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Abstract: The paper aims to study the consequences of using produptoings (PS) as an alternative to the traditional likelthoo
under Bayesian set up. For this purpose we have consider@idhlem of point estimation of the parameter of exponedisdribution.
We have also obtained the asymptotic and HPD confidencevai$eof the parameter. The proposed estimates have beeraoeinp
with those based on usual likelihood on the basis of simdissenples from exponential distribution.
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1 Introduction

Various classical estimation techniques such as the mathotbments, method of least square, method of chi square
and method of maximum likelihood estimation (MLE) etc. aiscdssed in statistical literature. Each of these are lgavin
their own advantages and limitations but the most populahateof estimation among these is method of MLE, which
can be justified on the ground of its various useful propertike consistency, sufficiency, invariance, asymptotic
efficiency and above all its easy computation. The method bEMvorks well if each of the contributions to the
likelihood function is bounded above. It is true with all dliste distributions, but for continuous distribution, iaynnot

be. Various authors have noted the limitations of MLE inetiént contexts. Its greatest limitation is that it can notkvo
for ‘heavy tailed’ continuous distribution with unknowndation and scale parameters (Pitman, 1979, p . 70). It also
creates problem in mixture of continuous distributions amsuch cases MLE method can break down. It is well known
that often, MLE does not give satisfactory estimate foraiarthree parameter distributions, such as gamma, Weibull,
and log normal distributions. In all these cases, the mafficdlty is that there are paths in the parameter space with
location parameter tending to smallest observation alohigiwthe likelihood becomes infinite. Unfortunately in such
situations estimates of other parameters becomes intemisisee Harter and Moord][ Further they reiterated the view

of Huzurbazar21] that no stationary point (and hence no local maximum) cawide a consistent estimator, when the
concerned distribution is J-shape, as in the case of Walndllgamma distribution when the shape parameter is less than
unity. Thus, whether a global or a local maximum is considekLE is bound to fail in some situations.

In order to overcome these shortcomings and having betf@icapility in such types of situations which possesses
properties similar to MLE, Cheng and Amid][introduced the Maximum Product of Spacings (MPS) methodras
alternative to MLE for the estimation of parameters of comtius univariate distributions. They proposed to replhee t
likelihood function by product of spacings and claimed tihaétains most of the properties of the method of maximum
likelihood. Ranneby?] independently developed the same method as an approgimtatthe Kullback-Leibler measure
of information. The approach of Cheng and Amin is more intaly attractive and can, to some extent, be regarded as a
pragmatic solution to the problems linked with likelihooHt{erington, [L1]), but that of Ranneby is more powerful
theoretically and allows the derivation of the propertiésMPS estimators. It may be noted that MPS method is
especially suited to the cases where one of the parametearhasknown shifted origin, as it is the case in three
parameter lognormal, gamma and weibull distribution oh®distribution having J-shape.
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The above discussed problem related to likelihood fundfidf) is not the matter of concern in classical paradigm
only, but it may create problem in the derivation of a postediensity function under Bayesian set up. It is well known
that the LF is the probability of observing the given samplee principle of Maximum likelihood states that the MLE of
parameter is that value of parameter which maximizes thedifigod function i.e it is the value that makes the observed
data the “most probable”. In other words, MLE procedure sidjuhe shape of the product of density by tuning the
parameter so that its value is maximized for the given sawvgilges. In other words we try to maximize the product of
density based on each observation i.e the joint densityravhe the principle of MPS is based on the product of
successive spacings of observations. It is the productaligiilities of a new observation falling between each of the
two neighbouring sample points . It may be noted here thdt bbthese methods rely on joint probabilities of sample
observation i.e they work on almost similar principle. Téfere, it seems logical to use product spacing (PS) as an
alternative to traditional LF in Bayesian paradigm. It isrthevhile to mention here that under classical set up MPS
method provides the estimators which possess most of the &mmple optimum properties like sufficiency, consistency
and asymptotic efficiency being possessed by MLE (for detaie Cheng and Amird]).

