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Abstract: Regardless of the existence of the various information security safeguards, many 
companies remain vulnerable to the unknown attack, which is known as the zero-day attack. In this 
study, we develop the decision support system (DSS) using case-based reasoning (CBR) for zero-day 
attack response. Also, our proposed system divides the unknown attack into atomic attacks for zero-
day attack detection. Then, this proposed system analyzes the similarity between the new zero-day 
attack pattern and the known attack patterns. Finally, it suggests the most similar cases with applying 
similarity functions and CBR. The effectiveness of our system is further shown in the empirical test. 
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1  Introduction 

                                                
∗ 

Corresponding Author: SeokHun Kim, shkim@mokwon.ac.kr 

The unknown attack so called zero-day attack is 
a buzzword of information security area. It is 
known that zillions of the new attack patterns are 
produced every year. The problem associated with 
the zero-day attack is that attack patterns cannot be 
easily detected with a signature-based intrusion 
detection system (IDS), because the new attacks’ 
countermeasures and attack signatures are not 
readily known. Hence, it is very difficult for 
companies to respond to every new attack and 
variations of the existing known attacks. 

To overcome the limitation of the current IDS 
and to protect assets from the zero-day attacks, we 
develop the decision support system (DSS) using 
three methodologies - similarity functions, case-
based reasoning (CBR) and atomic attack analysis.  

To find the most similar patterns from 
comparing the new attack’s signature in packet 
payloads with that of the known attacks, our DSS 

adopts text mining and string search algorithms of 
information retrieval and text mining areas. 

In order to develop more customized response 
strategy for a company, additional information such 
as attacker’s IP address, target system’s information 
and target application are required. For this, CBR is 
conducted. CBR is the process of solving new 
problems based on the solutions of the similar past 
problems. CBR can be easily implemented to the 
real world since most companies have the known 
attack signature database and they manage the 
previous incident case records. CBR is very 
effective to response the zero-day attack because 
the series of hackings have commonness. The attack 
targets are mostly predetermined and have 
commonness with the previous attacks even though 
conducted attack techniques are changed. Usually, 
the primary attack targets have valuable information 
(worth of hacking) or have severe vulnerabilities 
(ease of hacking). Thus, target system and exploited 
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applications will not be changed unless the 
configuration of the existing systems is completely 
changed or the new valuable server systems which 
include sensitive data are changed. Hence, if the 
attack history is well recorded in the case-base, we 
can estimate the most similar prior attack cases.   
When the symptom for the zero-day attack is 
detected, it will be agile response if security officers 
can respond to the attack based on the information 
of the most similar case. Actually, many security 
advisories suggest similar workarounds where the 
attack type is similar with the known prior case.  

Hence, if new attacks are detected and the 
attacks’ target application are attacked by the 
previous similar case, then, known workaround for 
the prior cases are still valid for reacting to the new 
attacks. If there is attack signature database and 
case-base of the previous incident, companies can 
find the most similar attack pattern from the 
signature database. Then, security officers can 
search the case related to the same attack pattern 
and finally they can decide how-to-respond for the 
new attack based on the past similar cases.   

The concept of atomic vulnerability and atomic 
attack is that any attack can be divided into single or 
multiple atomic attacks. As the same, vulnerability 
can be divided into single or multiple atomic 
vulnerabilities. These atomic vulnerabilities are 
exploited by the related atomic attacks, and these 
atomic attack and its vulnerability relationship can 
be 1:1 or 1:N. Hence, we can define attack as a set 
of atomic vulnerabilities, which are applied to 
compromise a certain system with exploiting single 
vulnerability or multiple vulnerabilities. If the 
symptom for the zero-day attack is detected, then 
we divide the unknown attack into several atomic 
attacks and search for a similar attack case to 

increase search ability. Even though the IDS does 
not know all of the atomic attack patterns, if IDS 
knows some of the atomic attacks then it can detect 
part of the zero-day attack.  

With these mechanisms, we also propose zero-
day attack response procedures in this paper. 
Finally, we estimate our proposed DSS’s 
performance. 
 

2  Literature Review 
2.1 Attack and vulnerability 

Attacks and vulnerabilities have been studied by 
many researchers. Studies on attacks and 
vulnerabilities can be classified into three 
approaches. The first approach is the state-transition 
analysis. The state-transition analysis depicts 
attacks with a state-transition diagram, which is a 
set of goals and transitions. Any event that triggers 
an attack state is considered as an intrusion. State-
transition analysis employs the rule-based analysis 
of the audit trails of multi-user computer systems. 
In state-transition analysis, an intrusion is identified 
as a sequence of state changes that lead the 
computer system from some initial states to a target 
compromised state. NetSTAT uses state transition 
diagrams to describe network attacks to support 
network intrusion analysis [4]. The second approach 
is based on the probabilistic learning and various 
machine learning techniques. It can be considered 
as a variation of the state-transition analysis. 
Table.1 shows approaches with the probabilistic 
model and Bayesian network. The third approach is 
based on simulation methodology. This approach 
tries to formalize attack events discretely. Several 
studies apply DEVS (Discrete Event System 
Specification) formalism. 

Algorithm Application and related paper 

modeling attack transition with a probabilistic model 
Applied to intrusion detection by examining intrusions manifested as anomalies in 

UNIX system call traces[5] 

employing Hidden Markov Model as the finite state machine 
Applied to intrusion detection by examining intrusions manifested as anomalies in 
UNIX command execution log[6] 

constructing a Bayesian network for reasoning in the domain 
of system call execution 

Applied to intrusion detection  by examining intrusions manifested as anomalies in 
UNIX system call traces[7] 

Table.1 Approaches with the probabilistic model and Bayesian network 

 
Kim et al. [8] introduced the concept of VX 

(vulnerability expression), CV (compound 
Vulnerability) and AV (Atomic Vulnerability). Kim 
et al. assumed that an attack is composed of a 
sequence of actions that cause state transition, 
where each action incurs vulnerability that can be 
exploited. They call each action an atomic 
vulnerability, which is an undividable cause-unit of 

cause-effect model. An example is shown as 
follows. 

Atomic Vulnerability: AV = {Iav, Qav, δav, Type} 
Where, 
Iav = {Iav1, Iav2, …, Iavn}, external input of AV 
Qav = Q(initial state) ∪ Q(final state), state set of 
AV 

δav : Iav × Q(initial state) → Q(final state), AV’s 
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state transition 
Type : {Fact, Deterministic, Probabilistic}, type of 
AV 

 
Even though the above three approaches employ 

different techniques and tools, there exist 
commonalities. 

