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Abstract: In this paper, we obtained based on record value, the maximumlikelihood, minimum variance unbiased and Bayes estimators
of the two parameters of the inverse Weibull distribution are computed and compared. A Bayesian prediction interval forthesth future
record is obtained in a closed form. Based on simulated record values, numerical computations and comparisons between the different
estimators are given.
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1 Introduction

Record values arise naturally in many real life applications involving data relating to sport, weather and life
testing studies. Many authors have been studied record values and associated statistics, for example, see Chandler [9],
Nagaraja [19], Ahsanullah ([1],[2]), Arnold and Balakrishnan [3], Arnold, et.al. ([4],[5]), Balakrishnan , Chan ([6],[7]),
Raqab [22], Sultan [23] ,and Preda et al [21].
The inverse Weibull distribution plays an important role inmany applications, including the dynamic components of diesel
engine and several data set such as the times to breakdown of an insulating fluid subject to the action of a constant tension,
see Nelson [20]. Calabria and Pulcinia [8] provide an interpretation of the inverse Weibull distribution in the context of
the load strength relationship for a component. Maswadah [14] has fitted the inverse Weibull distribution to the flood data
reported in Dumonceaux and Antle [10]. For more details on the inverse Weibull distribution, see, for example Johnson et
al. [12], Marušić et al. [13], Murthy et al. [18], Mohie El-Din et al. [15] , [16] and [17].
The inverse Weibull model was developed by Erto [11]. The probability density function(pd f ) of the random variable
X having a three-parameter inverse Weibull distribution with location parameterα ≥ 0, scale parameterη > 0 and shape
parameterβ > 0 is given by [11], [13]:

f (x;α,β ,η) =

{
β
η (

η
x−α )

β+1e−( η
x−α )β

, x > α, η ,β > 0,
0, x ≤ α,

(1)

If α = 0, the resulting distribution is called the two-parameter inverse Weibull distribution. The cumulative distribution
cd f of the inverse Weibull distribution as follows:

F(x;α,β ,η) = e−( η
x−α )β

, x > α, η ,β > 0. (2)

Assuming that we havem lower record values,XL(1),XL(2), · · · ,XL(m), be the firstm lower record values from the inverse
Weibull distribution.
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The pd f of XL(m)
is given by

fxL(m)
(x) =

1
Γ (m)

{− ln[F(x)]}m−1 f (x)

=
β

ηΓ (m)

(
η

x−α

)β m+1

e−(
η

x−α )
β

(3)

2 Maximum likelihood estimation

Point Estimation
Let XL(1),XL(2), · · · ,XL(m) bem lower record values each of which has the inverse Weibull distribution whose thepd f and
cd f are, respectively, given by (1) and (2). Based on those lower record values, for simplicity of notation, we will usexi
instead ofxL(i). The likelihood function may then be written is

L(η ;X) = f (xm)
m−1

∏
i=1

h(Xi|η),

−∞ < Xm < Xm−1 < ... < X1 < ∞ (4)

where

X = (X1,X2, · · · ,Xm), and h(Xi|η) =
f (Xi|η)
F(Xi|η)

hence

L(η ;X) = β mηmβ e−ηβ (xm−α)−β m

∏
i=1

(xi −α)−β−1 (5)

we obtain the log-likelihood function

£ = logL = m logβ +mβ logη −ηβ (xm −α)−β

−(β +1)
m

∑
i=1

log(xi −α) (6)

we obtain the estimators ofη whenβ andα are known by differentiating (6) with respect toη andβ and equating to
zero, in this case we have

∂£
∂η

=
mβ
η

−β ηβ−1(xm −α)−β = 0

η̂ = m
1
β (xm −α) = m

1
β T

−1
β

m (7)

whereTm = (xm −α)−β .
From (5), one can see that the statisticTm is sufficient and complete for the parameterη , and is distributed as gamma
(m,η) with pd f

f (Tm|η) =
ηmβ

Γ (m)
T m−1

m e−ηβ Tm , Tm > 0. (8)

We study this case, whenβ andα are known andη is unknown.