In certain cases, it is possible to obtain the distributidreédaviour of MPS estimator for all sample size<.g. for
the uniform distribution with unknown endpoints, the MPSireator is precisely the minimum variance unbiased
(MVU) estimator and its distribution is known exactly. Foganeral distribution, however, the small sample behaviour
of MPS estimators, like ML estimators, is usually difficudtabtain. However, the asymptotic properties of consistenc
and asymptotic efficiency are readily obtainable.

The consistency of MPS estimators have been discussedait bigtCheng and Amin16] and it is concluded that
MPS estimators, when exit are at least asymptotically asieffi as MLE . For distribution where the end points are
unknown and the density is J-shaped, the MLE is bound toldatiMPS gives asymptotically efficient estimators. MPS
estimators may not necessarily be function of sufficiertisdies in general. However, for the case when the support of
density functions are known, MPS estimator will show the saamymptotic properties as ML estimators including
asymptotic sufficiency. Through examples Cheng and Anijnahd Nan Zhang 15 have illustrated unbiasedness,
consistency and efficiency properties of MPS. The invaggmoperty of it is same as that of MLE, this is shown by
Coolen and Newby1[3].

The objective of the present study is to propose the use oER@ alternative to usual LF in Bayesian paradigm and
study the performance of the estimator thus obtained. Hsrphrpose, we have considered the problem of point
estimation of the parameter of exponential distributiomg$S.

The organisation of rest of the paper is as follows:
Section 2, discusses PS briefly. Estimation proceduresiscassed in section 3. It includes the development of point
estimators and asymptotic confidence intervals based omB& glassical set up. Further, under Bayesian set-up, PS is
proposed as an alternative to traditional likelihood fiorcand Bayes estimators have been obtained. A comparison of
the estimators based on simulation study is provided iricsedt Finally, the concluding remark is given in section 5.

2 Product of Spacings

Consider that a random sampie o, - - - , X Of size n is available from a univariate distributiorxf) with corresponding
probability density function % 6) and it is required to estimat®. The density is assumed to be strictly positive in an
interval @, b) and zero elsewhereg# -0 andb=c0 may also be taken). Now K@) and f(x|0) are equal to zero for< a,
but Fx|8)=1. and & 6)=0 forx > b . Let ., denote thé'" order statistics. The spacin®és are defined as follows:

D1 =F(X1n,0) , Dny1 =1—F(Xwn, 8) , Di = F(Xin, ) — F(Xi—1n,0),i = 2,3,---,n as the spacings of the sample.
Clearly the spacings sum to unity igD; = 1. The PS is defined as the productnfs i.e. S :n{‘jll Di. The average

spacing, denoted by G, can be measured by the geometric ni¢la@ spacings i.eG = (S)Fll. Naturally G will be
maximum if all D;’s are equal i.eF (x;.n) are equally spaced in the interval [0,1]. If sample in hanth@st probable
sample (as assumed in justifying the use of likelihood fiamjt it is expected that spacings induced by the samplewill
more or less equally spaced. MPS method chooses that vallue parametef as its estimate which makes the observed
spacings as uniform as possible. Thus one can choose a Yafuetich provides the maximum for S or G. Cheng and
Amin [1] proposed maximizing G as a method of parameter estimdtianexpected to be as efficient as ML estimation.
If there are ties in the data an anticipated difficulty mageaiin drawing inferences based on PS. In such situations,
theD;’s corresponding the tied observations would be zero riegpilito the corresponding G and S to be zero. One can
argue at this stage that at least theoretically there is naaof ties in the data obtained from a continuous disidhut
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but practically we often encounter with the data set whicmgnses of repetition of values in the data. But the problem
of ties poses no serious problem because it can be easilgtbag discussed below:

