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Abstract: In this paper, we present the Shamel-Korteweg-de Vries d8)kequation which play an important role in studying the
effect of electron trapping on the nonlinear interactioimofacoustic waves by including a quasi-potential. Hergide class of exact
solutions to this equation with time dependent coefficiemfeund. It is shown that, the traveling wave solutions eaigd they travel
with time-dependent speed along the characteristic culfesclass of the obtained solutions is classified to diffeveave structures:
periodic, elliptic or interaction of soliton, kink and atink waves. The method used in this work is the extendedadifiethod which
was presented by one of the authors.

Keywords: Variable coefficients, Shamel-Korteweg-de Vries equatidre extended unified method, Inner and outer conoidal waves
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1 Introduction variable coefficients][7]. This later method is used here
to find exact solutions to Shamel-Korteweg-de Vries

A huge number of works on the exact traveling wave (S-KdV) equation with time-dependent coefficients.

solutions of nonlinear evolution equations with constant  The Shamel-Korteweg-de Vries with constant

coefficients have been carried out in the literature. Thiscpefficients is

may be argued to: N

— A wide class of these equations is completely U+ (auZ+Bu)ux+dusx =0, af#0, (1)

integrable

— Searching for the traveling wave solutions investigate

many physmal aspects of the problem unO|ercoefficients respectively. We mention that, whes- 0 or
consideration. i
. B = 0 equation {) reduces to the KdV or Shamel

_ On the other hand, they may be considered asqyation respectively. Equationl)( describes many
asymptotic” or steady state solutions to evolution hhenomena in plasma physics. In particular, it describes
equations. Different methods were constructed to findihe nonlinear interaction of ion-acoustic waves (ICW) in
some exact solutions of evolution equations by using theyjasma physics by including a quasi potential effect. That
painleve’ test for integrability and the aut@eklund s py taking into consideration the electron trapping
transformation1-15]. effect [18-24]. We mention that, the equatiori)(is a

Recently, the unified method has been suggested bparticular case of the generalized Gardner equatidfs [
the first author in 16]. Indeed, the unified method In this context, the study of the ICW in the presence of
suggests a new classification to the different types ofdrag force acted by the waves on the particles issues to
solutions, that is polynomial or rational function solutso  the Burger's-KdV equationZg]. So that, in a future work
in some “auxiliary” function with an appropriate auxiliary the exact solutions for Shamel-Burger-Korteweg-de Vries
equation. Furthermore, the necessary conditions for thequation will be studied. We bear in mind that, the exact
existence of each type of solutions may be constructed. Irsolutions of () were studied in 19-21]. It is worthy to
a subsequent paper, the unified method was extended toention that, in 27-41] soliton (coupled to kink and
find exact solutions of nonlinear evolution equations with anti-kink) and periodic solutions were only found to the

wherea, 8 andd are constants which they are refer to the
activation trapping, the convection and the dispersion
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equation ). In the present work, elliptic waves are

found. They exhibit outer or inner conidal waves to the

soliton one’s.

An interesting case physically, rather

dependent. To this end we consider the equation

(e + (@) v+ B V) (V)x+3(t) (V) =0, (2)

where u = V2. Then @) is dealt with by using the
extended unified method. The application &) (are

than
mathematically arise when these parameters are tim

1.2 Rational solutions

The case of rational solutions can be treated by the same
way. So, we assume the rational function solutioryiig

gﬂe form

V(th) = Ein=0 Pi (X,t) ¢i(xvt)/ Zir:Oqi (th) ¢i(xvt)a
($x(x.1)P = 3PGG(x 1) 1 (x1), (d(x1)P =
SPEBI(1) @ (X 1), B (X, 1) = Prx(X,1), p=1,2.

where the denominator in5)f; does not vanish for all
—o00 < X < oo andt > 0.

®)

practical interest in the propagation of soliton waves inqq 6) will be considered when > r, n = r separately.

fibre optics whert is replaced byz In the view of the

unified method, the solutions to the nonlinear evolution
equation can be classified to polynomial or rational in an
“auxiliary” function. First, we give here a brief account to

the case of polynomial solutions.

1.1 Polynomial solutions

To search for polynomial solutions o) the unified
method suggests the solution in the form

n .

Z)aj (xt) @l (x1),

J:

V(x,t) = 3)

where the auxiliary functio satisfies the auxiliary and
the compatibility equations which are given by

(x(x,0)P = 3P5¢i(x 1) , @I (x1), (B (x1))P =
dd 3 PK5bj (x,1) ¢ (x,1), B (x.1) = Pie(x. 1), p=1,2.
4
For instance, whemp = 1, the necessary conditions for
finding the exact polynomial solutions of equati@) ére;
(i) The balance condition is=k— 1.

