R3), · · · ,(Xm,Rm), denote a Progressive type-II censored sample with Binomial removals,
whereX1 < X2 < X3, · · · ,Xm. With pre-determined number of removals, sayR1 = r1,R2 = r2,R3 = r3, · · · ,Rm = rm, the
conditional likelihood function can be written as, Cohen [7]

L(α;λ ;x|R = r) = c∗
m

∏
i=1

f (xi) [S (xi)]
ri , (5)

c© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett.1, No. 3, 75-86 (2014) /www.naturalspublishing.com/Journals.asp 77

wherec∗ = n(n− r1 − 1)(n− r1 − r2 − 2)(n− r1 − r2 − r3 − 3) · · · (n− r1 − r2 − r3, · · · ,rm −m+ 1), and 0≤ ri ≤
(n−m− r1− r2− r3 · · ·ri−1), for i = 1,2,3. . . ,m−1. Substituting(1) and(3) into (5), we get

L(α,λ ;x|R = r) = c∗
m

∏
i=1

αλ (1+λ xi)
α−1 [exp[1− (1+λ xi)

α ]]ri+1 (6)

Suppose that an individual unit being removed from the test at the ith failure, i = 1,2, · · · (m− 1) is independent of
the others but with the same probabilityp. That is no.Ri of the unit removed atith failure i = 1,2, · · ·(m−1) follows a
Binomial distribution with parameters

(

n−m−∑i−1
l=1 rl , p

)

therefore,

P(R1 = r1; p) =

(

n−m
r1

)

pr1(1− p)n−m−r1, (7)

and fori = 2,3, · · · ,m−1,

P(R; p) = P(Ri = ri|Ri−1 = ri−1, · · ·R1 = r1)

=

(

n−m−∑i−1
l=0 rl

ri

)

pri(1− p)n−m−∑i−1
l=0 rl .

(8)

Now, we further assume thatRi is independent ofXi for all i. Then using above equations, we can write the full likelihood
function as in the following form

L(α,λ , p;x,r) = AL1 (α,λ )L2 (p) , (9)

where

L1(α;λ ) =
m

∏
i=1

αλ (1+λ xi)
α−1 [exp[1− (1+λ xi)

α ]]ri+1 , (10)

L2 (p) = p∑m−1
i=1 ri (1− p)(m−1)(n−m)−∑m−1

i=1 (m−i)ri . (11)

andA =
c∗(n−m)!

(n−m−∑i−1
l=1 ri)! ∏m−1

i=1 ri!
, does not depend on the parametersα,λ andp.

3 Classical and Bayesian Estimation of Parameters

3.1 Maximum Likelihood Estimation

The MLE ofα andλ are the simultaneous solution of following normal equations

m
α
+

m

∑
i=1

ln(1+λ xi)−
m

∑
i=1

(1+ ri)(1+λ xi)
α ln(1+λ xi) = 0 (12)

and

m
λ
+(α −1)

m

∑
i=1

xi

1+λ xi
−α

m

∑
i=1

xi(1+ ri)(1+λ xi)
α−1 = 0. (13)

It may be noted that(12) and(13) can not be solved simultaneously to provide a nice closed form for the estimators.
Therefore, we use fixed point iteration method for solving these equations. For details about the proposed method
readers may refer Jain et al. [16] and Rao [21].
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3.2 Bayes procedure

Since the parametersα andλ both are unknown, a natural choice for the prior distributions ofα andλ are independent
gamma distributions as the following forms(14) and(15).

g1 (α) =
b1

a1e−b1α αa1−1

Γ a1
; 0< α < ∞, b1 > 0, a1 > 0 (14)

g1(λ ) =
b2

a2e−b2λ λ a2−1

Γ a2
; 0< λ < ∞, b2 > 0, a2 > 0 (15)

wherea1,b1, anda2,b2, are chosen to reflect prior knowledge aboutα andλ . It may be noted that, the gamma priorg1 (α)
andg2 (λ ) are chosen instead of the exponential prior ofα andλ were used by Nassar and Eissa [19], Jung et al. [11] and
Singh et al. [9] because the gamma prior is wealthy enough to cover the priorbelief of the experimenter. Thus the joint
prior pdf ofα andλ is

g(α,λ ) = g1(α)g2 (λ ) ; α > 0, λ > 0 (16)

