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Abstract: This study considers the estimation problem for the paramand reliability function of Generalized Half logistic
distribution under record Data. We use the maximum likalthand Bayesian procedures to obtain the estimators of jeaearand
reliability function of Generalized Half logistic distuiion. We also obtain the Empirical Bayesian Estimatorgtierparameter and
reliability function of Generalized Half logistic distuiion and considered the problem of predicting future rédora Bayesian and
Empirical Bayesian approaches. Comparisons are made &etive different estimators based on a simulation study.
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1 Introduction

Let X = |Z|, whereZ is the standard logistic random variab¥eis called the folded or half logistic random variable. The
density function of half logistic distribution is a monotomecreasing function ofis [0,) and has an increasing hazard
rate. The generalized versions of half logistic distribnthamely Type-I and Typell were considered along with point
estimation of scale parameters and estimation of stressgttr reliability based on complete sample by Ramakrishna
[7]. Arora et al. B] considered maximum likelihood estimators of the geneealihalf logistic distribution under type |
progressive censoring with changing failure rates. Azimnalk]5] obtained Bayes estimators of the parameter and
reliability function of generalized half logistic distrition by taking progressive type Il censored sample usiffgreint

loss functions such as LINEX, precautionary and entropy faactions. The cumulative distribution function (cdfijda
probability density function (pdf), of the generalizedfadistic distribution with parametg8 > 0 are

2e 1P
F(x|B):1—L+eX] , X>0 (1)
f(xB) = M 2)
(1+e )Pt
The reliability functionR(t), at mission time is given by
264 B
R(t) = [m] 3)

Record values and the associated statistics are of in@nelsimportant in many real life applications. In industrydan
reliability studies, many products fail under stress. Ghan[10] introduced the study of record values and documented
many of the basic properties of records. XetX,, ... be a sequence of independent and identically distribuitdéndom
variables with cumulative distribution function(c&f)x) and probability density function(pdf)(x), forn > 1, define

G(1)=1, G(n+1)=min{j:j>G(n),Xj > Xg(m }
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The sequencéXG(n)} is known as upper record statistics (record times). For ndetails and applications in the
record values, see Ahsanullatj fnd Arnold et al.B].

Let X = {Xg(1) = X1, Xg(2) = X2, ... Xg(n) = Xn } be the firsin upper record values arising from a sequences of i.i.d.
Generalized Haﬁf logistic variables with pdf)( and distribution function cdfl). The likelihood function, (see Ahsanullah
[4]) is given by

n-1 f i
L(B) = £ (ke lB) [ % @
It follows from (1), (2) and @) that
L(xIB) = B"(u(xn))” (5)
Where -~
Uxa) = 14—ee*Xn

The maximum likelihood estimator (MLE) ¢ is

n
Inu(xn)

B

. o . . - —t 1B
Itis clear that the MLE of reliability functiorR(t), can be obtained big = [ff—efr} .

2 Bayesian Estimation

2.1 Prior and Posterior Distributions

Here, we consider the natural conjugate family of prior déssfor 3 as the following form

n(p) = %Ba—le—bﬂ. 6)

wherea andb are specified positive constants. Combining the likelihbwtttion G) with the prior pdf 6), via Bayes
theorem, results in the posterior density functioBof

(b—Inu(xy))™"

T[(B|X) _ r(n+a) aBn+a—1e—B(b—|nu(Xn))' (7)

Substituting = In}%r into (7) , we can obtain the posterior density functiorRof R(t) as

2e—T

1 b—Inu(x,)\ " _b-inupxn) _
7T(R|X) _ r(n+a) < |n-|—( n)) R—TT - 1(_|n R)n+a 1

where O< R< 1 andT = lj—e‘i}t

2.2 Bayesian Estimation Under Minimum Expected Loss Function

In this and next two subsections we present the Bayesianastin for the paramet¢d and reliability function based on
upper record values. In Bayesian analysis, widely usedflosgion is a quadratic loss function given by

L(B.d) = w(d—pB)?

If w= 1, it reduces to squared error loss function andidfer 32 ,it becomes

L(B.d) =B ?(d—B)?
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known as Minimum Expected Loss Function introduced by Rammala and Sathe]. The Bayesian estimators @f
under Minimum Expected Loss Function are given by

E(B~1Ix)
E(B2Ix)

Bue =

_ n+a—2 (8)

b—Inu(xy)

And the Bayes estimator &{(t) at timet under Minimum Expected Loss function is

R InT n+a
Rue = <1+b—lnu(xn)+lnT> (9)

2.3 Bayes Estimator Under General Entropy Loss Function
In many practical situations, it appears to be more realistexpress the loss in terms of the ragioln this case, Calabria
and Pulcini ] point out that a useful asymmetric loss function is the gahentropy loss function,

