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Abstract: Inthis paper, we obtained based on record value, the maxilikalinood, minimum variance unbiased and Bayes estinsator
of the two parameters of the inverse Weibull distributioa @@mputed and compared. A Bayesian prediction intervahies future
record is obtained in a closed form. Based on simulated decalues, numerical computations and comparisons betvireedifferent
estimators are given.
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1 Introduction

Record values arise naturally in many real life applicatiamvolving data relating to sport, weather and life
testing studies. Many authors have been studied recor@valnd associated statistics, for example, see Chardler [
Nagaraja 19], Ahsanullah ([l],[2]), Arnold and Balakrishnan3], Arnold, et.al. (#],[5]), Balakrishnan , Chan €],[7]),
Ragab P2], Sultan P3| ,and Preda et alfl].

The inverse Weibull distribution plays an important roleriany applications, including the dynamic components cfalie
engine and several data set such as the times to breakdowiinsigating fluid subject to the action of a constant tension
see NelsonZ(]. Calabria and Pulciniag] provide an interpretation of the inverse Weibull disttibba in the context of
the load strength relationship for a component. Maswadathhjas fitted the inverse Weibull distribution to the flood data
reported in Dumonceaux and Antl&(]. For more details on the inverse Weibull distribution, dee example Johnson et
al. [12], Marusic et al. 1.3], Murthy et al. [L8], Mohie EI-Din et al. [L5], [16] and [17].

The inverse Weibull model was developed by Ertdl][ The probability density functiofpdf) of the random variable
X having a three-parameter inverse Weibull distributiorhvdtcation parameter > 0, scale parametey > 0 and shape
parametef3 > 0 is given by [L1], [13]:

B(_n_\B+1g-(zZ)P
f(X;aaﬁﬂn):{n(XC{) Oe ’ XX><aa? ’77[3>0, (1)

If a =0, the resulting distribution is called the two-parameteeirse Weibull distribution. The cumulative distribution
cdf of the inverse Weibull distribution as follows:

Fxa,B.n)=e &’ x>a, n,B>0 2)

Assuming that we haven lower record valuess, 1), X (2), -, XLm), be the firstm lower record values from the inverse
Weibull distribution.
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The pdf of XL<m) is given by

1

i () = (m) {~In[F]™ (x)
B n Bm+-1 0B
- (X_a> e (%) 5

2 Maximum likelihood estimation

Point Estimation

Let X, (1), XL(2): "+ » X (m) PEMIOWer record values each of which has the inverse Weibuttiligion whose thepd f and
cdf are, respectively, given byl and @). Based on those lower record values, for simplicity of tiotg we will usex;
instead ofk_ ). The likelihood function may then be written is

m-1
L(n;X) = f(%m) |1 h(Xi[n),

—0 < Xy < Xpeg < .o < X < 00 4
where "
X = (Xg,X2,---,Xm), and h(Xn)= F(OQ'IZ%
hence §
L(1;X) = BB e’ xm-a)F rl(xi —a) Pt (5)
i=

we obtain the log-likelihood function
£=logL = mlogB +mBlogn — NP (xm—a)?
m
—(B+1) > log(x —a) (6)
2,

we obtain the estimators af when3 anda are known by differentiatingg) with respect tag and3 and equating to
zero, in this case we have

9L _ B piB1y o) B
. 1 1
N =mB (Xn—a)=mBT,’ (7)

whereTy, = (xm—a) P.
From (5), one can see that the statisig is sufficient and complete for the parametgrand is distributed as gamma
(m,n) with pdf
mg
_n m-1,-nPTy,
f(Tmln) = —I'(m)Tm e , Tm>0. (8)

We study this case, wheghanda are known andj is unknown.

Lemma: Let X, Vi=1,2,...,mbetheith record values of the inverse Weibull distribution, then
© rii—%
-8 B
E {T BIn} =Mrl“’ ©)

whereT, = (x, —a) 5.
Proof : We starting with the pdf of thih record value, we derived the general expected value

e[ Fin| = [77 Fmme
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by using the pdf of théh record values of the inverse Weibull distribution for@), (we obtain
_w B o @
"B _L/ Py
e [7 Pn| = A T e e
we assume that= nPT; and integration then, we obtain,
w r (i - 9)
T I G Y
e[ Fin| - —
the lemma is proved.
From (7) and @), we obtain the expected value and variance of the estimaeiven by
E(A®|n) =m? E[T ]

then, ifi = mandw = 1 we obtain

R m%l‘ (m—%)
B = —F " (10)
if i =mandw = 1,2 we obtain
2
_ o (M (m=3) (r(m3) 2
Var(n|n) = m# o\ Trm ne. (11)
We observe that the estimajes biased from10) but we can transform it to unbias@d as follows, if we suppose
~ r(m
n= 1 ( ) n.
me [ (m—%)

Then, the expected value and variance afre

B B r(mr (m-3

E(In)=n, Var(fln)=n? #—1 :
re (m—ﬁ)