Combining the priors given by(14) and(15) with likelihood given by(9), we can easily obtain joint posterior pdf of
(α,λ ) asπ (α,λ |x,r) = J1

J0
where

J1 = αm+a1−1λ m+a2−1e−b1α e−b2λ

{

m

∏
i=1

(1+λxi)
α−1 [exp[1− (1+λxi)

α ]]ri+1

}

, (17)

andJ0 =
∫∞
0
∫ ∞
0 J1dαdλ . Hence, the respective marginal posterior pdfs ofα andλ are given by

π1(α|x,r) =
∫ ∞

0

J1

J0
dλ , (18)

and

π2(λ |x,r) =
∫ ∞

0

J1

J0
dα. (19)

Usually the Bayes estimators are obtained under SELF

l1(φ , φ̂) =∈1
(

φ − φ̂
)2

; ∈1> 0 (20)

Whereφ̂ is the estimate of the parameterφ and the Bayes estimator̂φS of φ comes out to beEφ [φ ], whereEφ denotes the posterior
expectation. However, this loss function is symmetric lossfunction and can only be justified, if over estimation and under estimation
of equal magnitude are of equal seriousness. A number of asymmetric loss functions are also available in statistical literature. Let us
consider the GELF, proposed by Calabria and Pulcini [5], defined as follows :

l2(φ , φ̂ ) =∈2

(

(

φ̂
φ

)δ
−δ ln

(

φ̂
φ

)

−1

)

; ∈2> 0 (21)

The constantδ , involved in(21), is its shape parameter. It reflects departure from symmetry. Whenδ > 0, it considers over estimation
(i.e., positive error) to be more serious than under estimation (i.e., negative error) and converse forδ < 0. The Bayes estimator̂φE of φ
under GELF is given by,

φ̂E =
[

Eφ

(

φ−δ
)](− 1

δ )
(22)

provided the posterior expectation exits. It may be noted here that forδ = −1, the Bayes estimator under loss(21) coincides with the
Bayes estimator under SELFl1. Expressions for the Bayes estimatorsα̂E andλ̂E for α andλ respectively under GELF can be given as

α̂E =

[

∫ ∞

0
α−δ π1 (α|x,r)dα

](− 1
δ )

, (23)

and

λ̂E =

[

∫ ∞

0
λ−δ π1 (λ |x,r)dλ

](− 1
δ )

, (24)
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It is to mention here that from equation(23) and (24), the Bayes estimatorŝαE and λ̂E are not reducible in nice closed form.
Therefore, we use the numerical techniques for obtaining the estimates. We propose to use the MCMC method for obtaining the Bayes
estimates of the parameters. In MCMC technique, Gibbs sampler and Metropolis-Hastings algorithm to generate samples from
posterior distributions and compute the Bayes estimates. The Gibbs sampler is best applied on problems where the marginal
distributions of the parameters of interest are difficult tocalculate, but the conditional distributions of each parameter given all the
other parameters and data have nice forms. If conditional distributions of the parameters have standard forms, then they can be
simulated easily. But generating samples from full conditionals corresponding to joint posterior is not easily manageable, therefore we
consider mixing of Metropolis-Hastings for those full conditional in the hybrid sampling i.e., Metropolis step is usedto extract
samples from some of the full conditional to complete a cyclein Gibbs chain. For more details about this method, see Chib and
Greenberg [24], Gelfand and Smith [23] and Gamerman and Lopes[25]. Thus utilizing the concept of Gibbs sampling procedure as
mentioned above, generate sample from the posterior density function under the assumption that parameterα andλ has independent
gamma density function with hyper parametersa1,b1, and a2,b2, respectively. To corporate this technique we consider full
conditional posterior densities ofα andλ ,

π∗
1(α|λ ,x,r) ∝ αm+a1−1e−b1α

{

m

∏
i=1

(1+λxi)
α [exp[1− (1+λxi)

α ]]ri+1

}

(25)

and

π∗
2(λ |α,x,r) ∝ λ m+a2−1e−b2λ

{

m

∏
i=1

(1+λxi)
−1 [exp[1− (1+λxi)