L(8) = [6%—qIn(8) — 1], = % (10)

The magnitude of) reflects the degree of asymmetry. The Bayes estimatBrwfder the GELF is given by

Boz = [E(B9x)] @ (11)
Therefore we have )
~  (F(n+a—q)) ¢ 1
oo~ (Fiva) 5 .
and n+a
5 b—Inu(xn) ST
Ree = (b— Inu(xn)+qInT) (13)

2.4 Bayesian Estimation Under Linex Loss Function
Another asymmetric loss function given by Varian [11], kmoas Linex loss function, is defined as

LA)=e?—kA—1, A=d—B,k#0 (14)

The sign and magnitude of thaeflect the deviation and degree of asymmetry, respectivbly Bayesian estimator gf
under this loss function is given by

B = T InE fexp( k)

Therefore we obtain Bayesian estimator of the paranfetard reliability functionR(t) under Linex loss function as
the following form

. n+a b—Inu(Xn)
A=—— In(b—lnu(Xn)ﬂLk> (15)
s 1 (2K bolnuxy)  \™®
RL—_Em (; sl (b—InU(Xn)+S|”T> ) -
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3 Empirical Bayes Estimation

In the parametric empirical Bayes method an estimate ofypefparameter is usually obtained as a maximum likelihood
estimate or a method of moments estimate (Carlin and L&li9[62). Here we estimate the unknown hyperparameter
B based on the method of maximum likelihood estimate. Assuraethe conjugate family of prior distributions f@r

is the family of gamma distributions, with known parametemd unknown parametér When the prior parametéris
unknown,we may use the empirical Bayes approach to gettitaae. the margin density function is

be . _(n+a) b?
/L X|B)m(B)dB = /B u(xn)) (a)B 'ePdp = M@ (b—Inu(xy))na

Based onf (x) the MLE ofb is

b —%‘ln (%) (17)

SubstitutingB into (8) and @) the empirical Bayes estimations of paramefeand reliability functionR(t) under
minimum expected loss function are obtained

5 Nn+ta-2)
Beme = T (18)
and -
5 nin
Rewe = <1+ —(a+n)Inu(x,) + nInT) (19)

Also empirical Bayes estimations of parameBeand reliability functionR(t) Under general entropy loss function are

obtained .
~  (F(n+a-q)) a -n
BEGE_( rinta) ) * @) inu) (20)

5 (a+n)Inu(xn) -
Rece = ((a+ n) Inu(xn) —annT) (21)

And for Linex loss function we have

- n+ta (@+n) Inu(xn)

PeL=—— In((a+n)|r1l1(><n)—'”"> -
s 1 (2 (kS (@+n)Inu(x) ”
ReL=—In <s; g ((aJrn)Irm(Xn)—”S'”T> ) -

4 Prediction Of The Future Records

In the context of prediction of the future records, the pcédn intervals provide bounds to contain the results oftart
record, based upon the results of the previous record obddrem the same distribution. This section is devoted to
deriving Bayes predictive density function, which is nea‘aey to obtain bounds for predictive interval of future netso

Let X = {Xg(1) = X1,Xg(2) = X2, ..., Xgm) = Xn} with Xg(1) < Xg(2) < ... < Xg(n) be the firstn observed upper record
values from the Generallzed Half logistic dlstrlbuuonsBd on such a record sample, Bayesian prediction is needed fo
thesth recordXg(s), 1 < n < s. For the convenience of notation, kg, = X andXg(s) =y The conditional pdf of for
givenX, is given by Ahsanullahd] in the form

wiy) —wx)]* "t f(y)
r(s—n) 1-F(xn)

f(y|xn,B) = (24)

Wherew(:) = —In[1— F(.)]. For Generalized Half logestic distribution with (pdf) afetf) given by @) and ()
respectively, the functiof (y|xn, ) becomes

g

() = 7 o= (M3 ) -

s—n-1 —
(g(yaxn)) X 1_|_e,y

(25)
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Where
e (l+e?)
e Y(1+e)

The Bayes predictive density functionpgivenx, is given by

g(Y; Xn)

f3xa) = [ (3P B) (BB (26)
Substituting {) and @5) in (26), we get

(b—Inu(xx))™?  (Ing(y,xn))*> " * 1
B(n+a,s—n) (b_|_|n12+e_§?’)s+a l+ey

fylxn) = (27)

whereB(-,-) is the beta function. It follows that the lower and upper d@®prediction bounds foY = Xgy), given the
previous dat, can be derived using the predictive survival function dediby

Pr(Y = A0 = [ fly)cy (28)

The predictive bounds of a two-sided interval with cowrerfor the future recor® may be thus obtained by solving the
following two equations, for lower (LL) and upper (UL) linsit