An attack or attacks can be decomposed into 
multiple states, beginning with an initial state (start 
of attack) and ending with the final state (success of 
attack – which means the system has been 
compromised finally). When a state transition 
occurs, some symptoms appear as the result of the 
attack. By observing these symptoms, we can 
estimate the probability that the state can be 
transited to the next state; it can be estimated with 
stochastic process or Hidden Markov Model or 
Bayesian rule. 
Still, the three approaches differ in understanding 
the meaning of state transition. In the third approach, 
Kim et al. made a hypothesis that a state transition 
is created by an attack. They assumed that an attack 
can be decomposed into the atomic level that can 
cause state transitions. Therefore, an attack can be 
expressed as the compound of the atomic attacks. 
This hypothesis is based on the concept developed 
by Bishop [9]. The other two approaches, which are 
the first and second approach, did not definitely 
state that only an attack can change the states. They 
utilize a model that explains the normal trends and 
abnormal trends of system calls when attacks occur. 
In these approaches, the state is just one of the 
waypoints between ‘beginning of attack’ – where 
the system is still normal – and ‘end of attack’ – 
where the system is compromised. Systems can be 
compromised by a single attack or multiple attacks. 
However, the latter approaches do not care about 
the number of attacks or the relationship between 
attacks that can lead to state transitions. This is 
because these approaches are developed from based 
on observation of the real world’s audit trail. 
However, since not every state transition that 
invokes system calls can be logged, they can miss 
some changes in state transition. 

In fact, some exploitation can be caused by the 
combination of multiple attacks, while some are 
caused by a single attack. The combination of 
multiple attacks can be both sequential and parallel 
forms. For example, ‘GoodTech ssh remote exploit 
attack’ [10] can be done as the following procedure. 
① In initial state, server runs a vulnerable 

version of sshd. 
① A hacker begins to do network port 

scanning at a remote site. 

① A hacker attempts to execute ‘telnet target 
server IP target_port’ for grabbing the 
version of ssh daemon. 

① A hacker sends strings so that the target 
server can experience buffer overflow on 
the ssh daemon. 

① A hacker changes ‘eip address’ and ‘offset’ 
for loading a command. 

① Finally, a hacker sends a malicious 
command to the server after the daemon’s 
memory has been overflowed. 

In the above example, among the six 
procedures, the second procedure can be skipped 
and the third procedure can be skipped by a hacker. 
In the third procedure, a hacker just can send strings 
to make overflow the sshd brute-forcedly without 
confirmation of versions. So, some hackers skip 
some of the procedures and directly execute the 
fourth procedure. However, when hackers fail to 
overflow the sshd, they need to go back to the 
second procedure and then execute the third 
procedure to gain the exact version information of 
sshd. After that, they execute the fourth procedure 
once again with the exact information, which was 
acquired in the third procedure. In any case, the 
fifth procedure should always be followed by the 
fourth procedure.  

As we can see the above example, attacks can 
be divided into several sub-attacks. These atomic 
attacks might have sequential relationships among 
them, that is, they have dependency between them. 

We developed a new approach that could fully 
explain the 6 procedures. We illustrated a new 
attack and state transition model as in the Fig.1. Our 
model encompasses all the different viewpoints of 
researchers including that of Eskin [5], Warrender 
et al. [6], Kruegel et al. [7], Kim et al. [8], and 
Bishop [9].  

The common points are fact that an attack can 
be decomposed into atomic attacks, and the fact that 
every atomic attack changes the state. However, the 
symptom caused by this atomic attack is not always 
observable. Therefore, there is possibility that the 
attack will not to be detected until the system is 
fully compromised. IDS can miss the detection of 
every symptom caused by an atomic attack when 
the atomic attack does not show remarkable 
symptoms. (e.g., definitive signatures on packet 
payload and anomalous action on a process leave 
logs in the system’s log files.) Moreover, some 
poorly designed applications or OS cannot properly 
react to every atomic attack because they might not 
have adequate functions of audit or defensive 
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mechanisms. In addition, attackers can modify their 
attacks with many evasion techniques described in 

the study of Cohen [11]. In these cases, interim state 
transition cannot be shown. 

Fig.1 Atomic attacks and state transition 

 

Fig.2 Atomic vulnerabilities and relevant atomic attacks 

 
As an attack is divided into atomic attacks, 

vulnerability can be divided into sub-vulnerabilities, 
that is, atomic vulnerabilities. These atomic 
vulnerabilities are exploited by the related atomic 
attacks. These relations are illustrated in the Fig.2. 
2.2 CAPEC, CWE, and CVE 

There are other approaches that are based on 
software engineering, CAPEC (Common Attack 
Pattern Enumeration and Classification) [12], CWE 
(Common Weakness Enumeration) [13], and CVE 
(Common Vulnerability Exposure) [14] by MITRE 
cooperation. They are the de-facto standards of 

expressing vulnerabilities and attacks with unique 
identification indexes. 

CAPEC is a measurable catalog of attack 
patterns along with detail schema and classification 
taxonomy. CAPEC categorizes attacks and break 
down attacks into an atomic level. Every attack 
pattern is divided into undividable attack patterns. 
These undividable attack patterns have unique 
CAPEC ID. CAPEC shows the full description, 
related weakness (CWE) and related known 
vulnerabilities (CVE) of undividable attack. 
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CWE is a measurable category of software 
weaknesses that exist in source code, operational 
systems, and other software. This weakness has a 
more specific and detail meaning of vulnerability. 
Vulnerability can be divided into undividable union 
weakness. This undividable weakness has unique 
CWE ID. For each undividable weakness, CWE 
provides full description about the weakness itself, 
the related attack (CAPEC) and the related known 
vulnerabilities (CVE). For examples, CWE-306, 
which describes ‘No Authentication for critical 
function’, can be exploited by CAPEC-62, CAPEC-
36, CAPEC-12 and CAPEC-40. 