Suppose that among tlma)bservationsxl,xz, .-+, Xp there are m distinct values expressed in ascending ordbef t
magnitude agj:m, j = 1,2,--- ,m. Denote 'a’ byyo:m and 'b’ by ymi1:mi.€.F (Yom) = 0 andF (Ymy1m) = 1 Letl; denote

the number of observations {§;_1.m, yj:m] i.€. exactlylj out of n observations are equalign, naturally, Z lj =n.Toget

rid of the problem of ties, one can suggest simply to dropepeated observations use sample of dlstmct observaiiens,
usey;:m’'s only. However, it will result into reduction of the samglize from n to m, leading to the loss of information. In
order to retain the maximum information, we can use the ntesluggested by Shao and Hal6][ They argue that since
the observations are i.i.d., each of théied observations has the same probability of occurrentves,Ttheir contribution
to the product spacings should be equal i.e. correspondire@th of thd; observations, the contribution should be

w so that the sum of the contributions due to these obsensat@main[F (yj:m) — F(yj—1.m)|. Hence, the

J
sum of the contributions due to all the n observations rem@gjual to 1. In light of the above, the product spacing, in the
presence of ties, can now be easily modified and can be expresterms ofyj:, as the following (assuminigy1 = 1):

mil F(Yj:m)_F(YJ—l:m) '

s=T] ;

=1

(1)

The other way to tackle this problem would be to considerdlfiahe equal observations are in fact unequal but differ
by the amount smaller than the least count of the measureandritence noted as equal. Suppose two observations x and
y are equal, i.e. x=y. Then we may consider that actually theeosations are x and x +dx (dx tending to zero). Hence,
such tied observation should contribute to the PS equatiglip (F (X+ dx) — F(x)) which can be approximated by f(x)
where f(.) denotes the density function corresponding fthies the modified PS can be given as follows:

S= |‘| Viom) = F (¥—2m)] [F(jm)] (2)

It may be seen that If = 1 for all j’s, the above expressions reduce to the original expression.

3 Point estimation of the Parameter

In this section, we shall try to develop classical as well agd? estimators of the parameter of the exponential disiit.
The estimators thus obtained will be compared with eachrothe

3.1 Estimation under classical Paradigm

Under classical paradigm, a number of estimation procea@@vailable. But we shall be considering here only two of
such methods, namely MLE and MPS.

3.1.1 Maximum likelihood estimator

The likelihood function for a sample of size n, say,Xo,---,X,, drawn from exponential distribution having pdf
f(x, 0)=0e % is given by

ng 92X
L(x,8)=6"% i1 x>0,0>0 3)

After differentiating the normal equation with respect strgmete® and then equating it to zero, we get the well known
estimate o as

b (4)
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3.1.2 Maximum Product of spacings estimator
The CDF of the exponential distributionfgx)=1— e~ * and thus the, spacings can be defined as follows:
Dy = F (Xyn) = [1— e—exl;n}
Dnt1) = 1—F(Xun) = [1_ e—an;n}

Di = F(X:n) — F(Xi—1n) = [eiexifl:n - eiexi:n}

Such thaty D; = 1, MPS estimator choosé&swhich maximizes the product of the spacings.

n+1
S0p = []01) =a-e Zonya—e ... ©)
i=
Taking the logarithm of S we get,
n+1
G=Y InD; (6)
2"
n
G=|In(1—e %) ;m(e*fm—rn — e %%n) — Gxpn 7
i=

After differentiating the above equation with respect togmaeter@ and then equating it to zero, we get the normal
equation as follow:
Xpne P Lo (ein) — x_gn(e%-im)
1—e Oxin & (e*exi—l:n — e—exi:n)

—Xn=20 (8)

The above normal equations cannot be solved analyticdligrdfore, we can use any iterative procedure. We propose to
use Newton-Rapson method.

3.2 Asymptotic confidence intervals

In this section, we propose the asymptotic confidence iatensing PS, as it was mentioned by Cheng and Adiin [
Anatolyevin and Kosenok1l], Singh et.al. 22 and Ghosh and Jammalamadalg} fhat the MPS method is
asymptotically equivalent to MLE. Keeping this in mind, wayrpropose the asymptotic confidence intervals using PS.
The exact distribution of the PS cannot be obtained explidiherefore, the asymptotic properties of PS can be used to
construct the confidence intervals for the paraméterAnatolyevin and Kosenokl1f] show mathematically that
Bvps = BuL +0(n‘%) i.e. it implies that both are asymptotically equivalent drehce the asymptotic or bootstrap
inference aroun@ based on MPS estimator may be carried out by utilizing the Bilngptotics.

