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Abstract: In this paper, we present the Shamel-Korteweg-de Vries (S-KdV) equation which play an important role in studying the
effect of electron trapping on the nonlinear interaction ofion-acoustic waves by including a quasi-potential. Here, awide class of exact
solutions to this equation with time dependent coefficientsis found. It is shown that, the traveling wave solutions exist and they travel
with time-dependent speed along the characteristic curves. The class of the obtained solutions is classified to different wave structures:
periodic, elliptic or interaction of soliton, kink and anti-kink waves. The method used in this work is the extended unified method which
was presented by one of the authors.
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1 Introduction

A huge number of works on the exact traveling wave
solutions of nonlinear evolution equations with constant
coefficients have been carried out in the literature. This
may be argued to:
− A wide class of these equations is completely
integrable
− Searching for the traveling wave solutions investigate
many physical aspects of the problem under
consideration.

On the other hand, they may be considered as
“asymptotic” or steady state solutions to evolution
equations. Different methods were constructed to find
some exact solutions of evolution equations by using the
painleve’ test for integrability and the auto-Bäcklund
transformation [1–15].

Recently, the unified method has been suggested by
the first author in [16]. Indeed, the unified method
suggests a new classification to the different types of
solutions, that is polynomial or rational function solutions
in some “auxiliary” function with an appropriate auxiliary
equation. Furthermore, the necessary conditions for the
existence of each type of solutions may be constructed. In
a subsequent paper, the unified method was extended to
find exact solutions of nonlinear evolution equations with

variable coefficients [17]. This later method is used here
to find exact solutions to Shamel-Korteweg-de Vries
(S-KdV) equation with time-dependent coefficients.

The Shamel-Korteweg-de Vries with constant
coefficients is

ut +(α u
1
2 +β u)ux + δ uxxx = 0, α β 6= 0, (1)

whereα, β andδ are constants which they are refer to the
activation trapping, the convection and the dispersion
coefficients respectively. We mention that, whenα = 0 or
β = 0 equation (1) reduces to the KdV or Shamel
equation respectively. Equation (1) describes many
phenomena in plasma physics. In particular, it describes
the nonlinear interaction of ion-acoustic waves (ICW) in
plasma physics by including a quasi potential effect. That
is, by taking into consideration the electron trapping
effect [18–24]. We mention that, the equation (1) is a
particular case of the generalized Gardner equations [25].
In this context, the study of the ICW in the presence of
drag force acted by the waves on the particles issues to
the Burger’s-KdV equation [26]. So that, in a future work
the exact solutions for Shamel-Burger-Korteweg-de Vries
equation will be studied. We bear in mind that, the exact
solutions of (1) were studied in [19–21]. It is worthy to
mention that, in [27–41] soliton (coupled to kink and
anti-kink) and periodic solutions were only found to the
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equation (1). In the present work, elliptic waves are
found. They exhibit outer or inner conidal waves to the
soliton one’s.

An interesting case physically, rather than
mathematically arise when these parameters are time
dependent. To this end we consider the equation

(v2)t +(α(t)v+β (t)v2)(v2)x + δ (t)(v2)xxx = 0, (2)

where u = v2. Then (2) is dealt with by using the
extended unified method. The application of (2) are
practical interest in the propagation of soliton waves in
fibre optics whent is replaced byz. In the view of the
unified method, the solutions to the nonlinear evolution
equation can be classified to polynomial or rational in an
“auxiliary” function. First, we give here a brief account to
the case of polynomial solutions.

1.1 Polynomial solutions

To search for polynomial solutions of (2), the unified
method suggests the solution in the form

v(x, t) =
n

∑
j=0

a j(x, t)ϕ j(x, t), (3)

where the auxiliary functionϕ satisfies the auxiliary and
the compatibility equations which are given by

(ϕx(x, t))p = ∑p ,k
j=0 c j(x, t) ,ϕ j(x, t), ,(ϕt(x, t))p =

dd ∑pk
j=0b j(x, t)ϕ j(x, t),ϕxt (x, t) = ϕtx(x, t), p = 1,2.

(4)
For instance, whenp = 1, the necessary conditions for
finding the exact polynomial solutions of equation (2) are;
(i) The balance condition isn = k−1.
(ii) The consistency condition for the existence of
solutions isk ≤ 11

3 . For details see [16].
Thus, the polynomial solutions exist whenk = 2,3. We
mention that, the consistency conditions is constructed by
using the number of principle and compatibility equations
namely;(2k − 1) equations and the number of unknown
functionsai bi and ci. By bearing in mind the complete
integrability of (1), we set the difference between them to
be (≤ m), wherem is the highest order partial derivative.

When substituting from (3) and (4) into (2), we get an
equation which is splitting to a set of equations, namely
the “principle” equations.