CVE is a dictionary of publicly known 
information security vulnerabilities and exposures. 
CVE Identifiers are common identifiers publicly 
known for identifying vulnerabilities. Unique CVE 
ID is assigned to the each vulnerability. CVE ID 
enables data exchange between security products 
and provides a baseline index point for evaluating 

coverage of tools and services. For the each 
vulnerability that has CVE ID, CVE shows the 
attack title, attack description and related reference. 
Some of the vulnerabilities shown in the CVE list 
are atomic vulnerabilities by themselves, while 
other vulnerabilities shown in the CVE list are the 
combinations of several atomic vulnerabilities. 

In conclusion, CAPEC is good for expressing 
atomic attacks and their relations. CWE is good for 
expressing atomic vulnerabilities. CVE can be 
assumed as a set of atomic vulnerabilities. 

2.3 Attack graph 
Noel et al. [16] introduce the concept of the 

attack graph. The attack graph shows the 
relationship between sub-attacks, which is in the 
form of vertex, and node. Fig.3 shows an example 
of an attack graph. The Graph theory is applied for 
the expression of sub-attacks and its condition to 
transit. 

 
Fig.3 Attack graph example (source: Wang et al. [15])

There are several related studies done by Noel 
and colleagues [15-17]. These studies commonly 
called as attack graph. The attack graph can be 
applied to calculate the optimal hardening cost. 
Reike [18] utilized the attack graph to visualize the 
enterprise network vulnerabilities. 

The attack graph theory adopts the concept that 
an attack can be divided into smaller ones and the 
exploitation process can be expressed in the series 
of state transition. 

2.4 Case-based Reasoning 
CBR’s overall process is described in the Fig.4. 

The process of CBR is very simple and 
comprehensible. CBR also doesn’t need prior-
training of data for solving a new problem. 
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Fig.4 General cycle of a CBR system 

Studies that aim at detecting anomalous attacks 
with CBR are as follows. Musman et al. [19] 
developed SoSMART with applying CBR. It relies 
on string match of rule-base to detect suspicious 
symptom of attack on the log files. However, not all 
attacks make application to generate log events. 
Hong et al. [20] proposed the CBR model for 
intrusion detection. In their model, CBR and 
decision tree C4.5 are used for misuse detection, 
and neural networks are used for anomaly detection. 
Kim et al. [21] apply CBR to find out similarities 
between already known hacking patterns and new 
hacking patterns. With the RFM (Recency, 
Frequency, Monetary) analysis methodology and 
CBR, they develop DSS which can minimize false 
alarms and decrease the time to respond to hacking 
events. 

Similar case retrieval in the CBR process plays 
an important role in reasoning. Hence, how to 
design the similarity metrics in the case retrieval 
process is critical for increasing accuracy. Usually 
the k-nearest neighbor (k-NN) method or its 
variants are widely used as the retrieval mechanism. 
2.5 Similarity and distance metrics 

Information retrieval is a research area of 
searching for documents, for information within 
documents, and for metadata about documents, as 
well as that of searching databases. In the middle of 
information retrieval process, similarity and 
distance metrics are usually used to enrich search 
ability. These metrics are also applied to an Internet 
search engine application for searching similar 
words, sentences, and documents. Also, this string 
similarity metric can be applied to search attack 
variants by analyzing strings in the attack packets. 

Many similarity and distance algorithms have 
been developed to support the string search and 
calculation of similarity between documents or 

sentences. The representative string comparator 
algorithms are as follows. 

○1 Edit-distance (Levenshtein distance) 

The edit-distance between two strings is given 
by the minimum number of operations needed to 
transform one string into the other, where an 
operation is an insertion, deletion, or substitution of 
a single character. A generalization of the 
Levenshtein distance (Damerau-Levenshtein 
distance) allows the transposition of two characters 
as an operation. This algorithm is frequently used in 
applications that need to determine how similar 
words are, such as spelling-check programs. The 
edit-distance can be considered as a generalized 
version of Hamming distance. 

○2  Jaro distance and Jaro-Winkler distance 

Jaro-Winkler distance [23] is a variant of the 
Jaro distance [22] metric. They are mainly used in 
the area of record linkage (duplicate detection). The 
higher the Jaro-Winkler distance for two strings is, 
the more similar the strings are. The Jaro-Winkler 
distance metric is designed and best suited for short 
strings such as person names. 

○3 Smith-Waterman distance 

Smith-Waterman distance [24] is a well-known 
algorithm for performing local sequence alignment, 
that is, for determining similar regions between two 
nucleotide or protein sequences. Instead of looking 
at the total sequence, the Smith-Waterman 
algorithm compares segments of all possible lengths 
and optimizes the similarity measure. 

A comparison between metrics is well 
summarized in the research of Cohen et al. [25]. 
Cohen et al. investigate the overall performance of 
several string distance metrics, edit-distance-like 
functions, token-based distance functions, and 
hybrid distance functions.  
 

3 Methodologies 
3.1 Similarity metrics between a known attack 

and an unknown attack  
Considering the atomic attack analysis, the zero-

day attack response procedure can be proposed as 
follows. 

① When an anomalous symptom happens in 
network or server systems, then capture 
packets at that time. 

② Input the captured packets into IDS. IDS 
can determine whether the captured packet 
as an attack, which means the known 
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atomic attacks are included in the captured 
packets. 
A. In this case, find the vulnerability that 

can be exploited by the found atomic 
attacks. 

B. Find the assets that have those 
vulnerabilities in A. 

Then, how can the organization response to the 
zero-day attack when a known atomic attack is not 
found in procedure 2? Now we need algorithms for 
searching similar attack patterns with the patterns in 
the captured packets. 

As most detecting systems do, when deciding 
the similarity between attacks, the first important 
factor is considering the strings in the packet 
payload. In most cases of variant attacks in the same 
attack category and same attack target application, 
the attack signature strings have similar patterns.  

For example, Klez worm type A and its variant 
attack, Klez worm type B, are not much different. 
From this viewpoint, Table.2 and Table.3 show the 
variant attacks in RPC and NETBIOS SMB 
protocol have own attack patterns. We can see that 
similar strings repeatedly occurred in attack 
signatures in the packets.   