Using the concept of large sample theory we may write the pgsytic confidence interval. We obtain the information
matrix I(é). We may write the asymptotic confidence interval using MISE a

CluL = [éML + 1'96\/V(9|\A/|L)} )

and utilizing the concept of Anatolyevin and Kosenok [14§ may write the asymptotic confidence interval using PS as

C.lps= [épsi 1.96 /V(G,;g)] (10)
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3.3 Bayesian Estimation

In this section, we have developed the Bayesian estimatiocegure for the parametérand HPD interval using PS
as an alternative to the usual likelihood. We have takendkea from a note due to Coolen and Newh|[ Keeping
his idea in mind we have derived the expressions. The proghatings i.€5(0|x) = |‘|i”i11Di is used in place of the
traditional likelihood. In Bayesian analysis, the paraenef interest is assume to be a random variable having soime pr
distribution. The prior distribution is selected on theibad type of information available to us. We wrifg6) for prior
density and3(x|0) as PS. According to Bayes theorem, we may write the postéeiosity using PS as

S(x/6)p(6)
"o T siepierde .

3.3.1 Bayesian Estimation of Paramefleusing PS

In this section, we have provided prior and posterior distiion for considered model for parametrHere, we have
considered both informative as well as non informative ggridVe have chosen Gamma prior as informative prior and it
can be justified on the basis of its flexibility. When we havldlior no information about the parameter, a
non-informative prior should be used. Jeffery’s prior igaf the general class of non-informative priors. Severtdans

have given justification for using Jaffery’s prior for an exgntial family. For this reason we are motivated to take
Jaffery’s non-informative prior for the parameter.

Bayes estimator of using an informative prior
Here, we take an informative prior distribution for the pagder@ as the Gamma prior having pdf

Ba eaflefﬁs

p1(0) = a,B >0 (12)

I(a) -

Then the posterior can be written as,
m(6]x) 0 S(x|8)py(6)

m(6]x) O q g O%-1n _ g %n| | ga—1egBO (13)
al

Bayes estimates @ based on the squared error loss function (SELF) is the postaean and can be derived as
E(6l9 ~ [ 6 m(6lx) do
6=0

Substituting the value afs (6|x) from equation (11), we get

E(9|g)=/m <H[e9ﬁlrn—e9“:“}>9"epe de (14)

6=0
Bayes estimator of using a non-informative prior
The pdf of the Jaffery’s non-informative prior distributifor the parametef is given as

1
p12(6) O 7 6>0 (15)
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Thus, the posterior in this case can be written as,

m2(6|x) O <n+|'l1 [e‘e"‘*lin —e‘e"“”D % (16)

Hence, the Bayes estimatestbtinder squared error loss function (SELF) can be derived as

T [+l
E(6)x) = ( —60%-1n _ g=6%in ) do (17)
X GZO ﬂ [e e }

3.3.2 Bayesian Estimation of Paramefieusing usual likelihood
Bayes estimator of using an informative prior
Here, we take an informative prior distribution for the pasier6 as the Gamma prior whose pdf is given in equation

(12). Combining the likelihood function with the considégrior density of parametét, we get the posterior density of
6 as,

Tpa(6|x) 0 "4~ te 02X +F) (18)
Hence, the Bayes estimatesétinder SELF can easily obtained as
N Frn+a+1
q= rn+a+l) (19)

(in + B)n+a+l

Bayes estimator of using a non-informative prior

In this subsection, we take a non-informative prior disttibn for the parametef as the Jaffery’s prior whose pdf is
given in equation (15). Combining the likelihood functioittwthe considered prior density of paramefeiwe get the
posterior density o as,

To2(6]x) 0 8" te %12 (20)
and the Bayes estimates @under SELF as
~ rn+1)
boe = (g5 @

It may be noted here that the solution of the Bayes estimating PS are not analytically possible, butin this era, it is
not a matter of concern due to advancement of numerical rdstioosolve any numerical equation or integral. Therefore,
we use Monte Carlo Markov Chain Method to solve the integvhich is described as follows.

