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Abstract: This study considers the estimation problem for the parameter and reliability function of Generalized Half logistic
distribution under record Data. We use the maximum likelihood and Bayesian procedures to obtain the estimators of parameter and
reliability function of Generalized Half logistic distribution. We also obtain the Empirical Bayesian Estimators forthe parameter and
reliability function of Generalized Half logistic distribution and considered the problem of predicting future record in a Bayesian and
Empirical Bayesian approaches. Comparisons are made between the different estimators based on a simulation study.
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1 Introduction

Let X = |Z|, whereZ is the standard logistic random variable,X is called the folded or half logistic random variable. The
density function of half logistic distribution is a monotonic decreasing function ofx is [0,∞) and has an increasing hazard
rate. The generalized versions of half logistic distribution namely Type-I and TypeII were considered along with point
estimation of scale parameters and estimation of stress strength reliability based on complete sample by Ramakrishna
[7]. Arora et al. [6] considered maximum likelihood estimators of the generalized half logistic distribution under type I
progressive censoring with changing failure rates. Azimi et al.[5] obtained Bayes estimators of the parameter and
reliability function of generalized half logistic distribution by taking progressive type II censored sample using different
loss functions such as LINEX, precautionary and entropy loss functions. The cumulative distribution function (cdf), and
probability density function (pdf), of the generalized half logistic distribution with parameterβ > 0 are

F(x|β ) = 1−

[

2e−x

1+ e−x

]β
, x > 0 (1)

f (x|β ) =
β (2e−x)

β

(1+ e−x)β+1
(2)

The reliability functionR(t), at mission timet is given by

R(t) =

[

2e−t

1+ e−t

]β
. (3)

Record values and the associated statistics are of interestand important in many real life applications. In industry and
reliability studies, many products fail under stress. Chandler [10] introduced the study of record values and documented
many of the basic properties of records. LetX1,X2, ... be a sequence of independent and identically distributed (iid) random
variables with cumulative distribution function(cdf)F(x) and probability density function(pdf)f (x), for n ≥ 1, define

G(1) = 1, G(n+1) = min
{

j : j > G(n),X j > XG(n)

}
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The sequence
{

XG(n)

}

is known as upper record statistics (record times). For moredetails and applications in the
record values, see Ahsanullah [4] and Arnold et al.[3].

Let X =
{

XG(1) = X1,XG(2) = X2, ...,XG(n) = Xn
}

be the firstn upper record values arising from a sequences of i.i.d.
Generalized Half logistic variables with pdf (2), and distribution function cdf (1). The likelihood function, (see Ahsanullah
[4]) is given by

L(x|β ) = f
(

XG(n)|β
)

n−1

∏
i=1

f
(

XG(i)|β
)

1−F
(

XG(i)|β
) (4)

It follows from (1), (2) and (4) that

L(x|β ) = β n(u(xn))
β (5)

Where

u(xn) =
2e−xn

1+ e−xn

The maximum likelihood estimator (MLE) ofβ is

β̂ =−
n

lnu(xn)

It is clear that the MLE of reliability function,R(t), can be obtained bŷR =
[

2e−t

1+e−t

]β̂
.

2 Bayesian Estimation

2.1 Prior and Posterior Distributions

Here, we consider the natural conjugate family of prior densities for β as the following form

π (β ) =
ba

Γ (a)
β a−1e−bβ

. (6)

wherea andb are specified positive constants. Combining the likelihoodfunction (5) with the prior pdf (6), via Bayes
theorem, results in the posterior density function ofβ

π (β |x) =
(b− lnu(xn))

n+a

Γ (n+ a)
β n+a−1e−β (b−lnu(xn)). (7)

Substitutingβ = − lnR
ln 1+e−t

2e−t

into (7) , we can obtain the posterior density function ofR = R(t) as

π(R|x) =
1

Γ (n+ a)

(

b− lnu(xn)

lnT

)n+a

R
b−lnu(xn)

lnT −1 (− lnR)n+a−1

where 0< R < 1 andT = 1+e−t

2e−t .

