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1 Introduction

We are interested in the finite element approximation of the noncoercive problem asso-
ciated with Hamilton-Jacobi-Bellman equation (HJB): find u ∈ W 2,∞(Ω) such that





max
1≤i≤M

(Aiu− f i) = 0 in Ω,

u = 0 on Γ,

(1.1)

where Ω is a bounded open set of RN , N ≥ 1 with smooth boundary Γ , A1,A2, . . . ,AJ

denote uniformly second order elliptic operators assumed to be noncoercive, and f1, . . . ,

f M are M regular functions.
Problems of type (1.1) arise in many applications: stochastic control, management and

economy, mechanics and optics, . . . . For example in stochastic control the solution of
(1.1) characterizes the infimum of the cost function associated to an optimally controlled
stochastic switching process without costs for switching (see [7]).

From the mathematical analysis point of view, this problem has been extensively stud-
ied in the eighties (see [3,6,8,9]). For numerical analysis and computational aspects of HJB
equations and related variational inequalities (VI) and quasivariational inequalities (QVI)
problems, we refer to [1, 2, 5, 10–12].
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In the present paper we propose to investigate furthermore the numerical analysis of the
associated noncoercive problem.

More precisely, we show that both the continuous and the piecewise linear approximate
solutions are fixed points of contractions in L∞(Ω). As a result of this, we derive L∞-
error estimate of the approximation.

The paper is organized as follows. In section 2, we state the continuous problem and
characterize its solution as the unique fixed point of a contraction. In Section 3, we define
the discrete problem and characterize its solution as the unique fixed point of a contraction.
In Section 4, we derive an L∞- error estimate of the approximation.

2 The Continuous Problem

We begin by laying down some notations and assumptions that will be needed in this
paper.

2.1 Notations and assumptions

We define second order operators

Ai =
∑

1≤ j,k≤N

ai
jk(x)

∂2

∂xj∂xk
+

N∑

k=1

bi
k(x)

∂

∂xk
+ ai

0(x) (2.1)

such that

ai
jk(x), bi

k(x), ai
0(x) ∈ C2(Ω̄), x ∈ Ω̄

ai
jk = ai

kj ; ai
0(x) = β > 0 ; x ∈ Ω

∑

1≤ j, k≤ N

ai
jk(x)ξjξk = ν | ξ |2, ν > 0 , ∀x ∈ Ω̄, ∀ξ ∈ RN ,

and the operators

Bi =
∑

1≤ j,k≤N

ai
jk(x)

∂2

∂xj∂xk
+

N∑

k=1

bi
k(x)

∂

∂xk
+ (ai

0(x) + λ), (2.2)

where λ > 0 is large enough so that Bi = Ai + λI are strongly coercive on H1(Ω).
We also define the associated bilinear forms

ai(u, v) =
∫

Ω

( ∑
1≤ j,k≤N

ai
jk

∂u

∂xj

∂v

∂xk
+

N∑
k=1

bi
k

∂u

∂xk
v + ai

0(x)uv

)
dx (2.3)
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and
bi(u, v) = ai(u, v) + λ(v, v), (2.4)

where (. , .) denote the inner product in L2(Ω).
Finally, let f 1, . . . , f M be nonnegative right-hand sides in W 2,∞(Ω).

2.2 Coercive HJB equation

Let g1, . . . , gM be given functions in W 2,∞(Ω), and Bi be the operators defined in

(2.2). The following problem




max
1≤i≤M

(Biζ − gi) = 0 in Ω

u = 0 on Γ
(2.5)

is called coercive HJB equation.

It is shown in [9] that (2.5) can be approximated by the following weakly coupled
system of QVIs





bi(ζi, v − ζi) = (gi, v − ζi) ∀v ∈ H1
0 (Ω)

ζi ≤ k + ζi+1 , v ≤ k + ζi+1 , i = 1, . . . , M

ζM+1 = ξ1,

(2.6)

where k is a positive constant. This is, precisely, stated in the following theorem.

Theorem 2.1 (cf. [9]). The system (2.6) has a unique solution which belongs to
W 2,p(Ω))M , 2 ≤ p < ∞. Moreover, as k → 0, each component of this system con-
verges uniformly in C(Ω̄) to the solution ζ of HJB equation (2.5), and ζ ∈ W 2,∞(Ω).

2.3 Characterization of the solution of noncoercive HJB equation as the unique fixed
of a contraction

One can observe that the noncoercive HJB equation can be solved by considering the
following equivalent formulation





max
1≤i≤M

(Biu−F i(u)) = 0 in Ω,

u = 0 on Γ,

(2.7)

where
F i(u) = f i + λu.