3.3.3 Gibbs Sampling Method

In this subsection, we discuss about the Gibbs samplingegioe to generate sample from posterior under the
considered prior for the parame@yfor more details about MCMC method see Gelfand and SmitB@Land Singh et

al. [19]. Thus utilizing the concept of Gibbs sampling procedure, generate samples from the posterior density
function. For implementing the Gibbs algorithm, the fulhditional posterior densities of parametfor informative
and non informative prior are.

n+1
7T11(e|l) O <I_l [e‘e"iflrn — e_exi:n}> ea—le—ﬁe (22)
=
and
n+l[ ox o } 1
7T12(6|x) |:| e i—1n —e i:n - (23)
iIJ 0
respectively.

The simulation algorithm consists of the following steps.
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Step 1 :Start with j = 1 and the initial values p6°}

Step 2 :Generaté from (13) and (16) respectively.

Step 3 :Obtain the posterior samlg 6,,- - - , By by repeating step 2, M times.

Step 4 :The Bayes estimates of the param@tander SELF of the parameters can be obtained as the meangafrikeated
samples from the posterior densities i.e.

M
6 = [En(6]x)] = <% kzlek> (24)

Step 5 :After extracting the posterior samples, we canyasitstruct the HPD credible intervals fér For this purpose,
order8’s asf; < 6, < --- < By. Then construct all the 100 — 3) % credible intervals 06 as

(611, Oma-py+11) » » (Bmp) Owy)

Here,[x] denotes the largest integer less than or equal Then, the HPD credible interval is that interval which Hees t
shortest length.

4 Comparison of estimators

In this section, we compare the various estimators obtadmeection 3. This section consists of the simulation regolt
compare the performance of the classical and Bayesianagtimprocedures. The comparison between the PS, MLEs and
Bayes estimators using PS and Bayes estimators using uslgddod of the model parameter has been performed. The
comparison is based on the risks (average loss over sangue)smder SELF. We have also compared the average lengths
of the asymptotic confidence intervals and HPD crediblerviais. Here, we investigate the performance of the proposed
estimators through a simulation study. For this purposegeveerate the sample of sizes- 20 (small), 30 (medium), and

50 (large) from exponential distribution for fixed valuesfof= 2. Asymptotic/HPD intervals and corresponding coverage
probabilities (CP) were also calculated for different wabf 6 ( 6 = 0.5,1,2,3). For more detail about CP readers are
requested to see Krishna and Kun&s][

The choice of the hyper parameters is the main issue in theeddmy analysis. Berged 7] argues that when
information is not in compact form, it is better to perforne Bayesian analysis under the assumption of non-informativ
prior. For the choice of hyper parameters of informativepnive have taken prior means equals to the true values of the
parameter with varying prior variances. The prior variaimgticates our confidence in the prior guess. A large prior
variance shows less confidence in prior guess i.e. the prtritalition is relatively flat. On other hand, small prior
variance indicates greater confidence in prior guess. snstiidy, we have taken prior variance equals to 0.5 (small) an
100 (large).

For obtaining the Bayes estimates, we generate samplestfr@mposterior off using the algorithm discussed in
Section 3. First thousand MCMC iterations (Burn-in peribdye been discarded from the generated sequence. We have
also checked the convergence of the sequencésfof its stationary distributions through different stagivalues. It
was observed that all the Markov chains reached to the sttiacondition very quickly.

For the unknown model parameter, we have computed MLEs, RISBayes estimates under informative and
non-informative priors along with their asymptotic confide/HPD intervals. We repeat the process 1000 times, and the
average estimates, risk of the estimators, and averageleon&/HPD intervals are recorded.

On the basis of the simulated results which are summaris@dbites 1-3, the following conclusions can be made as
follows:

() The risk of all the considered estimators and Bayes egtins decrease as sample size n increases, which is quite
obvious. This confirms that all estimators are consistent.