 

Snort ID category Attack title Attack signatures in packet Related CVE Disclosure date 

6200 RPC 
RPC portmap 390113 udp 
request

|00 01 86 A0|)|00 00 00 03|)|00 05 F3 
E1|)|00 00 00 00|

2007-3618,2000-0719 2000-08-10 

6201 RPC 
RPC portmap 390113 udp 
procedure 4 attempt

|00 05 F3 E1|)|00 00 00 04|)sn_sub_rqst 2007-3618, 2000-0902 2000-09-07 

6202 RPC 
RPC portmap 390113 udp 
procedure 5 attempt

|00 05 F3 E1|)|00 00 00 05|)sn_sub_rqst 2007-3618, 2000-0988 2000-10-13 

Table.2 Attack signature in the snort ruleset: RPC portmapper 

Table.3 Attack signature in the snort ruleset: NETBIOS SMB ISystemActivator 
 

Attack signatures in packet Hex stream after data preprocessing 

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00|F 00 FF534D422F 05 0E A001000000000000C000000000000046 

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00|F 00 FF534D422F 05 0E A001000000000000C000000000000046 

|00|)|FF|SMB%)&|00|)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 
00|F 

00 FF534D4225 2600 05 0E A001000000000000C000000000000046 

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 00 00 00 00 00|F 00 FF534D422F 05 0E A001000000000000C000000000000046 

Table.4 Example – original NETBIOS related attack signature and preprocessed signature into HEX codes  

For the better search performance, we transform 
the attack signatures into series of hex strings, and it 
then becomes easier to find the similarity as shown 
in Table.4. We can find that there are many 
common features by protocol and target 
applications. These attack string patterns have 
various characteristics – duplicated strings pattern, 
repetitive strings pattern, and so on. So, we assume 

that there are optimal similarity measure for each 
specific protocol and application.  

To find this optimal similarity function per 
protocol, we designed an experiment. In addition, 
we estimate the detection power of zero-day attacks 
with those similarity functions. We choose the 
widely used similarity and distance metrics for 
calculating similarity between attack strings. The 

Snort ID category Attack title Attack signatures in packet 

1429 NETBIOS SMB 
NETBIOS SMB ISystemActivator WriteAndX unicode alter 

context attempt

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 

00 00 00 00 00|F

1430 NETBIOS SMB 
NETBIOS SMB-DS ISystemActivator WriteAndX alter 
context attempt

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 
00 00 00 00 00|F

1431 NETBIOS SMB 
NETBIOS SMB-DS ISystemActivator unicode alter context 
attempt

|00|)|FF|SMB%)&|00|)|05|)|0E|)|A0 01 00 00 00 00 00 00 

C0 00 00 00 00 00 00|F

1432 NETBIOS SMB 
NETBIOS SMB-DS ISystemActivator WriteAndX unicode 

little endian alter context attempt

|00|)|FF|SMB/)|05|)|0E|)|A0 01 00 00 00 00 00 00 C0 00 

00 00 00 00 00|F
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following representative functions are used for this 
experiment. 

① Jaro distance 

② Jaro-Winkler distance 

③ Edit-distance (also known as Levenshtein 
distance) 

④ modified Edit-distance (we set the 
transposition cost 1 instead of 2) 

⑤ Bag distance (also known as approximate 
Levenshtein distance) – this distance 
measure is proposed by Bartolini et al. [27]. 

⑥ Smith-Waterman distance 
Each function has a special characteristic. Jaro 

and Jaro-Winkler distance are fitted to search 
duplicated strings, especially in case of short strings. 
Edit-distance is a generic algorithm, but in case that 
the number of substitution and insertion is 
unexpectedly big, this algorithm reports that the two 
input strings have low similarity rather than Jaro-
Winkler-kind distance measures. We normalize the 
search result as 0 to 1. The meanings of the value 
can be implied as Table.5. 

similarity value S Between attack pattern A and attack pattern B Meaning 

0 
“Completely different attack” 
Attacks A and B have no relationship. 

0<S<1 
“similar attack” 
At least the workaround can be similar or the same.  
So, the countermeasure can be referred the previous cases. 

1 
Attacks A and B are completely same. So, the 
countermeasure of attack A can be applied attack B without 
any modifications.  

Table.5 Similarity values and their meaning 

 
Now, the zero-day response procedure can be 

updated as follows. 

① When anomalous symptom occurs in the 
network or on server systems, capture 
packets at that time. 

② Input the captured packets into IDS. IDS 
can detect the captured packet as being an 
attack, which means the known atomic 
attacks are included in the captured packets. 
A. In case of this, find the vulnerability 

set (CVE) that can be exploited by the 
found atomic attacks. 

B. find the assets that have those 
vulnerabilities in A 

③ When a known atomic attack is not found in 
procedure2, find the similar attacks based 
on the string similarity search. The attack 
string in the captured packets and the 
strings in the attack signature database (that 
is, misuse signatures in the ruleset) are 
compared. 

④ Find the vulnerability set (CVE) that can be 
exploited by the most similar attack set 
found in procedure3. 

⑤ Find the assets which have those 
vulnerabilities set (CVE) in procedure4. 

3.2 Case-based reasoning 
In section 3.1, we show the way to find out the 

most similar attack patterns with various string 
similarity metrics. In case that there is no findings 
by string similarity search, or in case that the 

queried result need to be improved, we need to 
search with more specific information which can 
affect the search accuracy. So, with adding up more 
specific information such as source IP address and 
destination IP address and destination port, more 
accurate result can be derived. Comparing strings in 
the packet level is important but it is micro view. In 
a point of macro view, hackers IP address, attack 
target’s OS and application information are well-
fitted information for the organizations. 

CBR is very powerful methodology when 
decision maker need to solve problem from the 
information of the domain knowledge. For this, as 
like the other CBR applications, it is required to 
define a distance measure for case retrieval. 
Symbolic data for explaining a case are coded into 
vector form for convenience of calculating distance, 
and then the distance between cases are measured. 
Usually Euclidean distance and cosine distance are 
used to calculate distance of two vectors. 

When we describe a case, 5W1H (when, who, 
where, what, which, how) information are required 
intuitively. Considering 5W1H, attack case can be 
coded into the following vector form. 

Case vector =  

(attack date, attackers’ IP, attackers src port, target IP, 

target port, target application, target application’s 

version, target OS, target OS version, target OS 

architecture, attack pattern string) 



 

Huy Kang Kim et al: Decision Support System for Zero-day Attack Response  

 

 

229

� The vector is designed for expression of 
these following assumptions. 

� The attacks happened in adjacent time line 
are similar. 

� The attacks from similar IP address range 
are similar. 