This can be achieved by characterizing the solution of HJB equation (1.1) as the unique
fixed point of a contraction.
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Indeed, let us introduce the mapping

T : L∞(Ω) → L∞(Ω) (2.8)

w → Tw = ζ

where ζ is the unique solution of the coercive HJB equations





max
1≤i≤M

(Biζ −F i(w)) = 0 in Ω,

ξ = 0 on Γ,
(2.9)

with F i(w) = f i + λw .

Note that the F i(w)′s play the role of the gi’s in (2.5). So, thanks to Theorem 2.1, (2.9)
has a unique solution. It is also clear from the same theorem that (2.9) can be approximated
by the following system of QVIs





bi(ζi, v − ζi) = (F i(w), v − ζi) ∀v ∈ H1
0 (Ω)

ζi ≤ k + ζi+1 , v ≤ k + ζi+1 , i = 1, . . . , M

ζM+1 = ξ1

(2.10)

and we have

lim
k→0

∥∥ζi − ζ
∥∥

C(Ω)
= 0,∀i = 1, 2, . . . , M.

Lemma 2.1. Let w, w̃ be in L∞(Ω) and (ζ1, . . . , ζM ) be the corresponding solutions to
system (2.10) with right-hand sides F i(w) = f i +λw and F i(w̃) = f i +λw̃, respectively.
Then we have

max
1≤ i≤M

∥∥∥ζi − ζ̃i
∥∥∥
∞
≤ λ/ (λ + β) ‖w − w̃‖∞ .

Proof. Let us denote by ‖.‖∞ the norm of the space L∞(Ω) and set

Φi = 1/ (λ + β) ‖ F i(w)−F i(w̃) ‖∞ .

Then

F i(w) ≤ F i(w̃)+ ‖ F i(w)− F̃ i(w̃) ‖∞
≤ F i(w̃) +

(
ai
0(x) + λ

)
/ (λ + β) ‖ F i(w)−F i(w̃) ‖∞

≤ F i(w̃) + (ai
0(x) + λΦi).

So, making use of monotonicity result with respect to right-hand side for system of
QVIs related to HJB equation (see [5]), we get

ζi ≤ ζ̃i + Φi.
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Similarly, interchanging the roles of w and w̃, we also get

ζ̃i ≤ ζi + Φi.

Thus
‖ ζi − ζ̃i ‖L∞(Ω)≤ Φi,

which completes the proof.

Theorem 2.2. Under conditions of Lemma 2.1, the mapping T is a contraction.

Proof. Indeed, Let ζ = Tw and ζ̃ = Tw̃ be solutions to HJB equation (2.9) with right-
hand sides F i(w) = f i + λw and F i(w̃) = f i + λw̃, respectively. Then, making use of
both Theorem 2.1 and Lemma 2.1, we have

‖Tw − Tw̃‖∞ =
∥∥∥ζ − ζ̃

∥∥∥
∞

≤ ∥∥ζ − ζi
∥∥

L∞(Ω)
+

∥∥∥ζi − ζ̃i
∥∥∥
∞

+
∥∥∥ζ̃i − ζ̃

∥∥∥
∞

≤ ∥∥ζ − ζi
∥∥
∞ + max

1≤ i≤M

∥∥∥ζi − ζ̃i
∥∥∥
∞

+
∥∥∥ζ̃i − ζ̃

∥∥∥
∞

≤ lim
k→0

∥∥ζ − ζi
∥∥
∞ + max

1≤ i≤M

∥∥∥ζi − ζ̃i
∥∥∥
∞

+ lim
k→0

∥∥∥ζ̃i − ζ̃
∥∥∥
∞

≤ λ/ (λ + β) ‖w − w̃‖∞ ,

Thus, T is a contraction, and therefore, the solution of HJB equation (1.1) is its unique
fixed point.

3 The Discrete Problem

Let Ω be decomposed into triangles, τh denote the set of all those elements, and h > 0
be the mesh size. We assume that the family τh is regular and quasi-uniform. Let

Vh =
{
v ∈ C(Ω̄) ∩H1(Ω) such that v/K ∈ P1

}

be the finite element space, where K is a triangle of τh and P1 is the space of polynomials
with degre ≤ 1. Let {ϕi}, i = 1, . . . , m(h), be the basis functions of Vh, and Ai the
matrices with generic coefficients

(Ai)ls = ai(ϕl, ϕs), l = 1, . . . ,m(h); 1 ≤ i ≤ M. (3.1)

Let us also define the discrete right-hand sides

F i = (f i, ϕl), l = 1, . . . ,m(h); 1 ≤ i ≤ M (3.2)

and the usual restriction operator rh

∀v ∈ C(Ω) ∩H1
0 (Ω) , rhv =

m(h)∑
l=1

vlϕl. (3.3)
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3.1 The discrete HJB equation

Given the matrices Ai, and the discrete right-hand sides F i defined above, the discrete
Hamilton-Jacobi-Bellman equation consists of solving the following problem: Find uh

∈ Vh solution to
max

1≤i≤M

(
Aiuh − F i

)
= 0. (3.4)

As in the continuous case, we shall handle the noncoercive problem by transforming (3.4)
into

max
1≤i≤M

(Biuh − F i(uh) = 0, (3.5)

where
(F i(uh))l = (f i + λuh, ϕl), l = 1, . . . , m(h), 1 ≤ i ≤ M,

and Bi are the matrices defined by

(Bi)ls = bi(ϕl, ϕs), l = 1, . . . , m(h), 1 ≤ i ≤ M. (3.6)

In the sequel of the paper a discrete maximum principle (d.m.p) assumption will be needed.
More precisely, the matrices Bi will be assumed to be M-matrices (see [4]).