Steps of computation:
1- Solving the principle equations.
2- Solving the compatibility equation (4)3.
3- Solving the auxiliary equations.
4- Find the exact solution.

1.2 Rational solutions

The case of rational solutions can be treated by the same
way. So, we assume the rational function solution of (2) in
the form

v(x, t) = ∑n
i=0 pi(x, t)ϕ i(x, t)/∑r

i=0 qi(x, t)ϕ i(x, t),
(ϕx(x, t))p = ∑pk

i=0 ci(x, t)ϕ i(x, t), (ϕt(x, t))p =

∑pk
i=0 bi(x, t)ϕ i(x, t),ϕxt (x, t) = ϕtx(x, t), p = 1,2.

(5)

where the denominator in (5)1 does not vanish for all
−∞ < x < ∞ andt ≥ 0.
Here, (5) will be considered whenn > r, n = r separately.
In each case, there are appropriated auxiliary equations.
Indeed, the balance and consistency conditions could be
constructed in each case according to the relation between
n andr.

In the next section, we study the case in which the
coefficients of (2) are proportional.

2 The case when the S-KdV is integrable

By using the polynomial solution whenk = 2,3 and the
rational solution whenn = r = 1, k = 1 andn− r = 1,
k = 2, we found that the solutions of (2) exist only when
α(t) = µ β (t) and δ (t) = δ0 β (t), where µ and δ0 are
constants.
Under the last conditions, equation (2) reduces to ones
with constant coefficients

(v2(x,τ))τ +(µ v(x,τ)+ v2(x,τ))(v2(x,τ))x+
δ0 (v2(x,τ))xxx = 0, τ =

∫ t
0 β (t1)dt1

(6)

We mention that, (6) admits a traveling wave solutions
where the details of these solutions as they follow;

2.1 Polynomial solutions

We writev(x, t) = w(z), z = σ1 x+σ2τ, then equation (6)
reduces to

σ2 (w2(z))′+(µ w(z)+w2(z))σ1(w2(z))′+

σ3
1 δ0 (w2(z))′′′ = 0, ()′ =

d
dz

().
(7)

For the polynomial solutions, we have

w(z) =
n

∑
j=0

a j ϕ j(z), (ϕ ′(z)) j =
pk

∑
j=0

c j ϕ j(z), p= 1,2, (8)

wherea j andc j are arbitrary constants.
The exact solution of (7) are elementary (whenp = 1, k =
2,3) or elliptic solutions (whenp = 2, k = 2,3) and they
are classified as follows;
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(i) Whenp = 1 andk = 2,3.
(i1) Whenk = 2, andn = k−1, we have

w(z) = a1ϕ(z)+ a0,
ϕ ′(z) = c2 ϕ2(z)+ c1 ϕ(z)+ c0

(9)

By using any package, the solution of (2) is given by

u(z) = w2(z) =
4
25

µ2(−1+ tanh(
R(z+A)

2
))2,

σ2 =
16µ2σ1

75

(10)

whereσ1 =
32µ3

375R
√
−3δ0

, R2 = c2
1 − 4c2 c0, δ0 < 0 and

A are arbitrary constants. Due to the translation symmetry,
we takeA = 0.
(i2) Whenk = 3, n = 2. By a similar way as we did in the
last case, the solution of (2) is given by

u(z) =
4
25

µ2(−1+ tanh(
R1 z
3c3

))2, σ2 =
16µ2 σ1

75
(11)

whereσ1 =

√
3c3 µ

5R1
√
−δ0

, R1 = c2
2 − 3c1 c3 < 0 andµ are

arbitrary constants. Indeed, this solutions is a solitary wave
solution.
(ii) Whenp = 2. In this case, the solutions are elliptic and
they may be given in Jacobi elliptic functions or as elliptic
integrals of the first and third kinds.
(ii1) Whenk = 2. In this case, the solution take the form

w(z) = a1ϕ(z)+ a0,

ϕ ′(z)2 = ∑4
j=0c j ϕ j(z).

(12)

When subtitling from (12) into (2), we get

a1 =−2µ
5

−
√

3δ0 c3 σ1

2
√
−c4

,

a0 = 2
√
−3c4δ0 σ1,

σ2 =
32

√
−3c4c4 µ3+450

√
−3c4c2

3 δ0 µ σ2
1

1200
√
−3c4c4 δ0 µ σ2

1 +4500c3σ3/2
0 σ3

1

+

1125c2
3δ 3/2

0 σ3
1 +9000c1c2

4 δ 3/2
0 σ3

1

1200
√
−3c4c4 δ0 µ σ2

1 +4500c3σ3/2
0 σ3

1

,

c2 =
σ1(1125c3

3σ3/2
0 σ3

1 −18000c1c2
4 σ3/2

0 σ3
1

150c4(4
√
−3c4 µ +15c3

√
δ0 σ1)

+

16c4 µ2(8
√
−3c4 µ +45c3

√
δ0 σ1))

150c4(4
√
−3c4 µ +15c3

√
δ0 σ1)

(13)

where c j, j = 0,1,3,4 are arbitrary constants and
δ0 c4 < 0.
For particular values ofc j, j = 0, ...,4, we get different
solutions in Jacobi elliptic functions.