1 1-
Pr(Y > LLJx) = # Pr(Y > ULJX) = Ta

In most case, we will predict the first unobserved recordel|,,1),the predictive survival function fof = Xg . 1) is
given from @7) and @8) by settingss= n+ 1, simplifies to

Pr(Y > Alx) = (M) (29)

1+e A
b+InS=5

thus, a 10@%, Bayesian prediction interval fof = Xg 1), satisfying

LL=In (Zexp{ b InuGa) b} - 1) (30)
(55

UL=In (Zexp{w—b}—l) (31)
(55)"

4.1 Empirical Bayes Prediction Interval

and

substitutingd into (30) and B1), we obtain the empirical Bayes one-step prediction irsteag the following form

LLe =In| 2exp ilInu(xn) 1_Lnl -1 (32)
A a(+pr)me

ULg = In (2exp{%|n U(X) (1— _atn ”L> } - 1) 33)
a(i2)™
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5 Simulation study

In this section, the maximum likelihood, Bayes (Minimum Egped Loss, LINEX, General Entropy) and Empirical

Bayes Estimators are compared based on a Monte Carlo siomnukitidy and also compute the Bayes and Empirical
Bayes prediction interval for the future upper record value used the following steps to generate a Recored values fro
the Generalized Half Logistic distribution and computdedi#nt estimates.

1.For a given values of prior parametarandb (Table 1), we generai@ from the prior density).
2.For givenf obtained in step(1), we generate= (4,7,10) upper record values from the Generalized Half logistic

1
distribution with pdf @) usingx = In (2(1— Ui) # —1), whereU; are independenini form(0, 1) random variables.
3.We obtained the estimatBis= 2000 times and calculated the Estimated Risk (ER) given by

1 2000 )
ER= =% (}—V)
2000 i;

wherey is an estimate of.

Table 1: True values for simulation .
a b B k g t R(t)
2 1 0998182 1 1 0.5 1.324361

Table2: Averaged values of Estimated Risk for estimates of the pararf.

ER(B) ER(Bve) ER(BL) ER(Bce) ER(Beme) ER(BeL) ER(Bece)

0.60702 0.16958 0.09114 0.11290 0.33807 0.32493 0.42270

0.15894 0.14083 0.08439 0.10342 0.18408 0.13721 0.16002
0 0.09972 0.12485 0.07800 0.09432 0.14710 0.10101 0.11830

PN S

Table 3: Averaged values of Estimated Risk for estimates ofR(te.

n ERR ERRve) ERR) ERRee) ERReme) ER(ReL) ER(Rece)

4 0.34548 0.01300 0.28649 0.17297 0.07741 0.21409 0.23131
7 029785 0.01133 0.26478  0.02497 0.08867 0.17295 0.02100
10 0.28123 0.01002 0.25510 0.01341 0.09343 0.16091 0.01363

6 Real data

We apply the proposed procedures by considering a real de¢a ¢py Hinkley [L2], which represents the thirty
successive values of March precipitation (in inches) in Miapolis/StPau over a period of 30 years. The Torabi and
Bagheri [L3] showed that the data fits well the extended generalizeddgiltic distribution. 0.77, 1.74, 0.81, 1.20, 1.95,
1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.82,1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.78,2.
0.96, 1.89, 0.90, 2.05

If only the five upper record values have been observed, tregseo et al.1[1])

0.77,1.74,1.95,3.37,4.75
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Table4: Bayes and Empirical Bayes prediction interval for the fatupper record valug,; 1.

Bayes Empirical Bayes
a n Xn LL UL Width LLg ULg Width
90% 4 2.2258 2.2603 4.673024127 2.2491 3.8966 1.6475
7 3.3788 3.4067 5.2711 1.8644  3.3995 4.7848 1.3853
10 5.8200 5.8506 7.8444 19938 5.8465 7.5681 1.7216
95% 4 2.2258 2.2428 5411231684  2.2372 4.3993 2.1621
7 3.3788 3.3925 5.8001 24076  3.3889 5.1779 1.7890
10 5.8200 5.8351 8.3887 25536  5.8330 8.0380 2.2050
99% 4 2.2258 2.2291 7.48345.2543  2.2280 5.8040 3.5760
7 3.3788 3.3815 7.1946 3.8131  3.3808 6.2129 2.8321
10 5.8200 5.8229 9.7805 3.9576  5.8225 9.2398 3.4173

Using the formulae presented in Section 1, the maximumilikeld estimates g and reliability functionR(0.5) are
B = 1.229871 andk = 0.7078611, respectively. Using results of Sections 1 and 2siod parametera andb (Table 1),
different Bayes and Empirical Bayes estimates for the patarmand reliability function are computed and presented in
Tables 5 and 6.