� The attacks which seek to exploit the same 
target servers are similar. 

� The attacks which seek to exploit the same 
OS and same application are similar. 

Assuming that there are {Solaris, HP-UX, AIX, 
Windows, Linux, SGI} OS. When coding the OS 
symbol information into numeric one, it cause an 
error to measure distance that if the value is set as 
{Solaris = 1, HP-UX = 2, AIX=3, Windows =4, 
Linux = 5, SGI = 6}. It is a just a coded value for 
distinguishing with other symbol values. If we set 
values from 1 to 5 then that cannot explain the 
distance between OS. (The value of SGI – the value 
of Windows is 2, and the value of SGI – the value 
of Solaris is 5. It does not imply that SGI is more 
similar with Windows OS rather than Solaris OS.) 

For resolving this problem, we limit OS 
information only for (Solaris, HP-UX, AIX, 
Windows, Linux, SGI) and set the sub-vector form 
as follows. 

 
Solaris = (1, 0, 0, 0, 0, 0) 
HP-UX = (0, 1, 0, 0, 0, 0) 
AIX = (0, 0, 1, 0, 0, 0) 
Windows = (0, 0, 0, 1, 0, 0) 
Linux = (0, 0, 0, 0, 1, 0) 
SGI = (0, 0, 0, 0, 0, 1) 
 
This vector form is quite exact but it cannot be 

avoided from the curse of dimensionality when 
considering all OS in the world. Hence, we only 
consider the top 6 OS at this time. In addition, the 
OS version information is highly correlated with the 
OS information and OS architecture. Likewise, the 
application’s version information is highly 

correlated with the application information also. 
Finally, the application information can be derived 
by port number because the port numbers of the 
well-known Internet services are static. 

The vector for expressing attack case is 
simplified as below. If not we should consider the 
vector whose dimension is at least 1024. (The 
number of port for well-known Internet services) 

 
Simplified Case vector = (attack date, attackers’ IP, 
target IP, target port, target OS, OS architecture, attack 
pattern string)  
Where, 
  target OS = {Solaris, HP-UX, AIX, Windows, Linux, 
SGI} 

target OS architecture = {x86, non x86} 
 
Suppose the three attack case as follows.  
Case 1 is the attack that is from 

118.175.151.128, happened at March-3-2008, the 
target host’s OS is Solaris 10, architecture is x86, 
the target program is bind ver. 9.3, and the target 
host’s IP address is 143.248.1.17. At that time, IDS 
detected the attack string in the attack packet as 
“ABCD09800000000100000000000001000120202
0200261”.  

Case 2 is the attack that is from 153.23.4.5, 
happened at Feb-8-2006, the target host’s OS is HP-
UX 11i, architecture is PA_RISC(non x86), the 
target program is bind ver. 8, and the target host’s 
IP address is 143.248.3.9. At that time, IDS 
detected the attack string in the attack packet as 
“2E2E2F2E2E2F2E2E2F”.  

Case 3 is the attack that is from 118.175.151.3, 
happened at Dec-12-2007, the target host’s OS is 
Solaris 9, architecture is sparc (non x86), the target 
program is bind ver. 9, and the target host’s IP 
address is 143.248.1.1. At that time, IDS detected 
the attack string in the attack packet as 
“8000070000000000013F000102”. Then these attack 
cases are coded as follows.  

 

Case 1  
=(2008-03-03, 118.175.151.128, 143.248.1.177, 53, {Solaris}, {x86}, 
ABCD098000000001000000000000010001202020200261) 
= (2008-03-03, 118.175.151.128, 143.248.1.177, 53, 1, 0, 0, 0, 0, 0, 1, 0, 
ABCD098000000001000000000000010001202020200261) 
 
Case 2  
=(2006-02-08, 153.23.4.5, 143.248.3.9, 53, {HP-UX}, {non x86}, 2E2E2F2E2E2F2E2E2F) 
=(2006-02-08, 153.23.4.5, 143.248.3.9, 53, 0, 1, 0, 0, 0, 0, 0, 1, 2E2E2F2E2E2F2E2E2F) 
 
Case 3  
=(2007-12-12, 118.175.151.3, 143.248.1.1, {Solaris}, {non x86}, 8000070000000000013F000102) 
=(2007-12-12, 118.175.151.3, 143.248.1.1, 1, 0, 0, 0, 0, 0, 0,1 , 8000070000000000013F000102) 
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The distance between binary values can easily 
calculated, but the distance of date , distance of IP 
address, distance of port and distance of strings 
should be defined here. 
The distance of date can be defined as follows.  

| 1 2 |
( 1, 2)

365 (| | 1)

date date
d date date

topyear bottomyear

−
=

× − +  
e.g. 

� date1=2008-03-03 
� date2=2006-02-08 
� date3=2007-12-12 

Then topyear = 2008 and bottomyear = 2006 
( 1, 2) (2008 03 03,2006 02 08)

390
0.356

365 (2008 2006 1)

d date date d∴ = − − − −

= =
× − +  

( 1, 3) (2008 03 03,2007 12 12)

83
0.076

365 (2008 2006 1)

d date date d∴ = − − − −

= =
× − +  

 
Distance of IP address is defined as follows. 

( 1, 2)d IPaddress IPaddress  
is 0, where the IPaddress1 and IPaddres2 are same. 

(e.g. 143.248.1.1, 143.248.1.1) 

is 0.25, where the IPaddress1 and IPaddress2 are 
matched up to the C Class IP address range (e.g. 

143.248.1.1, 143.248.1.8) 

is 0.5, where the IPaddress1 and IPaddress2 are 

matched up to the B Class IP address range (e.g. 

143.248.1.1, 143.248.3.8) 

is 0.75, where the IP address1 and IPaddrerss2 are 

matched up to the A Class IP address range (e.g. 

143.248.1.1, 143.2.3.4) 

is 1, where the IPaddress1 and IPaddress2 do not 

have any common segment. 
 
Distance of port is defined as follows.  

( #1, # 2)d port port  
is 0, where the port#1 and port#2 are same. (e.g. 
1433, 1433) 

is 0.5, where the port#1 and port#2 are highly 

correlated, the correlated port lists are as follows. 

