
Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Decision Support System for Zero-day Attack Response

Huy Kang Kim1, Soo-Kyun Kim2 and Seok-Hun Kim3∗∗∗∗

1
Graduate School of Information Security, Korea University, Republic of Korea (First Author)

Email Address:cenda@korea.ac.kr
2
Department of Game Engineering, Pai Chai University, Republic of Korea

Email Address:kimsk@pcu.ac.kr
3Division of Computer Engineering, Mokwon University, Republic of Korea (Corresponding Author)
Email Address:shkim@mokwon.ac.kr

Received: Received May 02, 2011; Revised July 25, 2011; Accepted September 12, 2011
Published online: 1 January 2012

Abstract: Regardless of the existence of the various information security safeguards, many
companies remain vulnerable to the unknown attack, which is known as the zero-day attack. In this
study, we develop the decision support system (DSS) using case-based reasoning (CBR) for zero-day
attack response. Also, our proposed system divides the unknown attack into atomic attacks for zero-
day attack detection. Then, this proposed system analyzes the similarity between the new zero-day
attack pattern and the known attack patterns. Finally, it suggests the most similar cases with applying
similarity functions and CBR. The effectiveness of our system is further shown in the empirical test.

Keywords: zero-day attack, attack similarity, case-based reasoning, decision support system.

1 Introduction

∗

Corresponding Author: SeokHun Kim, shkim@mokwon.ac.kr

The unknown attack so called zero-day attack is
a buzzword of information security area. It is
known that zillions of the new attack patterns are
produced every year. The problem associated with
the zero-day attack is that attack patterns cannot be
easily detected with a signature-based intrusion
detection system (IDS), because the new attacks’
countermeasures and attack signatures are not
readily known. Hence, it is very difficult for
companies to respond to every new attack and
variations of the existing known attacks.

To overcome the limitation of the current IDS
and to protect assets from the zero-day attacks, we
develop the decision support system (DSS) using
three methodologies - similarity functions, case-
based reasoning (CBR) and atomic attack analysis.

To find the most similar patterns from
comparing the new attack’s signature in packet
payloads with that of the known attacks, our DSS

adopts text mining and string search algorithms of
information retrieval and text mining areas.

In order to develop more customized response
strategy for a company, additional information such
as attacker’s IP address, target system’s information
and target application are required. For this, CBR is
conducted. CBR is the process of solving new
problems based on the solutions of the similar past
problems. CBR can be easily implemented to the
real world since most companies have the known
attack signature database and they manage the
previous incident case records. CBR is very
effective to response the zero-day attack because
the series of hackings have commonness. The attack
targets are mostly predetermined and have
commonness with the previous attacks even though
conducted attack techniques are changed. Usually,
the primary attack targets have valuable information
(worth of hacking) or have severe vulnerabilities
(ease of hacking). Thus, target system and exploited

Applied Mathematics & Information Sciences
 An International Journal

 @ 2012 NSP
 Natural Sciences Publishing Cor.

 Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

222

applications will not be changed unless the
configuration of the existing systems is completely
changed or the new valuable server systems which
include sensitive data are changed. Hence, if the
attack history is well recorded in the case-base, we
can estimate the most similar prior attack cases.
When the symptom for the zero-day attack is
detected, it will be agile response if security officers
can respond to the attack based on the information
of the most similar case. Actually, many security
advisories suggest similar workarounds where the
attack type is similar with the known prior case.

Hence, if new attacks are detected and the
attacks’ target application are attacked by the
previous similar case, then, known workaround for
the prior cases are still valid for reacting to the new
attacks. If there is attack signature database and
case-base of the previous incident, companies can
find the most similar attack pattern from the
signature database. Then, security officers can
search the case related to the same attack pattern
and finally they can decide how-to-respond for the
new attack based on the past similar cases.

The concept of atomic vulnerability and atomic
attack is that any attack can be divided into single or
multiple atomic attacks. As the same, vulnerability
can be divided into single or multiple atomic
vulnerabilities. These atomic vulnerabilities are
exploited by the related atomic attacks, and these
atomic attack and its vulnerability relationship can
be 1:1 or 1:N. Hence, we can define attack as a set
of atomic vulnerabilities, which are applied to
compromise a certain system with exploiting single
vulnerability or multiple vulnerabilities. If the
symptom for the zero-day attack is detected, then
we divide the unknown attack into several atomic
attacks and search for a similar attack case to

increase search ability. Even though the IDS does
not know all of the atomic attack patterns, if IDS
knows some of the atomic attacks then it can detect
part of the zero-day attack.

With these mechanisms, we also propose zero-
day attack response procedures in this paper.
Finally, we estimate our proposed DSS’s
performance.

2 Literature Review
2.1 Attack and vulnerability

Attacks and vulnerabilities have been studied by
many researchers. Studies on attacks and
vulnerabilities can be classified into three
approaches. The first approach is the state-transition
analysis. The state-transition analysis depicts
attacks with a state-transition diagram, which is a
set of goals and transitions. Any event that triggers
an attack state is considered as an intrusion. State-
transition analysis employs the rule-based analysis
of the audit trails of multi-user computer systems.
In state-transition analysis, an intrusion is identified
as a sequence of state changes that lead the
computer system from some initial states to a target
compromised state. NetSTAT uses state transition
diagrams to describe network attacks to support
network intrusion analysis [4]. The second approach
is based on the probabilistic learning and various
machine learning techniques. It can be considered
as a variation of the state-transition analysis.
Table.1 shows approaches with the probabilistic
model and Bayesian network. The third approach is
based on simulation methodology. This approach
tries to formalize attack events discretely. Several
studies apply DEVS (Discrete Event System
Specification) formalism.

Algorithm Application and related paper

modeling attack transition with a probabilistic model
Applied to intrusion detection by examining intrusions manifested as anomalies in

UNIX system call traces[5]

employing Hidden Markov Model as the finite state machine
Applied to intrusion detection by examining intrusions manifested as anomalies in
UNIX command execution log[6]

constructing a Bayesian network for reasoning in the domain
of system call execution

Applied to intrusion detection by examining intrusions manifested as anomalies in
UNIX system call traces[7]

Table.1 Approaches with the probabilistic model and Bayesian network

Kim et al. [8] introduced the concept of VX

(vulnerability expression), CV (compound
Vulnerability) and AV (Atomic Vulnerability). Kim
et al. assumed that an attack is composed of a
sequence of actions that cause state transition,
where each action incurs vulnerability that can be
exploited. They call each action an atomic
vulnerability, which is an undividable cause-unit of

cause-effect model. An example is shown as
follows.

Atomic Vulnerability: AV = {Iav, Qav, δav, Type}
Where,
Iav = {Iav1, Iav2, …, Iavn}, external input of AV
Qav = Q(initial state) ∪ Q(final state), state set of
AV

δav : Iav × Q(initial state) → Q(final state), AV’s

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

223

state transition
Type : {Fact, Deterministic, Probabilistic}, type of
AV

Even though the above three approaches employ

different techniques and tools, there exist
commonalities.