α ]]ri+1

}

(26)

respectively. The Gibbs algorithm consist the following steps

I. Set the initial guess ofα andλ sayα0 andλ0
II. Set i = 1

III. Generateαi from π∗
1(α|λi−1,x,r) andλi from π∗

2(λ |αi,x,r)
IV. Repeat steps II-III, N times
V. Obtain the Bayes estimates ofα andλ under GELF as

α̂E =
[

E(α−δ |data)
]− 1

δ
=
[

1
N−N0

∑N
i=N0+1 α−δ

i

]− 1
δ

and

λ̂E =
[

E(λ−δ |data)
]− 1

δ
=
[

1
N−N0

∑N
i=N0+1 λ−δ

i

]− 1
δ
.

Where,(N0 ≈ 5000) is the burn-in-period of Markov Chain. Substitutingδ equal to -1 in step V, we get Bayes estimates ofα and
λ under SELF.

VI. To compute the HPD interval ofα andλ , order the MCMC sample ofα andλ (sayα1,α2,α3, · · · ,αN asα[1],α[2],α[3], · · · ,α[N])
and (λ1,λ2,λ3, · · · ,λN as λ[1],λ[2],λ[3], · · · ,λ[N]). Then construct all the 100(1-ψ)% credible intervals ofα and λ say
((α[1],α[N(1−ψ)+1]), · · · ,(α[Nψ ],α[N])) and ((λ[1],λ[N(1−ψ)+1]), · · · ,
(λ[Nψ ],λ[N])) respectively. Here[x] denotes the largest integer less than or equal tox. Then the HPD interval ofα andλ are that
interval which has the shortest length.

VII. Using the asymptotic normality property of MLEs, we canconstruct approximate 100(1-ψ)% confidence intervals forα andλ as

α̂ ± zψ/2(
√

ˆvar(α̂)) andλ̂ ± zψ/2(

√

ˆvar(λ̂ )) Wherezψ/2 is the 100(1−ψ/2)% upper percentile of standard normal variate.

4 Simulation Study

The estimatorŝαM and λ̂M denote the MLEs of the parametersα and λ respectively, whileα̂S and λ̂S are corresponding Bayes
estimators under SELF and̂αE andλ̂E are the corresponding Bayes estimators under GELF. We compare the estimators obtained under
GELF with corresponding Bayes estimators under SELF and MLEs. The comparisons are based on the simulated risks (averageloss
over sample space) under GELF and SELF both. Here, ((αLc αU c ), (λLc λU c )) and ((αLh αUh), (λLh λUh)) represent 100(1−ψ)% CI
and HPD intervals ofα andλ respectively. It may be mentioned here that the exact expressions for the risks can not be obtained as
estimators are not found in nice closed form. Therefore, therisks of the estimators are estimated on the basis of Monte-Carlo simulation
study of 5000 samples. It may be noted that the risks of the estimators will depend on values ofn,m, p,α,λ andδ . Also, the choice of
hyper parameterα andλ can be taken in such a way that if we consider any two independent informations as prior mean and variance of
α andλ are(µ1 =

a1
b1
,σ1 =

a1
b2

1
) and(µ2 =

a2
b2
,σ2 =

a2
b2

2
) respectively, whereasµ1 andµ2 are considered as true values of the parameters

α andλ for different confidence in terms of smaller and larger variances. In order to consider variation in the values of these, we have
obtained the simulated risks for effective samplesm = 15,18,21 and 27,α = 2 = µ1(say, prior mean ofα), σ1 = 1,10 (say, prior
variance ofα) andδ =±4. Similarly, these variation is apply on the scale parameter λ = 3= µ2(say, prior mean ofλ ), σ2 = 1,10 (say,
prior variance ofλ ) andδ = ±4. Figure1 & 2 shows the risks of an estimators ofα andλ for different values ofδ under GELF and
Figure 3−6 shows the risk of estimators ofα andλ for variation of the effective sample sizem, where the other rest of the parameters
are fixed, which is mention under the Figures. Table1 & 2 represent the CI, HPD intervals and percentage of coverage probability in all
considered situation. It is to be mention here that considered the value of hyper parameters such as prior mean is taken asguess value
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Fig. 1: Risks of Estimators ofα andλ under GELF for different values ofδ .