(i) The consistency condition for the existence of

solutions isk < %1 For details seelfg].
Thus, the polynomial solutions exist whén= 2,3. We

In each case, there are appropriated auxiliary equations.
Indeed, the balance and consistency conditions could be
constructed in each case according to the relation between
nandr.

In the next section, we study the case in which the
coefficients of ) are proportional.

2 The case when the S KdV isintegrable

By using the polynomial solution whelk= 2,3 and the
rational solution whem=r =1, k=1 andn—r =1,
k = 2, we found that the solutions o) exist only when
a(t) = upB(t) and o(t) = & PB(t), whereu and & are
constants.

Under the last conditions, equatiof) (reduces to ones
with constant coefficients

(V% 1))+ (VX T) + V2 (X, T)) (VP (X T) )t

& (X, 1)) = 0, T = [LB(ta)dlty ©

We mention that,®) admits a traveling wave solutions
where the details of these solutions as they follow;

2.1 Polynomial solutions

We writev(x,t) = W(z), z= 01X+ 02 T, then equationg)

mention that, the consistency conditions is constructed byeduces to

using the number of principle and compatibility equations
namely;(2k — 1) equations and the number of unknown

functionsa b; andc;. By bearing in mind the complete

integrability of (1), we set the difference between them to

be (< m), wheremis the highest order partial derivative.
When substituting from3) and @) into (2), we get an

equation which is splitting to a set of equations, namely

the “principle” equations.

Steps of computation:
1- Solving the principle equations.
2- Solving the compatibility equatior)s.
3- Solving the auxiliary equations.
4- Find the exact solution.

02 (W2(2))' + (HW(2) +W(2)) 010?\/\/2(2))/4r }
s -00=50. O

For the polynomial solutions, we have

w(z) =

pk )
ZOCJ' $'(2), p=1,2, (8)

J_

ia" 8. (9'(2)) =

J_

wherea; andc; are arbitrary constants.
The exact solution off) are elementary (whep=1, k=
2,3) or elliptic solutions (wherp = 2, k = 2,3) and they
are classified as follows;
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(i) Whenp=1 andk = 2,3.
(i1) Whenk = 2, andn =k — 1, we have

wW(z) = a3 ¢(2) + ao,

9
¢'(2) = c29°(2) + 1 9(2) + ®)
By using any package, the solution @) {s given by
WD) = WA(2) = g2~ 1+ tanh REEA) )2
> — K™ 01
2 75
32ud

hereo; = —————— R2 =c? —4cyc9, & < 0 and

WNeTe o1 = 3RV 3% 1~ 40200, %

A are arbitrary constants. Due to the translation symmetry,

we takeA = 0.
(i) Whenk = 3,n = 2. By a similar way as we did in the
last case, the solution o2)is given by

4 Riz, 16u2 o1
u(z) eH (—1+ anf(3C3)) , 02 =5 (11)
whereo; = m Ry =¢3—3cic3 < 0 andy are

arbitrary consténts. Indeed, this solutions is a solitaayav
solution.

(i) Whenp = 2. In this case, the solutions are elliptic and
they may be given in Jacobi elliptic functions or as elliptic
integrals of the first and third kinds.

(ii1) Whenk = 2. In this case, the solution take the form

W(z) = a1 ¢(2) +ao,

: 12
827 = 5001 9)(2) (12)
When subtitling from 12) into (2), we get
a— 2H_V3%CGa
TS T T2
ap=2/—3C40 01,
o 32\/=3C4Cq i3 + 450/ —3C4 ¢4 & U 07 N
2 =
1200,/=3C4¢4 & 1 0% + 4500c3 03 * 03
(13)

1125c283/% 03 + 9000, 2 55/ * 03
1200,/=3C4 ¢4 & H 0% + 45000305 > 03

01(1125¢305% 0% — 18000, 2 0/ 02

150c4(4+/—3Ca U+ 1503\/&0’1)
164 u?(8+/=3Cat + 4531/ 01))
150c4(4+/—3Ca 1 + 15C31/& 01)

where ¢j, j = 0,1,3,4 are arbitrary constants and
dcs < 0.

For particular values o€;j, j = 0,...,4, we get different
solutions in Jacobi elliptic functions.

Cy =

Here, if we take (according to the classification3@))

(1-n)?

7

_ 14n?
,C2= %5

ci=Cc3=0,

1
Co = 7C4:_Za (14)

and substituting intol(2), we get

¢ (z) = men(z,m) £dn(z,m), (15)

16 2
VL3 . L S—

7 5 3%

substituting from 15) into (12), the solution of 2) is
given by

where o,

u(z) = 42_;1;(_1+ mcn(z, n;-)f:]zn(z, m) 2, (16)

where u is a constant andn (0 < m < 1) denotes the
modulus of the Jacobi elliptic function.

b

B ]

4

Figurel: (a)-(c)(a1 = T 80— —4, u=10).