An attack or attacks can be decomposed into
multiple states, beginning with an initial state (start
of attack) and ending with the final state (success of
attack – which means the system has been
compromised finally). When a state transition
occurs, some symptoms appear as the result of the
attack. By observing these symptoms, we can
estimate the probability that the state can be
transited to the next state; it can be estimated with
stochastic process or Hidden Markov Model or
Bayesian rule.
Still, the three approaches differ in understanding
the meaning of state transition. In the third approach,
Kim et al. made a hypothesis that a state transition
is created by an attack. They assumed that an attack
can be decomposed into the atomic level that can
cause state transitions. Therefore, an attack can be
expressed as the compound of the atomic attacks.
This hypothesis is based on the concept developed
by Bishop [9]. The other two approaches, which are
the first and second approach, did not definitely
state that only an attack can change the states. They
utilize a model that explains the normal trends and
abnormal trends of system calls when attacks occur.
In these approaches, the state is just one of the
waypoints between ‘beginning of attack’ – where
the system is still normal – and ‘end of attack’ –
where the system is compromised. Systems can be
compromised by a single attack or multiple attacks.
However, the latter approaches do not care about
the number of attacks or the relationship between
attacks that can lead to state transitions. This is
because these approaches are developed from based
on observation of the real world’s audit trail.
However, since not every state transition that
invokes system calls can be logged, they can miss
some changes in state transition.

In fact, some exploitation can be caused by the
combination of multiple attacks, while some are
caused by a single attack. The combination of
multiple attacks can be both sequential and parallel
forms. For example, ‘GoodTech ssh remote exploit
attack’ [10] can be done as the following procedure.
① In initial state, server runs a vulnerable

version of sshd.
① A hacker begins to do network port

scanning at a remote site.

① A hacker attempts to execute ‘telnet target
server IP target_port’ for grabbing the
version of ssh daemon.

① A hacker sends strings so that the target
server can experience buffer overflow on
the ssh daemon.

① A hacker changes ‘eip address’ and ‘offset’
for loading a command.

① Finally, a hacker sends a malicious
command to the server after the daemon’s
memory has been overflowed.

In the above example, among the six
procedures, the second procedure can be skipped
and the third procedure can be skipped by a hacker.
In the third procedure, a hacker just can send strings
to make overflow the sshd brute-forcedly without
confirmation of versions. So, some hackers skip
some of the procedures and directly execute the
fourth procedure. However, when hackers fail to
overflow the sshd, they need to go back to the
second procedure and then execute the third
procedure to gain the exact version information of
sshd. After that, they execute the fourth procedure
once again with the exact information, which was
acquired in the third procedure. In any case, the
fifth procedure should always be followed by the
fourth procedure.

As we can see the above example, attacks can
be divided into several sub-attacks. These atomic
attacks might have sequential relationships among
them, that is, they have dependency between them.

We developed a new approach that could fully
explain the 6 procedures. We illustrated a new
attack and state transition model as in the Fig.1. Our
model encompasses all the different viewpoints of
researchers including that of Eskin [5], Warrender
et al. [6], Kruegel et al. [7], Kim et al. [8], and
Bishop [9].

The common points are fact that an attack can
be decomposed into atomic attacks, and the fact that
every atomic attack changes the state. However, the
symptom caused by this atomic attack is not always
observable. Therefore, there is possibility that the
attack will not to be detected until the system is
fully compromised. IDS can miss the detection of
every symptom caused by an atomic attack when
the atomic attack does not show remarkable
symptoms. (e.g., definitive signatures on packet
payload and anomalous action on a process leave
logs in the system’s log files.) Moreover, some
poorly designed applications or OS cannot properly
react to every atomic attack because they might not
have adequate functions of audit or defensive

 Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

224

mechanisms. In addition, attackers can modify their
attacks with many evasion techniques described in

the study of Cohen [11]. In these cases, interim state
transition cannot be shown.

Fig.1 Atomic attacks and state transition

Fig.2 Atomic vulnerabilities and relevant atomic attacks

As an attack is divided into atomic attacks,

vulnerability can be divided into sub-vulnerabilities,
that is, atomic vulnerabilities. These atomic
vulnerabilities are exploited by the related atomic
attacks. These relations are illustrated in the Fig.2.
2.2 CAPEC, CWE, and CVE

There are other approaches that are based on
software engineering, CAPEC (Common Attack
Pattern Enumeration and Classification) [12], CWE
(Common Weakness Enumeration) [13], and CVE
(Common Vulnerability Exposure) [14] by MITRE
cooperation. They are the de-facto standards of

expressing vulnerabilities and attacks with unique
identification indexes.

CAPEC is a measurable catalog of attack
patterns along with detail schema and classification
taxonomy. CAPEC categorizes attacks and break
down attacks into an atomic level. Every attack
pattern is divided into undividable attack patterns.
These undividable attack patterns have unique
CAPEC ID. CAPEC shows the full description,
related weakness (CWE) and related known
vulnerabilities (CVE) of undividable attack.

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

225

CWE is a measurable category of software
weaknesses that exist in source code, operational
systems, and other software. This weakness has a
more specific and detail meaning of vulnerability.
Vulnerability can be divided into undividable union
weakness. This undividable weakness has unique
CWE ID. For each undividable weakness, CWE
provides full description about the weakness itself,
the related attack (CAPEC) and the related known
vulnerabilities (CVE). For examples, CWE-306,
which describes ‘No Authentication for critical
function’, can be exploited by CAPEC-62, CAPEC-
36, CAPEC-12 and CAPEC-40.

CVE is a dictionary of publicly known
information security vulnerabilities and exposures.
CVE Identifiers are common identifiers publicly
known for identifying vulnerabilities. Unique CVE
ID is assigned to the each vulnerability. CVE ID
enables data exchange between security products
and provides a baseline index point for evaluating

coverage of tools and services. For the each
vulnerability that has CVE ID, CVE shows the
attack title, attack description and related reference.
Some of the vulnerabilities shown in the CVE list
are atomic vulnerabilities by themselves, while
other vulnerabilities shown in the CVE list are the
combinations of several atomic vulnerabilities.

In conclusion, CAPEC is good for expressing
atomic attacks and their relations. CWE is good for
expressing atomic vulnerabilities. CVE can be
assumed as a set of atomic vulnerabilities.

2.3 Attack graph
Noel et al. [16] introduce the concept of the

attack graph. The attack graph shows the
relationship between sub-attacks, which is in the
form of vertex, and node. Fig.3 shows an example
of an attack graph. The Graph theory is applied for
the expression of sub-attacks and its condition to
transit.