 
� (80, 8080) : http , http’s another port 
� (80, 443) : http , https 
� (8080,443) : http’s another port , https 
� (119,563) : nntp, nntps 
� (194,994) : irc, ircs 
� (1433, 1434) : ms-sql-s, ms-sql-m 
� (137, 138): netbios-ns, netbios-dgm 
� (137, 139): netbios-ns, netbios-ssn 
� (138,139) : netbios-dgm, netbios-ssn 

� (161, 162): snmp, snmp-trap 
� (143, 220): imap2, imap3 
� (21, 22): ssh, telnet 
� (67, 68): bootps, bootpc 
� (109, 110): pop2, pop3 
� (109,995) : pop2, pop3s 
� (110,995): pop3, pop3s 

is 1, others 
 

The distance between attacks strings are 
calculated with the similarity measure described in 
section 3.1. Distance of attack strings is defined as 
follows.  

 
( 1, 2 )d s tr in g s tr in g  has a value from 0 to 1. 

The distance is opposite concept of similarity. 
( 1, 2) 1 ( 1, 2)d string string similarity string string∴ = −  

Especially, 
( 1, 2 )d str in g s tring  

is 1, where the string1 and string2 are different 

completely.  

is 0, where the string1 and string2 are same.  

 
Finally, the proposed distance between cases is 

summarized as follows. 
D(Case1, Case2) 

=sqrt{
2( 1, 2)d date date +

2(attackerIP1,attackerIP2)d

+
2( ta rge tIP 1 ,ta rg e tIP 2 )d +

2( p o r t# 1 ,p o r t# 2 )d +
2( 1, 2 )d O S O S +

2( 1, )d a rc h i te c tu r e a r c h i te c tu re +
2{1 ( 1, 2 )}s im ila rit y str in g s tr in g− } 

Where similarity function is Jaro-Winkler, then  

Jaro.winkler(ABCD0980000000010000000000
00010001202020200261, E2E2F2E2E2F2E2E2F) 

= 0.436 
(1 )s im ila r i ty− = 0.564 

D(Case1, Case2) 

= 0.127 0 0.25 2 2 0.318+ + + + + =2.167 
Likewise above, 
D(Case1, Case3) =1.481 

D(case1, case) ≥  D(case1, case3) 
So it says, “Case1 is more similar with Case3 

rather than Case2.” 
With the proposed Euclidean-like distance, the 

similarity or the distance between attack cases are 
derived. 

This process is automated in our DSS 
application shown in section 4. To summarize, 
based on the methodologies described in this 
section, we propose DSS which works with 
following logic shown in the Fig.5. 
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Fig.5 proposed Decision Support System’s working procedures 

 

4  Framework and architecture of our DSS 
4.1 Proposed zero-day attack response 

procedures 
Our proposed procedures of zero-day attack are 

composed of four phases. Phase 1 is when zero-day 
attack is outbreak, and then anomalous symptom is 
detected. In Phase 2, security administrators capture 
the inbound and outbound packets on the network. 
In Phase 3, security administrators can find the most 
similar attack and case with similarity and distance 
metrics. In the first part of Phase 3, the strings on 
the captured packets will be compared with the 
known attack signature database. After searching 
the most similar attack signature, security 
administrators can find the safeguards from the 
most similar attack. And then, to acquire the prior 
domain knowledge, security administrator can find 
the most similar case with similarity and distance 

metrics. Searching the most similar attack case by 
CBR is performed. After searching the most similar 
case, security administrator can find the safeguards 
from the most similar case on that company. Phase 
4 is to make a decision based on results of Phase 3.  

These zero-day attack response procedures are 
summarized in the Fig.6. This DSS application is 
designed for supporting all methodologies proposed 
in section 3. Our DSS application mainly works on 
the phase 3 and phase 4. We assume that the 
anomalous symptoms can be detected by other 
monitoring systems which are deployed previously 
in the organizations. (e.g. MRTG, CPU monitoring 
system, process monitoring system and log analysis 
system). For working these procedures well, 
information asset database is required, which 
possess the every information asset’s vulnerability 
information with CVE ID. 
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Fig.6 Proposed zero-day attack response procedures 

 
4.2 Implemented DSS applications  

This DSS is composed of the following 3 
components as shown in the Fig.7. The first are 
databases. DSS has asset inventory database, atomic 
vulnerability database, atomic attack database, 
atomic safeguard database, case-base database and 
attack signature database for similar attack search. 
Asset inventory database includes vulnerability 
information; this vulnerability information is 
routinely updated by Nessus, the most famous 
vulnerability scanner program [28]. Second, there is 
DSS engine to find affected system. Third, in 
presentation layer, the search result will be 
displayed to security administrators. The screenshot 
of main GUI of our DSS is presented in the Fig.8. 
This program is developed with Delphi language, 
Python scripting language and MySQL database. It 

supports easy update method for the attack 
signature update, CWE/CAPEC/CVE database and 
information asset database. 

Vulnerability scanning results of the 
information assets are parsed and saved into 
database as shown in Table.6. The gathered IP 
address, OS, open port information will be referred 
for CBR. 

DSS parses the gathers vulnerabilities 
information and makes it referable from the 
information asset database as Table.7.  

It extracts CVE information and then put that 
information into vulnerability database periodically. 
Especially, for calculating distance and case relation, 
the asset database should include IP address, OS 
version and running applications’ information as 
shown in the Table.7. 

 

Fig.7 Architecture of overall system 
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Fig.8 Screenshot of the proposed DSS 

IP address 
DNS 
name 

operating system 
open  

port list 
vulnerability  

list 

related reference 
(CVE ID, CAN 

ID, nessus id) 

risk factor last scan end time 

143.248. 