Lemma: Let XL(i) ∀i = 1,2, ...,m be the ith record values of the inverse Weibull distribution, then

E

[
T
− ω

β
i |η

]
=

Γ
(

i− ω
β

)

Γ (i)
ηω (9)

whereTi = (xi −α)−β .
Proof : We starting with the pdf of theith record value, we derived the general expected value

E

[
T
− ω

β
i |η

]
=

∫ ∞

0
T
− ω

β
i f (Ti|η)dTi
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by using the pdf of theith record values of the inverse Weibull distribution form (3), we obtain

E

[
T
− ω

β
i |η

]
=

η iβ

Γ (i)

∫ ∞

0
T

i− ω
β −1

i e−ηβ TidTi

we assume thaty = ηβ Ti and integration then, we obtain,

E

[
T
− ω

β
i |η

]
=

Γ
(

i− ω
β

)

Γ (i)
ηω

the lemma is proved.

From (7) and (9), we obtain the expected value and variance of the estimateη̂ is given by

E(η̂ω |η) = m
ω
β E[T

− ω
β ]

then, if i = m andω = 1 we obtain

E(η̂ |η) =
m 1

β Γ
(

m− 1
β

)

Γ (m)
η (10)

if i = m andω = 1,2 we obtain

Var(η̂ |η) = m
2
β




Γ
(

m− 2
β

)

Γ (m)
−




Γ
(

m− 1
β

)

Γ (m)




2
η2. (11)

We observe that the estimateη̂ is biased from (10) but we can transform it to unbiased̃η , as follows, if we suppose

η̃ =
Γ (m)

m
1
β Γ

(
m− 1

β

)η .

Then, the expected value and variance ofη̃ are

E(η̃ |η) = η , Var(η̃ |η) = η2




Γ (m)Γ
(

m− 2
β

)

Γ 2
(

m− 1
β

) −1


 .

The mean squared error of the estimateη̂ is given by

E(η̂ |η −η)2 = E{Var(η̂|η)− [E(η̂|η)−η ]2} (12)

from (10) and (11) in (12) we obtain the mean squared error of the estimateη̂ .

3 Bayesian Inference

Point Estimation
Assuming that the parameterη is a realization of a random variableα which has the gamma conjugate prior distribution
of the form

π(η) =
β bn

Γ (n)
ηnβ−1e−bηβ

, η > 0, (n,b > 0). (13)

Combining (5) and (13), the posterior density is a gamma distribution with parameters(m+ n,(n+Tm)η) of the form

π∗(η |X) =
π(η)L∫ ∞

0 π(η)Ldη

=
β (b+Tm)

m+n

Γ (m+ n)
ηmβ+nβ−1e−(b+Tm)ηβ

. (14)
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Assuming a squared error loss function, the Bayes estimate of η is its posterior mean obtain by

η̂B =
Γ
(

m+ n+ 1
β

)

Γ (m+ n)(b+Tm)
1
β
. (15)

Combining (13) and (8), the marginal density function ofTm is

f (Tm) =
bn

B(m,n)
T m−1

m

(b+Tm)m+n , Tm > 0, (16)

which is Beta (m,n) density of the second kind (see Johnson, Kotz and Balakrishnan [12], from which one can obtain

E(η̂B) =
Γ
(

n+ 1
β

)

b
1
β Γ (n)

Var(η̂B) =
Γ 2

(
m+ n+ 1

β

)
Γ
(

n+ 2
β

)

b
2
β Γ (m+ n)Γ

(
m+ n+ 2

β

)
Γ (n)

−
Γ 2

(
n+ 1

β

)

b
2
β Γ 2(n)

(17)

The mean squared error of the estimateη̂B is given by

E(η̂B −η)2 = E{Var(η̂B)− [E(η̂B)−η ]2} (18)

from (17) in (18) we obtain the mean squared error of the estimateη̂B.