Using the result of Section 4, the 90%, 95% and 99%, Bayesiadigiion intervals for the sixth record are
(4.794986, 7.998011), (4.772166, 8.966793)and (4.754BBB2267), respectively. Similarly, the 90%, 95% and 99%,
empirical Bayes one-step prediction intervals for thersirtcord are(4.792214,7.798273), (4.7708,8.707398) and
(4.754112,11.19964), respectively.

Table5: Bayes and Empirical Bayes estimates of the paranfitéinkley data).

Bue BL BeE Beme BeL BecE
0.8243388 0.9892066 1.068253 0.8784792 1.054175 1.133021

Table 6: Bayes and Empirical Bayes estimates of the reliability fiomcR(t), (Hinkley data).

RvE RL Rce Reme ReL Rece
1.354185 1.401091 1.303358 1.047037 1.401091 1.250818

7 Conclusion

Based on upper record values, the present paper proposesi8aynd Empirical Bayesian approaches to estimate the
parameter and reliability function for the Generalized fHalgistic distribution .We also considered the problem of
predicting future record in a Bayesian and Empirical Bagresipproaches. The Bayes estimators are obtained using both
symmetric and asymmetric loss functions. There are someuwsions which have been noticed as follows

1.Table 2 shows that the Bayes estimates of paranfeterder the LINEX loss function has the smallest Estimated
Risk (ER) as compared with other estimates (Bayes estimathsr the General Entropy and Minimum Expected loss
functions, maximum likelihood estimator (MLEs) and ditet Empirical Bayes estimates). Also, the Estimated Risk
decrease asincreases.

2.Table 3 shows that the Bayes estimates of reliability fioncunder the Minimum Expected loss has the smallest
Estimated Risk (ER) as compared with other estimates (Begtamates under the General Entropy and LINEX loss
functions, maximum likelihood estimator (MLES) and di#fat Empirical Bayes estimates). Also, the Estimated Risk
decrease asincreases.
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3.Table 4 shows that for different size The length of the Empirical Bayes prediction interval foe tfuture upper
record value always shorter than the Bayes predictionvater

Acknowledgement

The authors would like to thank the referees for valuablgysstions which led to the improvement of this paper.

References

[1] H. R. Varian, A Bayesian Approach to Real Estate Assessnidorth Holland, Amsterdam, 195-208 (1975).

[2] R. Calabria, G. Pulcini, Point estimation under asynmdbss functions for left-truncated exponential samp@smmunications
in Statistics Theory and Method25 585-600 (1996).

[3] B. C. Arnold, N. Balakrishnan, H.N. Nagaraja, Recordsleyy New York, (1998).

[4] M. Ahsanullah, Introduction to Record Statistics, NO®&ience Publishers Inc., Huntington, New York, (1995).

[5] R. Azimi, F. Yaghmaei, M. Babanezhad, Bayesian Estioratf Generalized Half Logistic Distribution Under Progsies Type-II
Censored Data. Applied Mathematical Scien€e$253-5261 (2012).

[6] S. H. Arora, G. C. Bihmani, M. N. Patel, Some Results on Maxm Likelihood Estimators of Parameters of Generalizetf Ha
Logistic Distribution under Type-l Progressive Censorimigh Changing Failure Rate. International Journal Of Corerary
Mathematical Science$, 685-698 (2010).

[7] V. Ramakrsihnan, Generalizations to half logistic disition and related inference. PhD thesis, Acharya NagarjUniversity
(AP), India, (2008).

[8] B.P. Carlin, T.A. Louis, Bayes and Empirical Bayes Malkdor Data Analysis, 2nd ed., Chapman & Hall/CRC, (2000).

[9] V. M. Rao Tummala and P.T. Sathe, Minimum expected lofsesors of reliability and parameters of certain lifetidtistributions,
IEEE Transactions on Reliabilit@7, 283-285 (1978).

[10] K. N. Chandler, The distribution and frequency of retegrlues. Journal of the Royal Statistical Society. Serig$4R220-228
(1952).

[11] J. 1. Seo, H. J. Lee and S. B. Kang, Estimation for geimszdl half logistic distribution based on records, Jourrfdhe Korean
Data & Information Science Society23, 1249-1257 (2012).

[12] D. Hinkley, On quick choice of power transformationi€TAmerican Statisticiar6, 67-69 (1977).

[13] H.A. Torabi and F.L. Bagheri, Estimation of parametiensan extended generalized half logistic distributiondzhen complete
and censored data. Journal of the Iranian Statistical §06iel71-195 (2010).

(@© 2014 NSP
Natural Sciences Publishing Cor.



	Introduction
	Bayesian Estimation
	Empirical Bayes Estimation
	Prediction Of The Future Records
	Simulation study
	Real data
	Conclusion