Fig.3 Attack graph example (source: Wang et al. [15])

There are several related studies done by Noel
and colleagues [15-17]. These studies commonly
called as attack graph. The attack graph can be
applied to calculate the optimal hardening cost.
Reike [18] utilized the attack graph to visualize the
enterprise network vulnerabilities.

The attack graph theory adopts the concept that
an attack can be divided into smaller ones and the
exploitation process can be expressed in the series
of state transition.

2.4 Case-based Reasoning
CBR’s overall process is described in the Fig.4.

The process of CBR is very simple and
comprehensible. CBR also doesn’t need prior-
training of data for solving a new problem.

 Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

226

Fig.4 General cycle of a CBR system

Studies that aim at detecting anomalous attacks
with CBR are as follows. Musman et al. [19]
developed SoSMART with applying CBR. It relies
on string match of rule-base to detect suspicious
symptom of attack on the log files. However, not all
attacks make application to generate log events.
Hong et al. [20] proposed the CBR model for
intrusion detection. In their model, CBR and
decision tree C4.5 are used for misuse detection,
and neural networks are used for anomaly detection.
Kim et al. [21] apply CBR to find out similarities
between already known hacking patterns and new
hacking patterns. With the RFM (Recency,
Frequency, Monetary) analysis methodology and
CBR, they develop DSS which can minimize false
alarms and decrease the time to respond to hacking
events.

Similar case retrieval in the CBR process plays
an important role in reasoning. Hence, how to
design the similarity metrics in the case retrieval
process is critical for increasing accuracy. Usually
the k-nearest neighbor (k-NN) method or its
variants are widely used as the retrieval mechanism.
2.5 Similarity and distance metrics

Information retrieval is a research area of
searching for documents, for information within
documents, and for metadata about documents, as
well as that of searching databases. In the middle of
information retrieval process, similarity and
distance metrics are usually used to enrich search
ability. These metrics are also applied to an Internet
search engine application for searching similar
words, sentences, and documents. Also, this string
similarity metric can be applied to search attack
variants by analyzing strings in the attack packets.

Many similarity and distance algorithms have
been developed to support the string search and
calculation of similarity between documents or

sentences. The representative string comparator
algorithms are as follows.

○1 Edit-distance (Levenshtein distance)

The edit-distance between two strings is given
by the minimum number of operations needed to
transform one string into the other, where an
operation is an insertion, deletion, or substitution of
a single character. A generalization of the
Levenshtein distance (Damerau-Levenshtein
distance) allows the transposition of two characters
as an operation. This algorithm is frequently used in
applications that need to determine how similar
words are, such as spelling-check programs. The
edit-distance can be considered as a generalized
version of Hamming distance.

○2 Jaro distance and Jaro-Winkler distance

Jaro-Winkler distance [23] is a variant of the
Jaro distance [22] metric. They are mainly used in
the area of record linkage (duplicate detection). The
higher the Jaro-Winkler distance for two strings is,
the more similar the strings are. The Jaro-Winkler
distance metric is designed and best suited for short
strings such as person names.

○3 Smith-Waterman distance

Smith-Waterman distance [24] is a well-known
algorithm for performing local sequence alignment,
that is, for determining similar regions between two
nucleotide or protein sequences. Instead of looking
at the total sequence, the Smith-Waterman
algorithm compares segments of all possible lengths
and optimizes the similarity measure.

A comparison between metrics is well
summarized in the research of Cohen et al. [25].
Cohen et al. investigate the overall performance of
several string distance metrics, edit-distance-like
functions, token-based distance functions, and
hybrid distance functions.

3 Methodologies
3.1 Similarity metrics between a known attack

and an unknown attack
Considering the atomic attack analysis, the zero-

day attack response procedure can be proposed as
follows.

① When an anomalous symptom happens in
network or server systems, then capture
packets at that time.

② Input the captured packets into IDS. IDS
can determine whether the captured packet
as an attack, which means the known

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

227

atomic attacks are included in the captured
packets.
A. In this case, find the vulnerability that

can be exploited by the found atomic
attacks.

B. Find the assets that have those
vulnerabilities in A.

Then, how can the organization response to the
zero-day attack when a known atomic attack is not
found in procedure 2? Now we need algorithms for
searching similar attack patterns with the patterns in
the captured packets.

As most detecting systems do, when deciding
the similarity between attacks, the first important
factor is considering the strings in the packet
payload. In most cases of variant attacks in the same
attack category and same attack target application,
the attack signature strings have similar patterns.

For example, Klez worm type A and its variant
attack, Klez worm type B, are not much different.
From this viewpoint, Table.2 and Table.3 show the
variant attacks in RPC and NETBIOS SMB
protocol have own attack patterns. We can see that
similar strings repeatedly occurred in attack
signatures in the packets.

Snort ID category Attack title Attack signatures in packet Related CVE Disclosure date

6200 RPC
RPC portmap 390113 udp
request

|00 01 86 A0|)|00 00 00 03|)|00 05 F3
E1|)|00 00 00 00|

2007-3618,2000-0719 2000-08-10

6201 RPC
RPC portmap 390113 udp
procedure 4 attempt

|00 05 F3 E1|)|00 00 00 04|)sn_sub_rqst 2007-3618, 2000-0902 2000-09-07

6202 RPC
RPC portmap 390113 udp
procedure 5 attempt

|00 05 F3 E1|)|00 00 00 05|)sn_sub_rqst 2007-3618, 2000-0988 2000-10-13

Table.2 Attack signature in the snort ruleset: RPC portmapper

Table.3 Attack signature in the snort ruleset: NETBIOS SMB ISystemActivator

Attack signatures in packet Hex stream after data preprocessing

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00|F 00 FF534D422F 05 0E A001000000000000C000000000000046

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00|F 00 FF534D422F 05 0E A001000000000000C000000000000046

|00|)|FF|SMB%)&|00|)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00
00|F

00 FF534D4225 2600 05 0E A001000000000000C000000000000046

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00|F 00 FF534D422F 05 0E A001000000000000C000000000000046

Table.4 Example – original NETBIOS related attack signature and preprocessed signature into HEX codes

For the better search performance, we transform
the attack signatures into series of hex strings, and it
then becomes easier to find the similarity as shown
in Table.4. We can find that there are many
common features by protocol and target
applications. These attack string patterns have
various characteristics – duplicated strings pattern,
repetitive strings pattern, and so on. So, we assume

that there are optimal similarity measure for each
specific protocol and application.