(ilThe Bayes estimator based on PS perform well (in the esarfshaving smaller risk) in comparison to Bayes
estimator based on usual likelihood (UL) and other considestimators. It is also observed that classical estimator
based on PS perform better than Bayes estimator under UL &fd.M

(i) The risk of the all considered estimators increaséascreases but trend of the associated risk remains sange. It i
also noticed that risk of the proposed Bayes estimators atevery much affected by the variation of hyper
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parameters. Table 2 shows slight changes in risk of the atimmwith variation of prior variance (small, moderate,
large). Thus in all the considered cases, the risk of thenastirs can be ordered in the following way;
Risk (Bayes PS) Risk (classical PSx Risk (Bayes ULX Risk (MLE ).

(iv)The HPD credible intervals have shorter average letigdin the asymptotic confidence intervals. Further more, for
fixed value of#, it is observed that the average length of confidence inteleereases as sample sizéncreases
and the HPD credible intervals based on PS provide smatigtheas compared to Bayes estimator based on UL and
other considered estimators. It is interesting to note beaecoverage probability i.€(6. < 6 < 6,) for interval
estimators based on PS are more than prefixed confidenceainfidere it is obtained as 100% in all the considered
cases). However, the coverage probability for other iratisrare either equal to prefixed value (95%) or slightly less
than that, see Table 1.

(v)Itis observed from table 2 that, the average length ofrastgtic/HPD intervals increases as the valu@ daficreases,
but the HPD credible intervals based on PS maintain theiesoiity in term of the smaller average length among
all considered estimators. Further, it is noticed that ime@ases Bayes estimators using PS attains 100% coverage
probability for some value of under different priors.

Similar trend has been observed in case of non informatiee plso.

Table 1: Average estimates (in the first row of each cell) under SELiRguson-informative prior and corresponding risks, Cogera
probabilities and corresponding confidence intervals efestimators 08 for fixed values 0 = 2 with varying sample size i

n estimate mse CI/HPD CV percentage
mle 2.12306 0.24868 (1.1884,3.0576) 94.2053
20 mps 1.87548 0.19869 (1.0535,2.6974) 92.0530
Bayesml 2.11296 0.22533 (1.2414,3.0681) 94.5364
Bps 1.87466 0.02479 (1.2975,2.4047) 100.0000
mle 2.07197 0.15421 (1.3251,2.8187) 94.6000
mps 1.89446 0.13614 (1.2165,2.5723) 91.3000

30 Bayesml 2.06254 0.14167 (1.3600,2.8232) 95.6000
Bps 1.89562 0.01724 (1.4245,2.3343) 100.0000
mle 2.03955 0.09092 (1.4673,2.6117) 94.2053
50 mps 1.92222 0.08526 (1.3894,2.4550) 92.0530

Bayesml 2.02355 0.09075 (1.4915,2.6116) 94.5364
Bps 1.93850 0.00789 (1.5659,2.2842) 100.0000

5 Concluding Remarks

In this paper, we have proposed PS as an alternative to Wi&dreal likelihood in Bayesian set up. We have found that
Bayesian procedure under PS provides the better estimatesraaller HPD interval of the unknown parameter of
exponential model. On the basis of above simulated resudtdiadings, we recommend to use the PS as an alternative to
traditional likelihood in Bayesian set up . The methodoldgyeloped in this paper will be very useful to the reseassher
engineers, and statisticians for the further advancemerthis area. It motivated the researchers to use PS as an
alternative to UL to get more efficient estimators. For faetisame methodology has been considered by us for some
other lifetime models and work is under progress for Geirgdlinverted exponential distribution (GIED) and Flegibl
Weibull distribution.
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Table 2: Coverage probabilities and corresponding confidenceviat’HPD intervals of the estimators @for fixed values of sample

sizen = 20 with different values o8 i.e 6 = 0.5, 1, 2, 3 with different prior scheme.

theta prior scheme mle mps Bmle Bps

0.5 1 92.9(0.3086,0.7380)  88.3(0.2566,0.6674)  94.76@F07559)  91.4(0.3037,0.5546)
2 96.4(0.2632,0.7906)  88.5(0.2609,0.6702)  95.4(0.309261)  100(0.3564,0.6649)

3 95.0(0.2890,0.7632)  88.6(0.2597,0.6694)  96.4(0.307596)  100(0.3266,0.6065)