Here, if we take (according to the classification in [30])

c0 =− (1−m2)2

4 , c2 =
1+m2

2 , c4 =− 1
4,

c1 = c3 = 0,
(14)

and substituting into (12), we get

ϕ(z) = mcn(z,m)±dn(z,m), (15)

where σ2 =
16
75

µ2 σ1, σ1 =
2µ

5
√

3δ0 (1+m2)
. By

substituting from (15) into (12), the solution of (2) is
given by

u(z) =
4µ2

25
(−1+

mcn(z,m)±dn(z,m)√
1+m2

)2, (16)

where µ is a constant andm (0 < m < 1) denotes the
modulus of the Jacobi elliptic function.

Figure 1: (a)-(c)(a1 =
4√

1+m2 , a0 =−4, µ = 10).

In Fig.1(a), the solution given by (16) is displayed against
z for different value of m, the thick straight line
corresponds tom = 0 and the thick curve (soliton wave)
corresponds tom = 1. Conoidal waves are inner when
m < 0.8 and are outer whenm ≥ 0.8.
In Fig.1(b), the same caption as in Fig.1(a) but for
different values ofm0 =

√
1−m2, the thick soliton wave

correspond tom = 0 and the thick straight line correspond
to m = 1.
In Fig.1(c), the same caption as in Fig.1(a) but for
different value ofm1 = m

√
1−m2, the thick straight line

correspond tom = 0,1.

To inspect the physics revealed by Fig.1, we mention
that µ = α(t)

β (t) , whereα(t) andβ (t) are the trapping and
nonlinear coefficients. In these figures, we takeµ ≫ 1. So
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the trapping prevails the nonlinearity.
Fig.1(a) shows that all elliptic waves are “outer waves”
where their amplitudes are higher than the amplitude of
the soliton wave in the limit case whenm = 1.
Fig.1(b) shows that all elliptic waves are “inner waves”
when m ≥ 0.8 that is, their amplitudes are smaller than
the amplitude of the soliton wave in the limit case when
m = 0.
Fig.1(c) shows that elliptic waves as larger than the
straight line (m = 0 or 1).
We remark that the corner wave (upper curve when
m = 0.9) steepens which may be argued to the fact that
the trapping coefficient prevails the non linearity as
µ = α(t)

β (t) ≫ 1. This may agree with the results in [31,32]
in different applications.
(ii2) Whenk = 3. In this case, the solution take the form

w(z) = a2ϕ(z)2+ a1ϕ(z)+ ao, (17)

(ϕ ′(z))2 =
j=6

∑
j=0

c j ϕ j(z), (18)

By substituting from (17) and (18) into (2), the principle
equation solves to

a2 = 4σ1

√

−3c6 δ0, a1 =
4c5

√
−δ0 σ1√
3c6

,

a0 =−2µ
5

+
(−11c2

5+36c4c6)
√
−δ0 σ1

12
√

3c3/2
6

,

σ2 =
8µ2σ1

25
+

(25c4
5−504c4c2

5 c6

216c3
6

−

432c2
6(−3c2

4+8c2c6))δ0 σ3
1 )

216c3
6

,

c3 =
−5c3

5+18c4c5 c6

27c2
6

, c1 =
c5

5−3c4c3
5 c6+27c2c5 c3

6

81c4
6

,

(19)
andc0 which is too lengthy to be written here. In equation
(19) δ0 < 0, c6 > 0, µ and c j, j = 2,4,5 are arbitrary
constants.

According to the classification in [30], If we take

c0 = c1 = c3 = c5 = 0, c2 > 0, (20)

and substituting in (18), we get

ϕ(z) =

√

c2csch2(
√

c2 z)

c4+2
√

c2 c6 coth(
√

c2z)
(21)

By substituting from (21) into equation (18), the solution
of (2) is given by

u(z) = (−2µ
5

+
c4 σ1

√

−3c6δ0√
c6

+

4σ1

√

−3c6 δ0(
c2csch2(

√
c2 z)

c4+2
√

c2 c6 coth(
√

c2 z)
))2.