In Fig.1(a), the solution given byL§) is displayed against

z for different value of m, the thick straight line
corresponds ton = 0 and the thick curve (soliton wave)
corresponds tan = 1. Conoidal waves are inner when
m < 0.8 and are outer whem > 0.8.

In Fig.1(b), the same caption as in Fig.1(a) but for
different values ofng = v/1 — m?, the thick soliton wave
correspond tan = 0 and the thick straight line correspond
tom=1.

In Fig.1(c), the same caption as in Fig.1(a) but for
different value ofm; = mv/1 — n?, the thick straight line
correspond ton= 0, 1.

To inspect the physics revealed by Fig.1, we mention
thatu = "m, wherea(t) and3(t) are the trapping and

B(t)
nonlinear coefficients. In these figures, we take> 1. So
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the trapping prevails the nonlinearity.

Fig.1(a) shows that all elliptic waves are “outer waves”

2.2 Rational function solutions

where their amplitudes are higher than the amplitude ofin this section, we find rational solutions for some differen

the soliton wave in the limit case whem= 1.

values ofn, r andp.

Fig.1(b) shows that all elliptic waves are “inner waves” We mention thatk is found by using the balance condition
whenm > 0.8 that is, their amplitudes are smaller than which is given byn—r =k— 1.
the amplitude of the soliton wave in the limit case when (i) Whenp = 1. By takingn—r = 1 (whenk = 2) and by

m=0.

using 6), the solution of 2) has the form

Fig.1(c) shows that elliptic waves as larger than the

straight line n=0 or 1).

We remark that the corner wave (upper curve when
m = 0.9) steepens which may be argued to the fact that

_ P20%(2+p19(2)+po
W2 = =Dt

23
¢'(2) =c20%(2) +c10(2) + @3

the trapping coefficient prevails the non linearity as By a direct calculation, the solution a2)is given by

U= ,38 > 1. This may agree with the results i81} 32

in different applications.
(i) Whenk = 3. In this case, the solution take the form

W(2) = a2 (2)* + a1 6 (2) + @, (17)

j=6

@'@)F =3 4
j=

By substituting from 17) and @8) into (2), the principle
equation solves to

& =401\/-3C0p, a1 =

(18)

4C5/ —50 01
v/3Cs ’

(—11c2+36C4C6) vV— % 01
12/3c¢)?

8u20y  (25cE —504cscics
25 216¢3 -
432¢3(—3¢5+8¢2C5)) % 07)
216c3 ’

2u
5

a=—

)

Oy =

—5¢2+18c4C5Co
27c2 ’

—3cacice+27c,C5CE
C1 = )
81ct
(19)
andcg which is too lengthy to be written here. In equation
(19 & < 0,66 >0, 4 andcj, j = 2,4,5 are arbitrary
constants.
According to the classification ir8[)], If we take

C3 =

Co=C1=C=C=0,c>0, (20)
and substituting inX8), we get
r
b=~ cpcsch(y/C22) (21)
4+ 2,/C2Ce coth(,/C22)

By substituting from 21) into equation 18), the solution

of (2) is given by
2_[J+ C40'1\/—3C(-350+

5 r%/CT;
cpcsch(,/C22)

C4+2,/C2Cg COth(,/C22)

uz) = (-
401/ —3Cg 50(

(22)

)%

15\/_azseci'°r(
8v/3u 01— 30,/01 02

\/_60 3/2)

tanr( \/— 3/2

wheread, g, & < 0, u are arbitrary constants.
When(o, < 0), say(0, = —p?), in equation 24), we find
that

u(z) = )2, (24)

)

—-15V/3p? se@(w)

u(z) = (8\/—u01+30p\/ﬁltan(m)

)2, (25)

whereoy, u andp are arbitrary constants.
(if) Whenp = 2. By takingn =r = 1 (reduced tk = 1)
and by using%), the solution of 2) has the form

P19 (2) + po

e VD=t e

(26)
By a direct calculation, the solution aZ)is given by

w(z) =

1+Ale\/qz—|—A262\/§Z
u(z) = = =% (27)
1+A3e\/7 —|—A2€2\/72
where A;,i = 1,2,3 are arbitrary constants, that are

functions inc;, p;, g and .

When (c; = —p?), then @7) will give rise to a periodic
solution 1 4B, cogp2)

+Bicogpz) ,

uz)(e——m——=

whereB;, i = 1,2,3 are arbitrary constants which depend
onA.

It is worth to be noticing that,28) is obtained from
(27) by separating the real and imaginary part ir&t@)@nd
by setting the coefficients of imaginary part equal zero.

(28)

The solutions which are given by4) and @7) are
displayed againstx and t in figures 2(a) and 2(b)
respecuvely We bearing in mind that,= 01X+ 0> T,
T= fO (tl) dt;.

At these figures, we find that
In Fig.2(a), a single soliton which is moving along the
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