To find this optimal similarity function per
protocol, we designed an experiment. In addition,
we estimate the detection power of zero-day attacks
with those similarity functions. We choose the
widely used similarity and distance metrics for
calculating similarity between attack strings. The

Snort ID category Attack title Attack signatures in packet

1429 NETBIOS SMB
NETBIOS SMB ISystemActivator WriteAndX unicode alter

context attempt

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00

00 00 00 00 00|F

1430 NETBIOS SMB
NETBIOS SMB-DS ISystemActivator WriteAndX alter
context attempt

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00
00 00 00 00 00|F

1431 NETBIOS SMB
NETBIOS SMB-DS ISystemActivator unicode alter context
attempt

|00|)|FF|SMB%)&|00|)|05|)|0E|)|A0 01 00 00 00 00 00 00

C0 00 00 00 00 00 00|F

1432 NETBIOS SMB
NETBIOS SMB-DS ISystemActivator WriteAndX unicode

little endian alter context attempt

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00

00 00 00 00 00|F

 Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

228

following representative functions are used for this
experiment.

① Jaro distance

② Jaro-Winkler distance

③ Edit-distance (also known as Levenshtein
distance)

④ modified Edit-distance (we set the
transposition cost 1 instead of 2)

⑤ Bag distance (also known as approximate
Levenshtein distance) – this distance
measure is proposed by Bartolini et al. [27].

⑥ Smith-Waterman distance
Each function has a special characteristic. Jaro

and Jaro-Winkler distance are fitted to search
duplicated strings, especially in case of short strings.
Edit-distance is a generic algorithm, but in case that
the number of substitution and insertion is
unexpectedly big, this algorithm reports that the two
input strings have low similarity rather than Jaro-
Winkler-kind distance measures. We normalize the
search result as 0 to 1. The meanings of the value
can be implied as Table.5.

similarity value S Between attack pattern A and attack pattern B Meaning

0
“Completely different attack”
Attacks A and B have no relationship.

0<S<1
“similar attack”
At least the workaround can be similar or the same.
So, the countermeasure can be referred the previous cases.

1
Attacks A and B are completely same. So, the
countermeasure of attack A can be applied attack B without
any modifications.

Table.5 Similarity values and their meaning

Now, the zero-day response procedure can be

updated as follows.

① When anomalous symptom occurs in the
network or on server systems, capture
packets at that time.

② Input the captured packets into IDS. IDS
can detect the captured packet as being an
attack, which means the known atomic
attacks are included in the captured packets.
A. In case of this, find the vulnerability

set (CVE) that can be exploited by the
found atomic attacks.

B. find the assets that have those
vulnerabilities in A

③ When a known atomic attack is not found in
procedure2, find the similar attacks based
on the string similarity search. The attack
string in the captured packets and the
strings in the attack signature database (that
is, misuse signatures in the ruleset) are
compared.

④ Find the vulnerability set (CVE) that can be
exploited by the most similar attack set
found in procedure3.

⑤ Find the assets which have those
vulnerabilities set (CVE) in procedure4.

3.2 Case-based reasoning
In section 3.1, we show the way to find out the

most similar attack patterns with various string
similarity metrics. In case that there is no findings
by string similarity search, or in case that the

queried result need to be improved, we need to
search with more specific information which can
affect the search accuracy. So, with adding up more
specific information such as source IP address and
destination IP address and destination port, more
accurate result can be derived. Comparing strings in
the packet level is important but it is micro view. In
a point of macro view, hackers IP address, attack
target’s OS and application information are well-
fitted information for the organizations.

CBR is very powerful methodology when
decision maker need to solve problem from the
information of the domain knowledge. For this, as
like the other CBR applications, it is required to
define a distance measure for case retrieval.
Symbolic data for explaining a case are coded into
vector form for convenience of calculating distance,
and then the distance between cases are measured.
Usually Euclidean distance and cosine distance are
used to calculate distance of two vectors.

When we describe a case, 5W1H (when, who,
where, what, which, how) information are required
intuitively. Considering 5W1H, attack case can be
coded into the following vector form.

Case vector =

(attack date, attackers’ IP, attackers src port, target IP,

target port, target application, target application’s

version, target OS, target OS version, target OS

architecture, attack pattern string)

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

229

� The vector is designed for expression of
these following assumptions.

� The attacks happened in adjacent time line
are similar.

� The attacks from similar IP address range
are similar.

� The attacks which seek to exploit the same
target servers are similar.

� The attacks which seek to exploit the same
OS and same application are similar.

Assuming that there are {Solaris, HP-UX, AIX,
Windows, Linux, SGI} OS. When coding the OS
symbol information into numeric one, it cause an
error to measure distance that if the value is set as
{Solaris = 1, HP-UX = 2, AIX=3, Windows =4,
Linux = 5, SGI = 6}. It is a just a coded value for
distinguishing with other symbol values. If we set
values from 1 to 5 then that cannot explain the
distance between OS. (The value of SGI – the value
of Windows is 2, and the value of SGI – the value
of Solaris is 5. It does not imply that SGI is more
similar with Windows OS rather than Solaris OS.)

For resolving this problem, we limit OS
information only for (Solaris, HP-UX, AIX,
Windows, Linux, SGI) and set the sub-vector form
as follows.

Solaris = (1, 0, 0, 0, 0, 0)
HP-UX = (0, 1, 0, 0, 0, 0)
AIX = (0, 0, 1, 0, 0, 0)
Windows = (0, 0, 0, 1, 0, 0)
Linux = (0, 0, 0, 0, 1, 0)
SGI = (0, 0, 0, 0, 0, 1)

This vector form is quite exact but it cannot be

avoided from the curse of dimensionality when
considering all OS in the world. Hence, we only
consider the top 6 OS at this time. In addition, the
OS version information is highly correlated with the
OS information and OS architecture. Likewise, the
application’s version information is highly

correlated with the application information also.
Finally, the application information can be derived
by port number because the port numbers of the
well-known Internet services are static.

The vector for expressing attack case is
simplified as below. If not we should consider the
vector whose dimension is at least 1024. (The
number of port for well-known Internet services)

Simplified Case vector = (attack date, attackers’ IP,
target IP, target port, target OS, OS architecture, attack
pattern string)
Where,
 target OS = {Solaris, HP-UX, AIX, Windows, Linux,
SGI}

target OS architecture = {x86, non x86}

Suppose the three attack case as follows.
Case 1 is the attack that is from

118.175.151.128, happened at March-3-2008, the
target host’s OS is Solaris 10, architecture is x86,
the target program is bind ver. 9.3, and the target
host’s IP address is 143.248.1.17. At that time, IDS
detected the attack string in the attack packet as
“ABCD09800000000100000000000001000120202
0200261”.

Case 2 is the attack that is from 153.23.4.5,
happened at Feb-8-2006, the target host’s OS is HP-
UX 11i, architecture is PA_RISC(non x86), the
target program is bind ver. 8, and the target host’s
IP address is 143.248.3.9. At that time, IDS
detected the attack string in the attack packet as
“2E2E2F2E2E2F2E2E2F”.

Case 3 is the attack that is from 118.175.151.3,
happened at Dec-12-2007, the target host’s OS is
Solaris 9, architecture is sparc (non x86), the target
program is bind ver. 9, and the target host’s IP
address is 143.248.1.1. At that time, IDS detected
the attack string in the attack packet as
“8000070000000000013F000102”. Then these attack
cases are coded as follows.