As in the continuous case, we shall characterize the solution of the discrete HJB eqution
as the unique fixed point of a contraction. Let us first define the discrete counterpart of (2.5)
by

max
1≤i≤M

(Biζh −Gi) = 0 (3.7)

with
Gi = (gi, ϕl), l = 1, . . . ,m(h); 1 ≤ i ≤ M. (3.8)

It is shown in [5] that (2.5) can be approximated by the following discrete weakly coupled
system of QVIs





bi(ζi, v − ζi) = (gi, v − ζi) ∀v ∈ Vh

ζi ≤ k + ζi+1
h , v ≤ k + ζi+1

h , i = 1, . . . , M

ζM+1
h = ξ1

h.

(3.9)

Theorem 3.1 (cf. [5]). Let the dmp hold. Then, the system (3.9) has a unique solution.
Morover, as k → 0, each component of the solution of this system converges uniformly in
C(Ω̄) to the solution ζh of (3.7).

3.2 Characterization of the discrete solution of noncoercive HJB equation as a fixed
point of a contraction

Let (F i(w))l = (f i + λw, ϕl), l = 1, . . . ,m(h). We introduce the mapping

Th : L∞(Ω) → Vh (3.10)
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w → Thw = ζh

where ζh is the unique solution of the following discrete coercive HJB equation

max
1≤i≤M

(Biζh − F i(w)) = 0 (3.11)

with (F i(w))l = (f i + λw, ϕl), l = 1, . . . , m(h).
Note that the F i(w)′s play the role of the Gi’s in (3.7). So, thanks to Theorem 3.1,

(3.11) has a unique solution. It is also clear from the same theorem that (3.11) can be
approximated by the following system of QVIs





bi(ζi
h, v − ζi

h) = (F i(w), v − ζi
h) ∀v ∈ Vh

ζi
h ≤ k + ζi+1

h , v ≤ k + ζi+1
h , i = 1, . . . , M

ζiM+1
h = ζ1

h

(3.12)

and we have limk→0

∥∥ζh − ζi
h

∥∥ = 0.

Lemma 3.1. Let the dmp hold. Then we have

max
1≤ i≤M

∥∥∥ξi
h − ξ̃i

h

∥∥∥
∞
≤ λ/(λ + β) ‖w − w̃‖∞ , ∀w, w̃ ∈ L∞(Ω).

Proof. Exactly the same as that of Lemma 2.1.

Theorem 3.2. Under conditions of Lemma 3.1, the mapping Th is a contraction.

Proof. Exactly the same as that of Theorem 2.2.

3.3 L∞-error estimate

Now, we show that the fixed point approach developped in this paper leads to an L∞

quasi-optimal convergence of the approximation. For that end, let us first introduce the
following coercive discrete HJB equation

max
1≤i≤M

(
Biζ̄h − F i(u)

)
= 0, (3.13)

where (F i(u))l = (f i + λu, ϕl), l = 1, . . . , m(h), and u is the continuous solution of the
HJB equation (1.1). So, in view of (3.10), we clearly have

ζ̄h = Thu. (3.14)

Therefore, as problem (3.13) is the discrete counterpart of problem (2.7), making use of [2],
we have the following error estimate.
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Theorem 3.3 (cf. [2]).
‖ ζ̄h − u ‖∞ ≤ Ch2 |log h|3 , (3.15)

where C is a constant independent of h.

Theorem 3.4. Let u and uh be the solutions of HJB equations (1.1) and (3.4), respectively.
Then

‖ u− uh ‖∞≤ Ch2 |log h|3 ,

where C is a constant independent of h.

Proof. Since ζ̄h = Thu and uh = Thuh, making use of Theorems 2.2, 3.2 and estimate
(3.15), we obtain

‖ u− uh ‖L∞(Ω) ≤ ‖ u− ζ̄h ‖L∞(Ω) + ‖ ζ̄h − uh ‖∞
≤‖ u− ζ̄h ‖∞ + ‖ Thu− Thuh ‖∞
≤ Ch2 |log h|3 +

λ

λ + β
‖ u− uh ‖∞ .

Thus,

‖ u− uh ‖∞≤ Ch2 |log h|3
λ/(λ + β)

.
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