4 Bayesian Prediction

Assume thatXL(1),XL(2), · · · ,XL(m) arem lower record values each of which has the inverse Weibull distribution whose
pd f is given by (1). Based on these lower record values, we would like to predict the sth lower record,s > m. Let
Y = XL(s) = Xs be thesth lower record, the conditionalpd f of Y for givenxL(m) = xm andη > 0 is

f (y|xm;η) =
[G(y)−G(xm)]

s−m−1

Γ (s−m)

fx(y)
Fx(xm)

(19)

where

G(y) = − logFx(y) =

(
Y −α

η

)−β

= ηβ (Y −α)−β = ηβ Ts

G(xm) =

(
xm −α

η

)−β
= ηβ (xm −α)−β = ηβ Tm. (20)

Applying (1) and (2) in (19) we obtain

f (y|xm) =
β ηsβ−mβ

(y−α)β+1Γ (s−m)
[Ts −Tm]

s−m−1 e−ηβ (Ts−Tm)

0< y < xm < ∞. (21)

Combining the posterior density function (14) and (21) and integrating atη we obtain the Bayes predictive density

f (y|X) =

∫ ∞

0
f (y|xm;η)π∗(η |X)dη

= ϒ β
[

b+Tm

b+Ts

]m+n+1[Ts −Tm

b+Ts

]s−m−1

(y−α)−β−1,

0< y < xm < ∞. (22)
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whereϒ = 1/{(b+Tm)B(s−m,m+ n)},
Thus, the Bayesian prediction bounds forY = Xs is obtained by evaluation

Pr(Y ≥ t|X) =
∫ xm

t
f (y|X)dy

= ϒ β
∫ xm

t

[
b+Tm

b+Ts

]m+n+1

.

[
Ts −Tm

b+Ts

]s−m−1

(y−α)−β−1dy. (23)

Upon using the transformation

wt =
Tt −Tm

b+Ts

the above integral is equal

Pr(Y ≥ t|X) = ϒ
∫ wt

0
ws−m−1(1−w)m+n−1dw

= F(wt ) (24)

where

wt =
Tt −Tm

b−Tt
, Tt = (t −α)−β (25)

andF(.) is the Betacd f with parameters(s−m,m+ n).
The(1−φ)100% predictive interval for thesth lower record is given by
Pr(L(X)≤Y ≤UX) = 1−φ . Thus, applying (24), we obtain the lower and upper prediction bounds ofY =Xs, analytically
in the forms

U(X) = α +

[
Tm + bδ1(s)
1− δ1(s)

]− 1
β

and L(X) = α +

[
Tm + bδ2(s)
1− δ2(s)

]− 1
β

(26)

where

δ1 = F−1(
φ
2
) δ2 = F−1(1−

φ
2
). (27)

For the special case, when predicting the next lowerY = Xm+1 = Xs,s = m+1. from (24) reduce to

Pr(xm+1 ≥ t|X) = (n+m)

∫ wt

0
(1−w)m+n−1dw

= 1− (1−wt)
m+n, (28)

wherewt is given by (25). By using (28), the lower and upper prediction bounds for the next record,xm+1 are obtained by

U1(X) = α +

[
Tm + b(1− ξ1)

ξ1

] 1
β

and L1(X) = α +

[
Tm + b(1− ξ2)

ξ2

] 1
β

(29)

where

ξ1 = (1−
φ
2
)

1
m+n and ξ2 = (

φ
2
)

1
m+n (30)

5 Numerical Illustration

In order to illustrate the usefulness of the inferences discussed in the previous section, four simulated record valuesof
sizesm = 4,5,6 and 7 from the inverse Weibull distribution are obtained.
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Table 1: The MSEs of MLE’s ofη̂ and the Bayes risk of̂ηB

η m MSE(η̂) MSE(η̂B) (L,U)
1.0 4 0.127766 0.048935 (0.695566,1.593930)

5 0.092555 0.055794 (0.755629 , 1.745365)
6 0.073115 0.048761 (0.801408 , 1.790953)
7 0.060909 0.038636 (0.839466, 1.696166)

1.2 4 0.179583 0.084054 (0.580566,1.466531)
5 0.128880 0.096419 ( 0.640162,1.505239)
6 0.090886 0.083002 (0.684357, 1.546739)
7 0.083309 0.063295 (0.820400,1.651211)

We calculate the mean square error of theMLE of the estimatêη and the Bayes risk of̂ηB, and compared from them.
We obtained the %95 Bayesian predictive interval ofxm+1 from (29)

6 Conclusion

From previous the table, we observe thatMSE(η̂B) < MSE(η̂) the Bayes estimate is the efficient estimate ofη is more
efficient than theMLE. Although the number of generated recordsm is relatively small, all the estimators either point or
interval become better, by being closer to the population parameter value ofω asm increase. The prediction interval for
the next record is always include its generated valueXL(m+1)

, and become better asm increases.
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