Case 1
=(2008-03-03, 118.175.151.128, 143.248.1.177, 53, {Solaris}, {x86},
ABCD098000000001000000000000010001202020200261)
= (2008-03-03, 118.175.151.128, 143.248.1.177, 53, 1, 0, 0, 0, 0, 0, 1, 0,
ABCD098000000001000000000000010001202020200261)

Case 2
=(2006-02-08, 153.23.4.5, 143.248.3.9, 53, {HP-UX}, {non x86}, 2E2E2F2E2E2F2E2E2F)
=(2006-02-08, 153.23.4.5, 143.248.3.9, 53, 0, 1, 0, 0, 0, 0, 0, 1, 2E2E2F2E2E2F2E2E2F)

Case 3
=(2007-12-12, 118.175.151.3, 143.248.1.1, {Solaris}, {non x86}, 8000070000000000013F000102)
=(2007-12-12, 118.175.151.3, 143.248.1.1, 1, 0, 0, 0, 0, 0, 0,1 , 8000070000000000013F000102)

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

The distance between binary values can easily
calculated, but the distance of date , distance of IP
address, distance of port and distance of strings
should be defined here.
The distance of date can be defined as follows.

| 1 2 |
(1, 2)

365 (| | 1)

date date
d date date

topyear bottomyear

−
=

× − +
e.g.

� date1=2008-03-03
� date2=2006-02-08
� date3=2007-12-12

Then topyear = 2008 and bottomyear = 2006
(1, 2) (2008 03 03,2006 02 08)

390
0.356

365 (2008 2006 1)

d date date d∴ = − − − −

= =
× − +

(1, 3) (2008 03 03,2007 12 12)

83
0.076

365 (2008 2006 1)

d date date d∴ = − − − −

= =
× − +

Distance of IP address is defined as follows.

(1, 2)d IPaddress IPaddress
is 0, where the IPaddress1 and IPaddres2 are same.

(e.g. 143.248.1.1, 143.248.1.1)

is 0.25, where the IPaddress1 and IPaddress2 are
matched up to the C Class IP address range (e.g.

143.248.1.1, 143.248.1.8)

is 0.5, where the IPaddress1 and IPaddress2 are

matched up to the B Class IP address range (e.g.

143.248.1.1, 143.248.3.8)

is 0.75, where the IP address1 and IPaddrerss2 are

matched up to the A Class IP address range (e.g.

143.248.1.1, 143.2.3.4)

is 1, where the IPaddress1 and IPaddress2 do not

have any common segment.

Distance of port is defined as follows.

(#1, # 2)d port port
is 0, where the port#1 and port#2 are same. (e.g.
1433, 1433)

is 0.5, where the port#1 and port#2 are highly

correlated, the correlated port lists are as follows.

� (80, 8080) : http , http’s another port
� (80, 443) : http , https
� (8080,443) : http’s another port , https
� (119,563) : nntp, nntps
� (194,994) : irc, ircs
� (1433, 1434) : ms-sql-s, ms-sql-m
� (137, 138): netbios-ns, netbios-dgm
� (137, 139): netbios-ns, netbios-ssn
� (138,139) : netbios-dgm, netbios-ssn

� (161, 162): snmp, snmp-trap
� (143, 220): imap2, imap3
� (21, 22): ssh, telnet
� (67, 68): bootps, bootpc
� (109, 110): pop2, pop3
� (109,995) : pop2, pop3s
� (110,995): pop3, pop3s

is 1, others

The distance between attacks strings are
calculated with the similarity measure described in
section 3.1. Distance of attack strings is defined as
follows.

(1, 2)d s tr in g s tr in g has a value from 0 to 1.

The distance is opposite concept of similarity.
(1, 2) 1 (1, 2)d string string similarity string string∴ = −

Especially,
(1, 2)d str in g s tring

is 1, where the string1 and string2 are different

completely.

is 0, where the string1 and string2 are same.

Finally, the proposed distance between cases is

summarized as follows.
D(Case1, Case2)

=sqrt{
2(1, 2)d date date +

2(attackerIP1,attackerIP2)d

+
2(ta rge tIP 1 ,ta rg e tIP 2)d +

2(p o r t# 1 ,p o r t# 2)d +
2(1, 2)d O S O S +

2(1,)d a rc h i te c tu r e a r c h i te c tu re +
2{1 (1, 2)}s im ila rit y str in g s tr in g− }

Where similarity function is Jaro-Winkler, then

Jaro.winkler(ABCD0980000000010000000000
00010001202020200261, E2E2F2E2E2F2E2E2F)

= 0.436
(1)s im ila r i ty− = 0.564

D(Case1, Case2)

= 0.127 0 0.25 2 2 0.318+ + + + + =2.167
Likewise above,
D(Case1, Case3) =1.481

D(case1, case) ≥ D(case1, case3)
So it says, “Case1 is more similar with Case3

rather than Case2.”
With the proposed Euclidean-like distance, the

similarity or the distance between attack cases are
derived.

This process is automated in our DSS
application shown in section 4. To summarize,
based on the methodologies described in this
section, we propose DSS which works with
following logic shown in the Fig.5.

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Fig.5 proposed Decision Support System’s working procedures

4 Framework and architecture of our DSS
4.1 Proposed zero-day attack response

procedures
Our proposed procedures of zero-day attack are

composed of four phases. Phase 1 is when zero-day
attack is outbreak, and then anomalous symptom is
detected. In Phase 2, security administrators capture
the inbound and outbound packets on the network.
In Phase 3, security administrators can find the most
similar attack and case with similarity and distance
metrics. In the first part of Phase 3, the strings on
the captured packets will be compared with the
known attack signature database. After searching
the most similar attack signature, security
administrators can find the safeguards from the
most similar attack. And then, to acquire the prior
domain knowledge, security administrator can find
the most similar case with similarity and distance

metrics. Searching the most similar attack case by
CBR is performed. After searching the most similar
case, security administrator can find the safeguards
from the most similar case on that company. Phase
4 is to make a decision based on results of Phase 3.

These zero-day attack response procedures are
summarized in the Fig.6. This DSS application is
designed for supporting all methodologies proposed
in section 3. Our DSS application mainly works on
the phase 3 and phase 4. We assume that the
anomalous symptoms can be detected by other
monitoring systems which are deployed previously
in the organizations. (e.g. MRTG, CPU monitoring
system, process monitoring system and log analysis
system). For working these procedures well,
information asset database is required, which
possess the every information asset’s vulnerability
information with CVE ID.