1.177 
unknown 

Sun Solaris 10, 

Sun Solaris 9 
22/tcp 

DNS bind buffer 

overflow 

CVE : CVE-2005-

1794 
BID : 13818 

Nessus ID : 18405 

Medium / 

CVSS Base 
Score : 5.1 

Tue Jun 24 14:13:20 2008 

143.248. 
90.220 

Apa01 

Microsoft 
Windows XP 

Service Pack 2 
3389/tcp 

Microsoft 
Windows Remote 
Desktop Protocol 

Server Private Key 
Disclosure 

Vulnerability 

CVE : CVE-2005-
1794 

BID : 13818 
Nessus ID : 18405 

Medium / 
CVSS Base 
Score : 5.1 

Tue Jun 24 14:13:20 2008 

Table.6 the parsed data from the vulnerability scanning result 

IP 
address 

Subnet 
mask 

Gateway 
DNS 
name 

operating 
system 

Major DB 
/application 

Asset 
Value 

Vulnerability 
found 

143.248. 
90.2 

255.255. 
255.0 

143.248. 
90.1 

Host1 
Windows  

2003 server 

MS-SQL 2000 
server 
IIS 6.0 

$ 3,000 
CVE-1999 

-0103 

143.248. 
90.101 

255.255. 
255.0 

143.248. 
90.1 

Host2 
Windows 

2000 server 

MS-SQL 2005 
server 

IIS 5.0 

$ 4,850 
CVE-1999 

-0104 

Table.7 example data scheme in the information asset database 

 
Fig.9 is a screenshot of the attack signature 

database based on snort ruleset. It includes known 
attack signatures, attack category, reference CVE 
ID and preprocessed hex streams.  

CVE, CWE, and CAPEC database are shown in 
the Fig.10. CAPEC, CWE database and query tool 
is built with parsing CAPEC and CWE dictionary 
files. CVE database is built with processing 
OSVDB.  

Fig.11 shows the main query interface for 
searching the most similar attack signature. It 
supports query function which can resolve various 
search conditions (year, protocol, attack category 
and strings similarity function). With this tool, we 
can simulate that what function shows better result 
in the specific conditions. 
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Fig.9 Attack signature database

Fig.10 CAPEC, CWE and CVE database and query tool 
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Fig.11 String similarity search result

The Fig.12 is the main GUI of case-database 
menu. It is supported to input, update and search 
cases. The Fig.13 is the query interface for 
searching the most similar case. The distance is 
calculated with the method described in the section 
3. The example result of similar case search is in the 

Fig.14. With CWE, CAPEC and CVE database, our 
DSS can simulate the relationship and find the 
related CWE, CAPEC and CVE where specific 
CWE or CAPEC id is given. 

 

 

 
Fig.12 Case-base which includes the attack history 
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Fig.13 The query input for the case search 

 

 
Fig.14 Example screenshot of the case search 

 

5 Experiment Result 
5.1 Experiment design 

We design experiment to estimate the proposed 
DSS’s accuracy based on the following 
propositions. 
Proposition 1. New attacks (zero-day attacks) 

can be estimated with the known old attacks. 
The number of vulnerability found is enough 

size to ensure the significance. The known attack 
data for each year from 1999 are used. The number 
of vulnerability data is more than 800 for every 

selected year. We gain the attacks’ disclosure date 
from the OSVDB, this disclosure date is imported 
into our attack signature database. 

The attacks occurred in the year Y is set as zero-
day attack test data. The base data are the attacks 
occurred in 1999 to Y-1. 

That is attacks occurred in Y year is the zero-
day attacks in the past years (Y-1, Y-2, …), hence 
the estimation power can be gained with comparing 
attack data of specific year into the past years. In 
case of this, if the similarity search metrics find the 
attacks in a same attack category and same 
application, then we regard the attack could be 
estimated in the past years. 
Proposition 2. Each string similarity function has 

its own strength to comparing string data. We 

will find which function is suitable for some 

selected protocols through this experiment. 
When the similarity metrics find out the known 

attacks for given unknown attack, the scoring is 
given as following rules. 

  
Result type Assessment condition for success/failure 

Success 

The similarity metrics should find the most similar pattern within a ‘same attack category’ and ‘same target 
application’ , where the similarity value > 0.7 

Or 
The similar patterns in top 3 similarity value by the similarity metrics should be within a ‘same attack category’ and 
‘same target application’ , when the best similarity value < 0.7 

Failure There are no matches which satisfy the success condition 

Table.8 Assessment condition for performance estimation 

 
In case of success, mark the similarity value at 

that time as a measure. In case of failure, mark the 
similarity value as zero. 

We have experimented some representative 
applications and protocols – – HTTP, ORACLE, 
HTTP, VOIP, MSSQL, SMTP, FTP, TELNET and 
SNMP. 

5.2 Experimental results 
Every result is summarized as the following 

tables. The mark ★  means that these similarity 

measures estimate the exact protocol and related 

application. The score without ★  means it only 

estimate the protocol or attack category only.  The 
number (between 0 to 1) means similarity. 
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This result shown in the Table.9 is gained as 
follows. 

① Set zero-day attack as ‘Oracle database’ 
related attack signatures happened in 2007. 

② Input attack string in the snort vulnerability 
ID patterns of the past. (in this case, 1999 
to 2006) 

③ Score the result after calculation is done by 
similarity metrics. 

Here is the estimated result by various similarity 
metrics. 

Jaro-style metrics (Jaro and Jaro-Winkler) show 
the better performance rather than Levenshtein-style 
metrics. In this case, Jaro-Winkler is the winner. 

 
Snort  

vul ID 
Jaro JaroWinkler Editdist Mod editdist Bagdist swdist 

7867 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 

8528 0.714 0.714 0.219 0.219 0.286 0.25 

8555 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 

8749 ★0.781 ★ 0.869 ★0.344 ★0.344 ★ 0.344 ★ 0.512 

9110 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 

8545 0.658 0.658 0.448 0.448 0.655 0.279 

9111 0.596 0.633 0.217 0.217 0.304 0.12 

8502 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 

8544 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 

Table.9 estimation result: putting Oracle attack patterns of 2007 into IDS with 1999~2006 signatures 
 

Table.10 shows the estimated result when the 
zero-day attacks are mimicked with attacks on 
HTTP protocol which is exposed in 2008. 

Jaro-style metrics (Jaro and Jaro-Winkler) show 
the better performance rather than Levenshtein-style 

metrics. In this case, Jaro-Winkler is the winner. 
But other metrics show the better performance than 
ORACLE related attack. 