Table 1: Under smaller prior varianceσ1 = 1 andσ2 = 1 the 95% CI, HPD intervals and % of coverage probability for different samples
m for fixed n = 30,α = 2,λ = 3,a1 = 4,a2 = 9,b1 = 2 andb2 = 3.

m α λ
αLc αU c αLh αUh % cov.prob λLc λU c λLh λUh %cov.prob

15 0.5321 8.1728 1.4077 2.7687 93.9 0.7668 11.9473 1.8208 3.9305 93.6
18 0.6427 7.6259 1.4649 2.7355 94.2 1.5638 11.2735 1.8881 3.9000 93.6
21 0.6409 7.0113 1.4984 2.6761 95 1.5735 10.7623 1.9602 3.8880 94.1
27 1.0324 6.4232 1.5726 2.6427 96.7 2.0115 9.6552 2.0195 3.7595 97.4

of the parametersα andλ , when prior variance is small and large respectively. From Table1 & 2, it is observed that HPD intervals are
shorter length than CI and length of the intervals decreasesas increment of the effective sample sizem and also observed that, there is
increment in coverage probability of CI and HPD.

5 Real data Analysis

For real data illustration, we have taken the following datafrom Linhart and Zucchini [12] which shows failure times of the air
conditioning system of an airplane: 23, 261, 87, 7, 120, 14, 62, 47, 225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14,11, 16, 90,
1, 16, 52, 95. We have obtained Kolmogrov-Smirnov (K-S) statistics, Akaike’s information criterion (AIC) and Bayesianinformation
criterion (BIC) for EE, Weibull, gamma and exponentiated exponential distributions for given data set and the values are summarized
in Table 3. Considered criterion, we observed that EE distribution provide better fit than the other three distributions. Hence, EE
model can be considered as an alternative to all three models. Therefore, we use this data to illustrate the our propose procedures.
For this a Progressive type-II censoring with Binomial removals are generated from the given data set under various schemes, which
are summarized in Table4. We have obtained the MLEs, Bayes estimates (using non informative prior), 95% CI and HPD intervals
for the parametersα andλ respectively under SELF and GELF forδ = ±4 and value of the hyper parametersα andλ are taken as
a1 = 0.00001,b1 = 0.0001 anda2 = 0.00001,b2 = 0.0001 respectively, which are summerized in Table6 and Table7. Table5, shows
the MLEs and Bayes estimators ofα and λ under SELF, GELF and 95% CI/HPD intervals based on complete data set. On every
censored sample schemes the length of HPD intervals are always less than CI.
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Fig. 2: Risks of Estimators ofα andλ under GELF for different values ofδ .

Fig. 3: Risks of Estimators ofα under GELF for different values ofm.

Table 2: Under larger prior varianceσ1 = 10 andσ2 = 10 the 95% CI, HPD intervals and % of coverage probability fordifferent
samplesm for fixed n = 30,α = 2,λ = 3,a1 = 0.4,a2 = 0.9,b1 = 0.2 andb2 = 0.3.

m α λ
αLc αU c αLh αUh % cov.prob λLc λU c λLh λUh %cov.prob

15 0 8.0839 1.3520 2.9879 92.3 0 12.1325 1.6044 4.1632 93.2
18 0 7.6110 1.4325 2.9406 94.3 0 11.3435 1.6920 4.0549 93.9
21 0 7.1227 1.4868 2.8800 94.9 0 10.5829 1.7599 3.9473 95
27 6.09E-05 6.5543 1.5714 2.8129 96.2 0 9.6984 1.8692 3.826297.1
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Fig. 4: Risks of Estimators ofα under SELF for different values ofm.

Fig. 5: Risks of Estimators ofλ under GELF for different values ofm.