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Fig.6 Proposed zero-day attack response procedures

4.2 Implemented DSS applications

This DSS is composed of the following 3
components as shown in the Fig.7. The first are
databases. DSS has asset inventory database, atomic
vulnerability database, atomic attack database,
atomic safeguard database, case-base database and
attack signature database for similar attack search.
Asset inventory database includes vulnerability
information; this vulnerability information is
routinely updated by Nessus, the most famous
vulnerability scanner program [28]. Second, there is
DSS engine to find affected system. Third, in
presentation layer, the search result will be
displayed to security administrators. The screenshot
of main GUI of our DSS is presented in the Fig.8.
This program is developed with Delphi language,
Python scripting language and MySQL database. It

supports easy update method for the attack
signature update, CWE/CAPEC/CVE database and
information asset database.

Vulnerability scanning results of the
information assets are parsed and saved into
database as shown in Table.6. The gathered IP
address, OS, open port information will be referred
for CBR.

DSS parses the gathers vulnerabilities
information and makes it referable from the
information asset database as Table.7.

It extracts CVE information and then put that
information into vulnerability database periodically.
Especially, for calculating distance and case relation,
the asset database should include IP address, OS
version and running applications’ information as
shown in the Table.7.

Fig.7 Architecture of overall system

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Fig.8 Screenshot of the proposed DSS

IP address
DNS
name

operating system
open

port list
vulnerability

list

related reference
(CVE ID, CAN

ID, nessus id)

risk factor last scan end time

143.248.

1.177
unknown

Sun Solaris 10,

Sun Solaris 9
22/tcp

DNS bind buffer

overflow

CVE : CVE-2005-

1794
BID : 13818

Nessus ID : 18405

Medium /

CVSS Base
Score : 5.1

Tue Jun 24 14:13:20 2008

143.248.
90.220

Apa01

Microsoft
Windows XP

Service Pack 2
3389/tcp

Microsoft
Windows Remote
Desktop Protocol

Server Private Key
Disclosure

Vulnerability

CVE : CVE-2005-
1794

BID : 13818
Nessus ID : 18405

Medium /
CVSS Base
Score : 5.1

Tue Jun 24 14:13:20 2008

Table.6 the parsed data from the vulnerability scanning result

IP
address

Subnet
mask

Gateway
DNS
name

operating
system

Major DB
/application

Asset
Value

Vulnerability
found

143.248.
90.2

255.255.
255.0

143.248.
90.1

Host1
Windows

2003 server

MS-SQL 2000
server
IIS 6.0

$ 3,000
CVE-1999

-0103

143.248.
90.101

255.255.
255.0

143.248.
90.1

Host2
Windows

2000 server

MS-SQL 2005
server

IIS 5.0

$ 4,850
CVE-1999

-0104

Table.7 example data scheme in the information asset database

Fig.9 is a screenshot of the attack signature

database based on snort ruleset. It includes known
attack signatures, attack category, reference CVE
ID and preprocessed hex streams.

CVE, CWE, and CAPEC database are shown in
the Fig.10. CAPEC, CWE database and query tool
is built with parsing CAPEC and CWE dictionary
files. CVE database is built with processing
OSVDB.

Fig.11 shows the main query interface for
searching the most similar attack signature. It
supports query function which can resolve various
search conditions (year, protocol, attack category
and strings similarity function). With this tool, we
can simulate that what function shows better result
in the specific conditions.

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Fig.9 Attack signature database

Fig.10 CAPEC, CWE and CVE database and query tool

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Fig.11 String similarity search result

The Fig.12 is the main GUI of case-database
menu. It is supported to input, update and search
cases. The Fig.13 is the query interface for
searching the most similar case. The distance is
calculated with the method described in the section
3. The example result of similar case search is in the

Fig.14. With CWE, CAPEC and CVE database, our
DSS can simulate the relationship and find the
related CWE, CAPEC and CVE where specific
CWE or CAPEC id is given.

Fig.12 Case-base which includes the attack history

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Fig.13 The query input for the case search

Fig.14 Example screenshot of the case search

5 Experiment Result
5.1 Experiment design

We design experiment to estimate the proposed
DSS’s accuracy based on the following
propositions.
Proposition 1. New attacks (zero-day attacks)

can be estimated with the known old attacks.
The number of vulnerability found is enough

size to ensure the significance. The known attack
data for each year from 1999 are used. The number
of vulnerability data is more than 800 for every

selected year. We gain the attacks’ disclosure date
from the OSVDB, this disclosure date is imported
into our attack signature database.

The attacks occurred in the year Y is set as zero-
day attack test data. The base data are the attacks
occurred in 1999 to Y-1.

That is attacks occurred in Y year is the zero-
day attacks in the past years (Y-1, Y-2, …), hence
the estimation power can be gained with comparing
attack data of specific year into the past years. In
case of this, if the similarity search metrics find the
attacks in a same attack category and same
application, then we regard the attack could be
estimated in the past years.
Proposition 2. Each string similarity function has

its own strength to comparing string data. We

will find which function is suitable for some

selected protocols through this experiment.
When the similarity metrics find out the known

attacks for given unknown attack, the scoring is
given as following rules.

Result type Assessment condition for success/failure

Success

The similarity metrics should find the most similar pattern within a ‘same attack category’ and ‘same target
application’ , where the similarity value > 0.7

Or
The similar patterns in top 3 similarity value by the similarity metrics should be within a ‘same attack category’ and
‘same target application’ , when the best similarity value < 0.7

Failure There are no matches which satisfy the success condition

Table.8 Assessment condition for performance estimation

In case of success, mark the similarity value at

that time as a measure. In case of failure, mark the
similarity value as zero.

We have experimented some representative
applications and protocols – – HTTP, ORACLE,
HTTP, VOIP, MSSQL, SMTP, FTP, TELNET and
SNMP.

5.2 Experimental results
Every result is summarized as the following

tables. The mark ★ means that these similarity

measures estimate the exact protocol and related

application. The score without ★ means it only

estimate the protocol or attack category only. The
number (between 0 to 1) means similarity.

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

237

This result shown in the Table.9 is gained as
follows.

① Set zero-day attack as ‘Oracle database’
related attack signatures happened in 2007.

② Input attack string in the snort vulnerability
ID patterns of the past. (in this case, 1999
to 2006)

③ Score the result after calculation is done by
similarity metrics.

Here is the estimated result by various similarity
metrics.

Jaro-style metrics (Jaro and Jaro-Winkler) show
the better performance rather than Levenshtein-style
metrics. In this case, Jaro-Winkler is the winner.

Snort

vul ID
Jaro JaroWinkler Editdist Mod editdist Bagdist swdist

7867 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1

8528 0.714 0.714 0.219 0.219 0.286 0.25

8555 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1

8749 ★0.781 ★ 0.869 ★0.344 ★0.344 ★ 0.344 ★ 0.512

9110 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1

8545 0.658 0.658 0.448 0.448 0.655 0.279

9111 0.596 0.633 0.217 0.217 0.304 0.12

8502 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1

8544 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1

Table.9 estimation result: putting Oracle attack patterns of 2007 into IDS with 1999~2006 signatures

Table.10 shows the estimated result when the
zero-day attacks are mimicked with attacks on
HTTP protocol which is exposed in 2008.