  

Snort 

vul ID 
Jaro JaroWinkler Editdist Mod editdist Bagdist swdist 

8563-1 0.75 0.775 0.625 0.625 0.625 0.375 

8564-1 0.75 0.85 0.5 0.5 0.75 0.5 

7864 ★0.718 ★ 0.831 0.5 0.5 0.812 ★0.306 

9114 ★ 0.636 ★0.709 ★0.352 ★0.352 ★ 0.574 ★ 0.122 

8562 ★0.974 ★ 0.985 ★0.923 ★0.923 ★0.923 ★ 0.864 

8573 ★ 0.819 ★ 0.892 ★ 0.625 ★ 0.625 ★ 0.625 ★ 0.714 

8563,8564 0.952 0.971 0.857 0.857 0.857 0.923 

9112 0.579 0.621 0.313 0.313 0.313 0.167 

8565 0.704 0.822 0.132 0.132 0.170 0.203 

8569 ★ 0.556 ★ 0.556 ★ 0.241 ★ 0.241 ★ 0.414 ★ 0.089 

8539 0.722 0.806 0.533 0.533 0.767 0.367 

9113 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 ★ 1 

Table.10 estimation result: putting HTTP attack patterns of 2008 into IDS with 1999~2007 signatures 
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Snort vul 

ID 
Jaro JaroWinkler Editdist 

Mod 

editdist 
Bagdist Swdist 

6337 ★1 ★1 ★1 ★1 ★1 ★1 

6338 ★1 ★1 ★1 ★1 ★1 ★1 

6339 ★1 ★1 ★1 ★1 ★1 ★1 

6340 ★1 ★1 ★1 ★1 ★1 ★1 

6341 ★1 ★1 ★1 ★1 ★1 ★1 

6342 ★1 ★1 ★1 ★1 ★1 ★1 

6343 ★0.775 ★0.865 ★0.649 ★0.649 ★0.649 ★0.787 

6344 ★0.853 ★0.912 ★0.6 ★0.6 ★0.6 ★0.619 

6345 ★1 ★1 ★1 ★1 ★1 ★1 

6346 0.761 0.761 0.517 0.517 0.7 0.349 

6348 ★1 ★1 ★1 ★1 ★1 ★1 

6350 ★1 ★1 ★1 ★1 ★1 ★1 

6351 ★1 ★1 ★1 ★1 ★1 ★1 

6352 ★1 ★1 ★1 ★1 ★1 ★1 

6353 ★1 ★1 ★1 ★1 ★1 ★1 

6354 ★1 ★1 ★1 ★1 ★1 ★1 

Table.11 estimation result: putting SMTP attack patterns of 2007 into IDS with 1999~2006 signatures 

 
Table.11 shows the result of estimation SMTP zero-
day attacks in annual base. 

For comparing result conventionally, we give 

additional 1 more score to the result with ★. (in 

case of ★0.85 we change the score as 1.85.). We 

illustrate these results as follows. 
In case of SMTP, Jaro-Winkler shows the better 

performance rather than others (See Table.12). 
Likewise, the experiment for the other protocols is 
performed as shown in Table .13. 

year Jaro JaroWinkler Editdist Mod editdist Bagdist Swdist 

2007 1.8993125 1.908625 1.860375 1.860375 1.8718125 1.8596875 

2006 2 2 2 2 2 2 

2005 0.9724 1.0092 0.7254 0.7254 0.8704 0.688 

2004 1.6604286 1.6960476 1.4152857 1.4152857 1.469619 1.475381 

mean 1.6330353 1.6534682 1.5002652 1.5002652 1.5529579 1.5057671 

Table.12 overall performance in case of SMTP 
 

year Jaro JaroWinkler Editdist Mod editdist Bagdist swdist 

2007 
2 2 2 2 2 2 

2006 
1.9723333 1.9833333 1.9583333 1.9583333 1.9583333 1.9166667 

2005 
2 2 2 2 2 2 

2004 1.8746667 1.8911667 1.8020833 1.8020833 1.8333333 1.4854167 

mean 1.96175 1.968625 1.9401042 1.9401042 1.9479167 1.8505208 

Table.13 overall performance in case of FTP 
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Fig.15 Overall performance of similarity algorithm for the selected protocols and applications 
 

After rescaling the mean value as 0 to 1, we 
summarized the all experiment result in the Fig.15. 

Each function shows different performance in 
terms of the characteristics of strings. Every attack 
string pattern is dependent on the protocol and 
target application. Fig.15 shows the performance of 
similarity algorithms for the each protocol and 
application. Jaro and Jaro-Winkler metrics show 
better performance rather than other metrics except 

the case of ‘SHELLCODE’ detection. Also, Edit-
distance and modified Edit-distance show better 
performance rather in case of SHELLCODE 
detection. Especially, Jaro and Jaro-Winkler have 
strong estimation power in comparison with other 
metrics, in case of the estimation for the attacks 
targeted on the database systems (e.g. ORACLE 
and MSSQL).  

 
Fig.16 Summarized Overall performance of zero-day attack detection 

 

Fig.16 illustrates the selective best-algorithm’s 
results. The detection power for zero-day attack for 
HTTP is 63%, where the detection power for the 

other protocols is more than 80% at least, and up to 
99%. However, when considering the variety of 
web-based attack, we can tell this result shows high 
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level of accuracy. Also, zero-day attacks targeted 
for MS-SQL, SNMP, TELNET and FTP are easily 
detected by the proposed system with a high 
accuracy more than 94%. 

 

6  Conclusion 
6.1 Contribution of this study 

Currently existing IDS and security risk analysis 
methods applied could not show the impact of 
attack exposure on information assets of companies. 
In the proposed DSS of this research, we adopt the 
concept of atomic vulnerability and atomic attack. 
From this, we suggest a way to measure the direct 
or indirect impact of the attacks on information 
assets with applying CVE, CAPEC, and CWE. This 
is the one of contributions of this research. 

We also propose two kinds of methods that can 
be applied in the verification of the attacks and 
countermeasure of it when the new unknown 
attacks are detected. For the first method, we 
suggest a new way to find the most similar patterns 
from comparing the new attack’s text strings in 
packet payload with that of the known attacks. For 
this, we adopt text mining and string search 
algorithms of information retrieval and text mining 
areas. With experimental analysis, we could show 
that certain functions perform well for certain 
protocols. 

Second, we propose framework that applies 
CBR in finding countermeasure for the unknown 
attacks.  

In summary, the DSS proposed in this study is 
especially effective in making zero-day attack 
response.  

 

6.2 Future work  
To find the most similar patterns from 

comparing the new attack’s text strings in packet 
payload with that of the known attacks, we adopt 
text mining and string search algorithms of 
information retrieval and text mining areas. In our 
experiment, we focus on which known distance 
algorithm fits well with the selected well-known 
protocols. In the future experiment, it is possible to 
develop more accurate algorithm for distance 
measure.  
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