(22)

2.2 Rational function solutions

In this section, we find rational solutions for some different
values ofn, r andp.
We mention that,k is found by using the balance condition
which is given byn− r = k−1.
(i) Whenp = 1. By takingn− r = 1 (whenk = 2) and by
using (5), the solution of (2) has the form

w(z) = p2ϕ2(z)+p1ϕ(z)+p0
q1 ϕ(z)+q0

,

ϕ ′(z) = c2 ϕ2(z)+ c1ϕ(z)+ c0.
(23)

By a direct calculation, the solution of (2) is given by

u(z) = (

15
√

3σ2sech2(
√σ2 z

4
√

−δ0 σ3/2
1

)

8
√

3µ σ1−30
√

σ1 σ2 tanh(
√σ2 z

4
√

−δ0 σ3/2
1

)
)2, (24)

whereσ1, σ2, δ0 < 0, µ are arbitrary constants.
When(σ2 < 0), say(σ2 =−ρ2), in equation (24), we find
that

u(z) = (

−15
√

3ρ2sec2( ρ z

4
√

−δ0 σ3/2
1

)

8
√

3µ σ1+30ρ
√

σ1 tan( ρ z

4
√

−δ0 σ3/2
1

)
)2, (25)

whereσ1, µ andρ are arbitrary constants.
(ii) When p = 2. By takingn = r = 1 (reduced tok = 1)
and by using (5), the solution of (2) has the form

w(z) =
p1 ϕ(z)+ p0

q1 ϕ(z)+ q0
, ϕ ′(z) =

√

c2 ϕ2(z)+ c1 ϕ(z)+ c0.

(26)
By a direct calculation, the solution of (2) is given by

u(z) = (
1+A1e

√
c2 z +A2e2

√
c2 z

1+A3e
√

c2 z +A2e2
√

c2 z
)2, (27)

where Ai, i = 1,2,3 are arbitrary constants, that are
functions inci, pi, qi andµ .
When (c2 = −ρ2), then (27) will give rise to a periodic
solution

u(z)(
1+B1 cos(ρ z)

B2+B3 cos(ρ z)
)2, (28)

whereBi, i = 1,2,3 are arbitrary constants which depend
on Ai.

It is worth to be noticing that, (28) is obtained from
(27) by separating the real and imaginary part into (27) and
by setting the coefficients of imaginary part equal zero.

The solutions which are given by (24) and (27) are
displayed againstx and t in figures 2(a) and 2(b)
respectively. We bearing in mind that,z = σ1 x + σ2 τ,
τ =

∫ t
0 β (t1)dt1.

At these figures, we find that
In Fig.2(a), a single soliton which is moving along the
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Figure 2: (a) σ2 = 1
4 , σ1 = 1, δ0 = −1, µ = 2, τ = t2 − t

or β (t) = 2t − 1. (b)σ1 = 2
65, σ2 = 32

975, A1 = −8, A2 =
8
7 , A3 =

48
7 , τ = t + 1

2t2 or β (t) = 1+ t.

characteristic curveσ1 x+σ2(t2− t) = constant.
In Fig.2(b), the solution shows the interaction between
soliton, kink and ant-kink waves and they are moving
along the characteristic curve
σ1 x+σ2(t +

1
2 t2) = constant.

We mention that, the solutions which are found by
using this method cover all the solutions that could be
obtained by using the well-known methods namely; the
tanh-method, Jacobic-elliptic function expansion,
Exp-function method and G′/G expansion
method [33–35]. Indeed, the work done in [16] unifies all
the methods known in the literature. On the other hand
the results for exact solutions obtained by this method
cover all solutions that could be found by the
pre-mentioned approaches.
For the case when the coefficients are not linearly
dependent, No exact solution were found by using
extended unified method. We think that, this result can be
justified by using the painleve’ test for integrability of the
S-KdV equation with variable coefficients. But this lies
outside the scope of this paper.

3 Conclusions

The extended unified method was used to obtain a class of
different solutions structures to the of the S-KdV with
time dependent coefficients. This method allowed us to
find a wide class of exact solutions that may be classified
into different types of wave geometries namely: periodic,
soliton waves or elliptic waves that are propagating along
the characteristics curves. On the other hand, they show
the interaction between soliton, kink and anti-kink waves.
The inner or outer conoidal waves to the soliton wave
solutions were shown. In a future work, the S-KdV
equation with space dependent coefficients will be studied
which is more realistic. This case reflects the
inhomogeneity of the medium that has an impact on the
dispersion and the dusty plasma coefficients. the study
will be carried via the method used here.

References

[1] Abdel-Gawad, H. I. "On the behavior of solutions of a
class of nonlinear partial differential equations." Journal of
statistical physics97.1-2 (1999): 395-407.

[2] Rogers, Colin, and William F. Shadwick. Bäcklund
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