The mean squared error of the estimatis given by

E(f7|n —n)*=E{Var(ij|n) — [E(A|n) — n]*} (12)

from (10) and (L1) in (12) we obtain the mean squared error of the estinfate

3 Bayesian Inference

Point Estimation
Assuming that the parametgris a realization of a random variabdewhich has the gamma conjugate prior distribution
of the form

n(n) = B—bnr]”B*le*b”B n>0, (nb>0). (13)
l—(n) ) ) )
Combining 6) and (3), the posterior density is a gamma distribution with pargrsgm-+ n, (n+ Ty)n ) of the form
m(n)L
TNX) = w——ras
)= Tt Lan
_ BO+Tm)™™" g inp-1 (b4 TmnP
T F(men) ! © ' (14)
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Assuming a squared error loss function, the Bayes estinfajaits posterior mean obtain by

1
R r (m+ n-+ 3)
ne = T (15)
r(m+n)(b+Tm)#
Combining @3) and @), the marginal density function af, is
n m-1
f(Tm) = b Tm Tm >0, (16)

B(m,n) (b+ Ty)mn’

which is Beta n,n) density of the second kind (see Johnson, Kotz and BalakaisfL2], from which one can obtain

1
R r (n+ E)
E(Me) = —1—=
bB r(n)
- (m+n+p)l'(n+§
Vaf(f]B) 2
bB I (m+n)r (m+n+%) r(n)
2 1
r3n+ E) -
2
bB I 2(n)
The mean squared error of the estimigds given by
E(Ag —n)* = E{Var(fg) — [E(7ls) — n]*} (18)
from (17) in (18) we obtain the mean squared error of the estinfate
4 Bayesian Prediction
Assume thai| (1), X (2), -, X, arem lower record values each of which has the inverse Weibuttiligion whose

pdf is given by (). Based on these lower record values, we would like to ptadEsth lower record,s > m. Let
Y = X (5 = Xs be thesth lower record, the conditiongdd f of Y for givenx ;) = Xmandn >0'is

[G(y) — G(Xm)]%mil fx(y)

f(ylxm:n) = 19
(y| m r’) I—(S_ m) FX(Xm) ( )
where
Y —
G(y) = - logF(y) ( )
—UB(Y a)” nﬁTs
_(Xm—Q B _nB -B_ B
G(xm) = T =N m—a) " =n"Tn. (20)
Applying (1) and @) in (19) we obtain
. Bn$-mp T gs=m=1 nB(Te—Tm)
0 <y < Xm< o0, (22)

Combining the posterior density functiob4) and 1) and integrating atj we obtain the Bayes predictive density

o) = [ i) (n1X)dn

m+n+1 s—m-1
_vB b+Tn Ts—Tm (y—a)‘ﬁ‘l
b+Ts b+Ts ’
0<y< Xm< oo, (22)
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whereY' = 1/{(b+ Tm)B(s—m,m+n)},
Thus, the Bayesian prediction bounds Yot X is obtained by evaluation

Prev 2 1x) = [ fyiX)dy

t
Xm mHn+1
v / [b+Tm} .
t b+Ts
T._T s—m-1 L
| ety 23)
Upon using the transformation
~ Tt—Tm
R
the above integral is equal
Wi
Pr(Y > t|X) = Y/ WS L1 - )™ Ly
0
= F(w) (24)
where T_T
—t—m —(t—q)B 2
W= T=(-a) (25)

andF(.) is the Betecd f with parametergs— m,m+-n).
The (1 - ¢)100% predictive interval for theth lower record is given by
Pr(L(X) <Y <UX)=1-¢. Thus, applying24), we obtain the lower and upper prediction bounds ef Xs, analytically

in the forms

U(X)=a+rm+7b‘51(s)]

-

1—d(s)
and L(X)—a+ Tr;figf(zs()s)] o (26)
where
@:F*l(g) @:F*l(l—g). (27)

For the special case, when predicting the next lower X1 = Xs,S= m+ 1. from 24) reduce to
W
Pr(Xms+1 > t|X) = (n+ m)/ (1—w)™"1gw
0

=1—(1—w)™", (28)
wherew is given by @5). By using @8), the lower and upper prediction bounds for the next recgyd; are obtained by

™=

Ui(X) = o+ M}
é1
and Li(X)=a+ {W} F (29)
2
where
f=(1-D) and &= (F)m (30)

5 Numerical Illustration

In order to illustrate the usefulness of the inferencesudised in the previous section, four simulated record vadfies
sizesm=4,5,6 and 7 from the inverse Weibull distribution are obtained.
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Table 1: The MSEs of MLE'’s off] and the Bayes risk djg
MSE(n) | MSE(Ns) (LY)
0.127766] 0.048935| (0.695566,1.593930
0.092555| 0.055794| (0.755629, 1.745365
0.073115| 0.048761| (0.801408, 1.790953
0.060909| 0.038636| (0.839466,1.696166
0.179583| 0.084054| (0.580566,1.466531
0.128880| 0.096419| (0.640162,1.505239
0.090886| 0.083002| (0.684357,1.546739
0.083309| 0.063295| (0.820400,1.651211

We calculate the mean square error of KhieE of the estimate) and the Bayes risk djg, and compared from them.
We obtained the %95 Bayesian predictive intervatpf; from (29

n
10

12

~ou AN UANT

6 Conclusion

From previous the table, we observe tMEE (Ng) < MSE(]) the Bayes estimate is the efficient estimateydé more
efficient than theVILE. Although the number of generated recondis relatively small, all the estimators either point or
interval become better, by being closer to the populatioampeater value ofo asmincrease. The prediction interval for
the next record is always include its generated vadyg , , and become better asincreases.
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