4 95.7(0.2528,0.7958)  87.4(0.2591,0.6674)  94.0(0.308373)  100(0.3488,0.6571)

1 1 95.8(0.5097,1.5807) 84.6(0.5188,1.3284)  94.7(0.d19906)  100(0.6858,1.2876)
2 81.9(0.7410,1.3579) 86.6(0.5207,1.3334)  95.7(0.626802)  85.0(0.5149,1.1595)

3 91.3(0.6181,1.5202) 87.9(0.5307,1.3590)  94.8(0.@25%21) 99.6(0.6382,1.1705)

4 92.4(0.6001,1.5195)  87.5(0.5256,1.3458)  94.0(0.619205)  100(0.6423,1.1877)

2 1 94.2(1.1884,3.0576) 92.0 (1.0535,2.6974)  94.5(1.240@81) 100 (1.2975,2.4047)
2 90.6(1.2798,2.9449) 87.7(1.0481,2.6836)  97.4(1.328264) 100(1.5171,2.3704)

3 90.3(1.3316,2.8558)  88.5(1.0355,2.6636)  95.9(1.220854)  75.7(1.1702,2.0832)

4 91.0(1.2958,2.8866) 87.1(1.0377,2.6570)  96.1(1.20870) 95.2(1.1639,2.1047)

3 1 89.5(1.9618,4.3600) 87.2(1.5687,4.0167)  95.0(1.848@46) 78.8(1.7682,3.2064)
2 95.3(1.6492,4.6123)  86.9(1.5539,3.9788)  98.7(2.000@40)  100(2.8159,4.1089)

3 95.1(1.6234,4.6323)  87.5(1.5521,3.9741) 96.1(1.8505839) 100(2.1087,3.8440)

4 92.0(1.8405,4.5046) 87.5(1.5744,4.0312)  94.5(1.865%73)  95.7(1.8557,3.3923)

Table 3: Average estimates (in the first row of each cell) under SElifguiimformative prior and corresponding Risks (in brackefs
0 for fixed values of sample size= 20 for different values 06 i.e 6 = 0.5, 1, 2, 3 with different prior scheme and prior variance.

prior scheme mle mps Bmle Bps
0.5 1(00) 0.5233(0.0146)  0.4620(0.0125) 0.5232(0.0144)4285(0.0055)
2(var=.5) 0.5269(0.0157)  0.4656(0.0129) 0.5255(0.0146)5238(0.0012)
3(var=8) 0.5261(0.01395) 0.4645(0.0116) 0.5260(0.0138)4737(0.0032)
4(var=100) 0.5243(0.0158)  0.4632(0.0132) 0.5243(0.p158.5202(0.0059)
1 1(00) 1.0452(0.0669) 0.9236(0.0569) 1.0452(0.0669) 178(D.0174)
2(var=.5) 1.0494(0.0620) 0.9271(0.0523) 1.0399(0.0486)6557(0.0105)
3(var=8) 1.0692(0.0746)  0.9449(0.0577) 1.0679(0.0732)90&0(0.0106)
4(var=100) 1.0598(0.0697)  0.9357(0.0559) 1.0598(0.p696.9249(0.0128)
2 1(00) 2.1230(0.2486)  1.8754(0.1986) 2.1129(0.2253) 746@.2431)
2(var=.5) 2.1124(0.2609) 1.8658(0.2125) 2.0558(0.2143)8269(0.0167)
3(var=8) 2.0937(0.2288)  1.8491(0.1945) 2.0887(0.2145)5952(0.0238)
4(var=100) 2.0912(0.2443) 1.8473(0.2093) 2.0908(0.429.6183(0.1512)
3 1(00) 3.1609(0.6045)  2.7927(0.4967) 3.1609(0.6045) 677{.2972)
2(var=.5) 3.1308(0.5278)  2.7664(0.4566) 3.0292(0.4378)2104(0.0243)
3(var=8) 3.1279(0.5439)  2.7631(0.4678) 3.1121(0.4695)9965(0.0448)
4(var=100) 3.1725(0.6273)  2.8028(0.5094) 3.1708(0.5193.6252(0.1581)
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