Table 3: Goodness of fit for various data

exponentiated exponential Weibull gamma EE
Log-likelihood -152.2013 -151.937 -152.943 -151.5815
K. S. statistics 0.29585 0.15390 0.17186 0.13187

AIC 308.4026 307.8740 309.8859 307.1630
BIC 311.2050 310.6764 312.6883 309.9654
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Table 4: Failure time vector Y =(y2, ...,y30) under different PT-II CBR censoring schemesS j(n : m)

Scheme i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
S5(30 : 27) Ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

yi 1 3 5 7 11 11 11 12 14 14 14 16 16 20 21 23 42 47
19 20 21 22 23 24 25 26 27
0 1 0 0 1 0 1 0 0
52 62 71 87 90 120 120 246 261

S4(30 : 24) Ri 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
yi 1 3 7 11 11 11 12 14 14 16 16 20 21 23 42 47 52 71
2 0 0 1 0 0
71 95 120 120 246 261

S3(30 : 21) Ri 0 1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 2 0
yi 1 3 7 11 11 11 12 14 14 16 20 21 42 47 52 62 71 90
2 1 0

95 225 261

S2(30 : 18) Ri 0 1 0 1 0 0 1 0 0 0 0 0 2 2 2 2 1 0
yi 1 3 7 11 11 12 14 14 16 16 20 21 23 52 71 95 225 261

S1(30 : 15) Ri 0 0 0 0 0 0 0 0 0 0 2 0 6 7 0
yi 1 3 5 7 11 11 11 12 14 14 14 20 21 71 261

Table 5: Bayes and ML estimates based on real data set for n = 30; p = 0.5.

Parameter MLE Bayes Estimates(MCMC) Inteval Estimates
SELF GELF 95 CI 95 HPD

δ = 4 δ =−4 Lc Uc Lh Uh

α 0.59854 0.59732 0.59029 0.60147 0.23078 0.96631 0.51791 0.67731
λ 0.04339 0.04286 0.04060 0.04413 0.00000 0.09911 0.03133 0.05492

Table 6: Bayes and ML estimates, CI and HPD credible intervals forα with fixed n = 30 and p = 0.5 under PT-II CBR.

Scheme MLE Bayes Estimates(MCMC) Interval Estimates
SELF GELF 95% CI 95% HPD

δ = 4 δ =−4 αLc αU c αLh αLh

S1(30 : 15) 0.309636 0.308854 0.301217 0.313206 0.047172 0.572101 0.247360 0.365271
S2(30 : 18) 0.369187 0.368289 0.361281 0.372343 0.092626 0.445748 0.306766 0.411130
S3(30 : 21) 0.451995 0.450888 0.442590 0.455687 0.114703 0.460988 0.384811 0.459988
S4(30 : 24) 0.562338 0.561553 0.551595 0.567371 0.240013 0.571553 0.520692 0.567553
S5(30 : 27) 0.528935 0.522843 0.515776 0.526962 0.289157 0.578935 0.550344 0.579776

Table 7: Bayes and ML estimates, CI and HPD credible intervals forλ with fixed n = 30 and p = 0.5 under PT-II CBR.

Scheme MLE Bayes Estimates(MCMC) Interval Estimates
SELF GELF 95% CI 95% HPD

δ = 4 δ =−4 λLc λU c λLh αLh

S1(30 : 15) 0.095069 0.092577 0.082717 0.097497 0.000000 0.253197 0.057616 0.127248
S2(30 : 18) 0.064836 0.063485 0.057888 0.066383 0.000000 0.164890 0.041442 0.085406
S3(30 : 21) 0.047855 0.046958 0.043210 0.048955 0.000000 0.120469 0.030740 0.062327
S4(30 : 24) 0.040020 0.039330 0.036510 0.040873 0.000000 0.099043 0.026832 0.051844
S5(30 : 27) 0.051559 0.046062 0.042827 0.047844 0.000000 0.088054 0.036083 0.060970
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Fig. 6: Risks of Estimators ofλ under SELF for different values ofm.

Fig. 7: Probability Plot for real data set example.

6 Conclusion

After an extensive study of the results of simulation, we mayconclude that in most of the cases, under both losses, our proposed
estimatorα̂E and λ̂E perform better than all the considered competitive estimators of α and λ respectively forδ > 0 (when over
estimation is more serious than under estimation). On the other hand forδ < 0 (when under estimation is more serious than over
estimation)α̂S and λ̂E have minimum risk than all the competitive estimators ofα andλ . Therefore, the proposed estimatorλ̂E is
recommended for both losses, if under estimation is more serious than over estimation vice-versa.
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