Jaro-style metrics (Jaro and Jaro-Winkler) show
the better performance rather than Levenshtein-style

metrics. In this case, Jaro-Winkler is the winner.
But other metrics show the better performance than
ORACLE related attack.

Snort

vul ID
Jaro JaroWinkler Editdist Mod editdist Bagdist swdist

8563-1 0.75 0.775 0.625 0.625 0.625 0.375

8564-1 0.75 0.85 0.5 0.5 0.75 0.5

7864 ★0.718 ★ 0.831 0.5 0.5 0.812 ★0.306

9114 ★ 0.636 ★0.709 ★0.352 ★0.352 ★ 0.574 ★ 0.122

8562 ★0.974 ★ 0.985 ★0.923 ★0.923 ★0.923 ★ 0.864

8573 ★ 0.819 ★ 0.892 ★ 0.625 ★ 0.625 ★ 0.625 ★ 0.714

8563,8564 0.952 0.971 0.857 0.857 0.857 0.923

9112 0.579 0.621 0.313 0.313 0.313 0.167

8565 0.704 0.822 0.132 0.132 0.170 0.203

8569 ★ 0.556 ★ 0.556 ★ 0.241 ★ 0.241 ★ 0.414 ★ 0.089

8539 0.722 0.806 0.533 0.533 0.767 0.367

9113 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1

Table.10 estimation result: putting HTTP attack patterns of 2008 into IDS with 1999~2007 signatures

Appl. Math. Inf. Sci. 6 No. 1S pp. 221S-241S (2012)

Snort vul

ID
Jaro JaroWinkler Editdist

Mod

editdist
Bagdist Swdist

6337 ★1 ★1 ★1 ★1 ★1 ★1

6338 ★1 ★1 ★1 ★1 ★1 ★1

6339 ★1 ★1 ★1 ★1 ★1 ★1

6340 ★1 ★1 ★1 ★1 ★1 ★1

6341 ★1 ★1 ★1 ★1 ★1 ★1

6342 ★1 ★1 ★1 ★1 ★1 ★1

6343 ★0.775 ★0.865 ★0.649 ★0.649 ★0.649 ★0.787

6344 ★0.853 ★0.912 ★0.6 ★0.6 ★0.6 ★0.619

6345 ★1 ★1 ★1 ★1 ★1 ★1

6346 0.761 0.761 0.517 0.517 0.7 0.349

6348 ★1 ★1 ★1 ★1 ★1 ★1

6350 ★1 ★1 ★1 ★1 ★1 ★1

6351 ★1 ★1 ★1 ★1 ★1 ★1

6352 ★1 ★1 ★1 ★1 ★1 ★1

6353 ★1 ★1 ★1 ★1 ★1 ★1

6354 ★1 ★1 ★1 ★1 ★1 ★1

Table.11 estimation result: putting SMTP attack patterns of 2007 into IDS with 1999~2006 signatures

Table.11 shows the result of estimation SMTP zero-
day attacks in annual base.

For comparing result conventionally, we give

additional 1 more score to the result with ★. (in

case of ★0.85 we change the score as 1.85.). We

illustrate these results as follows.
In case of SMTP, Jaro-Winkler shows the better

performance rather than others (See Table.12).
Likewise, the experiment for the other protocols is
performed as shown in Table .13.

year Jaro JaroWinkler Editdist Mod editdist Bagdist Swdist

2007 1.8993125 1.908625 1.860375 1.860375 1.8718125 1.8596875

2006 2 2 2 2 2 2

2005 0.9724 1.0092 0.7254 0.7254 0.8704 0.688

2004 1.6604286 1.6960476 1.4152857 1.4152857 1.469619 1.475381

mean 1.6330353 1.6534682 1.5002652 1.5002652 1.5529579 1.5057671

Table.12 overall performance in case of SMTP

year Jaro JaroWinkler Editdist Mod editdist Bagdist swdist

2007
2 2 2 2 2 2

2006
1.9723333 1.9833333 1.9583333 1.9583333 1.9583333 1.9166667

2005
2 2 2 2 2 2

2004 1.8746667 1.8911667 1.8020833 1.8020833 1.8333333 1.4854167

mean 1.96175 1.968625 1.9401042 1.9401042 1.9479167 1.8505208

Table.13 overall performance in case of FTP

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

239

Fig.15 Overall performance of similarity algorithm for the selected protocols and applications

After rescaling the mean value as 0 to 1, we
summarized the all experiment result in the Fig.15.

Each function shows different performance in
terms of the characteristics of strings. Every attack
string pattern is dependent on the protocol and
target application. Fig.15 shows the performance of
similarity algorithms for the each protocol and
application. Jaro and Jaro-Winkler metrics show
better performance rather than other metrics except

the case of ‘SHELLCODE’ detection. Also, Edit-
distance and modified Edit-distance show better
performance rather in case of SHELLCODE
detection. Especially, Jaro and Jaro-Winkler have
strong estimation power in comparison with other
metrics, in case of the estimation for the attacks
targeted on the database systems (e.g. ORACLE
and MSSQL).

Fig.16 Summarized Overall performance of zero-day attack detection

Fig.16 illustrates the selective best-algorithm’s
results. The detection power for zero-day attack for
HTTP is 63%, where the detection power for the

other protocols is more than 80% at least, and up to
99%. However, when considering the variety of
web-based attack, we can tell this result shows high

 Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

240

level of accuracy. Also, zero-day attacks targeted
for MS-SQL, SNMP, TELNET and FTP are easily
detected by the proposed system with a high
accuracy more than 94%.

6 Conclusion
6.1 Contribution of this study

Currently existing IDS and security risk analysis
methods applied could not show the impact of
attack exposure on information assets of companies.
In the proposed DSS of this research, we adopt the
concept of atomic vulnerability and atomic attack.
From this, we suggest a way to measure the direct
or indirect impact of the attacks on information
assets with applying CVE, CAPEC, and CWE. This
is the one of contributions of this research.

We also propose two kinds of methods that can
be applied in the verification of the attacks and
countermeasure of it when the new unknown
attacks are detected. For the first method, we
suggest a new way to find the most similar patterns
from comparing the new attack’s text strings in
packet payload with that of the known attacks. For
this, we adopt text mining and string search
algorithms of information retrieval and text mining
areas. With experimental analysis, we could show
that certain functions perform well for certain
protocols.

Second, we propose framework that applies
CBR in finding countermeasure for the unknown
attacks.

In summary, the DSS proposed in this study is
especially effective in making zero-day attack
response.

6.2 Future work
To find the most similar patterns from

comparing the new attack’s text strings in packet
payload with that of the known attacks, we adopt
text mining and string search algorithms of
information retrieval and text mining areas. In our
experiment, we focus on which known distance
algorithm fits well with the selected well-known
protocols. In the future experiment, it is possible to
develop more accurate algorithm for distance
measure.

Acknowledgement
This research was supported by the Ministry of

Knowledge Economy, Korea, under the “ITRC”
support program supervised by the National IT
Industry Promotion Agency (NIPA-2011-C1090-
1001-0004).

References
[1] Noel, S., Wijesekera, D. and Youman, C., Applications of

data mining in computer security, Kluwer Academic

Publishers. (2002)3-25.

[2] Liu, X., Fang, C. and Xiao, D., Intrusion diagnosis and

prediction with expert system. Security and Communication

Networks (2011).

[3] Soewito, B., Vespa, L., Weng, N. and Wang, H., Hybrid

pattern matching for trusted intrusion detection, Security

and Communication Network. 4(2011)33-43.

[4] Barbara, D., and Jajodia, S., Applications of Data Mining

in Computer Security, Kluwer Academic Publishers. 2002

6-7.

[5] Eskin, E., Anomaly detection over noisy data using learned

probability distributions, Proceedings of 17th International

Conference on Machine Learning (ICML). (2000).

[6] Warrender, C., Forrest, S. and Pearlmutter, B., Detecting

Intrusions using System calls: Alternative Data Models.

IEEE Symposium on Security and Privacy. (1999) 133-145.

[7] Kruegel, C., Mutz, D., Robertson, W. and Valeur, F.,

Bayesian event classification for intrusion detection,

Proceedings of 19th Annual Computer Security

Applications Conference (ACSAC). (2003) 14-23.

[8] HyungJong K., Huy K. K. and Hae Y. L., Security

Requirement representation method for confidence of

systems and networks, International Journal of Software

Engineering and Knowledge Engineering. 20 (2010) 49-71.

[9] Bishop, M., Vulnerabilities Analysis, Proceedings of the

Recent Advances in Intrusion Detection. (1999) 125-136.

[10] r0ut3r, GoodTech SSH Server SFTP Multiple Command,

Handling Overflow,

http://www.milw0rm.com/exploits/6804, 2008.

[11] Cohen, F., 50 ways to defeat your intrusion detection

system. 1997. http://all.net/journal/netsec/1997-12.html.

[12] CAPEC(Common Attack Pattern Enumeration and

Classification). MITRE cooperation.

http://capec.mitre.org.

[13] CWE (Common Weakness Enumeration).

http://cwe.mitre.org. MITRE cooperation.

[14] CVE (Common Vulnerability Exposure).

http://cve.mitre.org. MITRE cooperation.

[15] Wang, L., Noel, S. and Jajodia, S., Minimum-cost network

hardening using attack graphs, Computer

Communications. 29 (2006) 3812-3824.

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response

241

[16] Jajodia, S., Noel, S. and O'Berry, B., Topological analysis

of network attack vulnerability, Massive Computing. 5

(2005) 247-266.

[17] Noel, S. and Jajodia, S., Managing attack graph

complexity through visual hierarchical aggregation,

Conference on Computer and Communications Security,

Proceedings of the 2004 ACM workshop on Visualization

and data mining for computer security

(VizSEC/DMSEC).(2004) 109-118.

[18] Rieke, R., Tool based formal Modeling, Analysis and

Visualization of Enterprise Network Vulnerabilities

utilising Attack Graph Exploration, European Institute for

Computer Antivirus Research (EICAR). 2004.

[19] Musman, S. and Flesher, P., System or Security Managers

Adaptive Response Tool, DARPA Information

Survivability Conference & Exposition (DISCEX). 02

(2000) 56-68.

[20] Joo, D., Hong, T., Lee, S. and Han, I., A comparison of

Case-based Reasoning and Neural Network Model for

Intrusion Detection, Computer and Security. (2003).

[21] Huy K. K., Kwang H. I. and Sang C. P., DSS for computer

security incident response applying CBR and collaborative

response, Expert Systems with Applications. 37 (2010)

852-870.

[22] Jaro, M. E., Advances in record linking methodology as

applied to the 1985 census of Tampa Florida, Journal of

the American Statistical Society. 84 (1989) 414-420.

[23] Winkler, W. E., The state of record linkage and current

research problems, Statistics of Income Division, Internal

Revenue Service Publication. R99/04 (1999).

[24] Smith, T. F. and Waterman, M. S., Identification of

Common Molecular Subsequences, Journal of Molecular

Biology. 147 (1981) 195-197.

[25] Cohen, W., Ravikumar, P. and Fienberg, S. E., A

Comparison of String Distance Metrics for Name-

Matching Tasks, KDD Workshop on Data Cleaning and

Object Consolidation. (2003) 73-78.

[26] Changsok Y., Huy K. K., Eunnyeong H., The Economic

Value of Online Game Developers in Early Stages,

Journal of Future Game Technology. 1, 1(2011) 21-34.

[27] Dong-bum Lee, Smartwork Security Framework with

Secure Access Control, Journal of The Korea Knowledge

Information Technology Society, 6, 4(2011)17-26.

[28] Dae-Sik Park, Smartcard-based Remote User

Authentication Protocol with Improved Security, Journal

of The Korea Knowledge Information Technology Society,

6, 4(2011)27-34.

[29] Ki-Seok Bang, Classification Criteria and Application

Methodology for Evaluating IT Security Products, Journal

of The Korea Knowledge Information Technology Society,

6, 5(2011)105-112.

Huy Kang Kim received his Ph.D.
in Industrial and Systems
Engineering from Korea Advanced
Institute of Science and
Technology (KAIST) in 2009.
Currently he is an assistant
professor in Graduate School of
Information Security, Center for

Information Security Technologies (CIST) in Korea
University. His research interests include Botnet
Detection, Intrusion Detection System, Network
Forensics and Online Game Security. Contact him at
cenda@korea.ac.kr

Soo-Kyun Kim received Ph.D. in
Department of Computer Science
& Engineering from Korea
University in 2006. He joined
Telecommunication R&D center at
Samsung Electronics Co., Ltd.,
from 2006 and 2008. He is now a
professor at Department of Game
Engineering at Pai Chai University,

Korea. His research interests include multimedia, pattern
recognition, image processing, mobile graphics,
geometric modeling, and interactive computer graphics.
Contact him at kimsk@pcu.ac.kr

Seok-Hun Kim received Ph.D. in
Department of Computer
Engineering from Hannam
University, Daejeon, Korea in 2006.
He joined ParagonBase Co., Ltd.,
from 2007 and 2010. Since then he
has been an adjunct professor in
Computer Engineering at Mokwon
University, and also employed by

TIME SYSTEM Co., Ltd., Korea. His research interests
include mobile computing, information security,
convergence technology. Contact him at
shkim@mokwon.ac.kr