2.2 Bayesian Estimation Under Minimum Expected Loss Function

In this and next two subsections we present the Bayesian estimation for the parameterβ and reliability function based on
upper record values. In Bayesian analysis, widely used lossfunction is a quadratic loss function given by

L(β ,d) = w(d−β )2

If w = 1, it reduces to squared error loss function and forw = β−2 ,it becomes

L(β ,d) = β−2(d−β )2
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known as Minimum Expected Loss Function introduced by Rao Tummala and Sathe [9]. The Bayesian estimators ofβ
under Minimum Expected Loss Function are given by

β̂ME =
E(β−1|x)
E(β−2|x)

=
n+ a−2

b− lnu(xn)
(8)

And the Bayes estimator ofR(t) at timet under Minimum Expected Loss function is

R̂ME =

(

1+
lnT

b− lnu(xn)+ lnT

)n+a

(9)

2.3 Bayes Estimator Under General Entropy Loss Function

In many practical situations, it appears to be more realistic to express the loss in terms of the ratiod
β . In this case, Calabria

and Pulcini [2] point out that a useful asymmetric loss function is the general entropy loss function,

L(δ ) = [δ q − q ln(δ )−1],δ =
d
β
. (10)

The magnitude ofq reflects the degree of asymmetry. The Bayes estimator ofβ under the GELF is given by

β̂GE =
[

E
(

β−q|x
)]− 1

q (11)

Therefore we have

β̂GE =

(

Γ (n+ a− q)
Γ (n+ a)

)− 1
q

×
1

b− lnu(xn)
. (12)

and

R̂GE =

(

b− lnu(xn)

b− lnu(xn)+ q lnT

)− n+a
q

(13)

2.4 Bayesian Estimation Under Linex Loss Function

Another asymmetric loss function given by Varian [11], known as Linex loss function, is defined as

L(∆) = ek∆ − k∆ −1, ∆ = d−β , k 6= 0 (14)

The sign and magnitude of thek reflect the deviation and degree of asymmetry, respectively. The Bayesian estimator ofβ
under this loss function is given by

β̂L =
−1
k

lnE [exp(−kβ )]

Therefore we obtain Bayesian estimator of the parameterβ and reliability functionR(t) under Linex loss function as
the following form

β̂L =−
n+ a

k
ln

(

b− lnu(xn)

b− lnu(xn)+ k

)

(15)

R̂L =−
1
k

ln

(

∞

∑
s=0

(−k)s

s!

(

b− lnu(xn)

b− lnu(xn)+ s lnT

)n+a
)

(16)

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


148 R. Azimi, F. A. Sarikhanbaglu: Bayes And Empirical Bayes Estimators based on...

3 Empirical Bayes Estimation

In the parametric empirical Bayes method an estimate of the hyperparameter is usually obtained as a maximum likelihood
estimate or a method of moments estimate (Carlin and Louis [8], p.62). Here we estimate the unknown hyperparameter
β based on the method of maximum likelihood estimate. Assume that the conjugate family of prior distributions forβ
is the family of gamma distributions, with known parametera and unknown parameterb. When the prior parameterb is
unknown,we may use the empirical Bayes approach to get its estimate. the margin density function is

f (x) =
∫

L(x|β )π(β )dβ =
∫

β n(u(xn))
β ba

Γ (a)
β a−1e−bβ dβ =

Γ (n+ a)
Γ (a)

ba

(b− lnu(xn))n+a

Based onf (x) the MLE ofb is

b̂ =−
a
n

lnu(xn) (17)

Substitutingb̂ into (8) and (9) the empirical Bayes estimations of parameterβ and reliability functionR(t) under
minimum expected loss function are obtained

β̂EME =
n(n+ a−2)

−(a+ n) lnu(xn)
(18)

and

R̂EME =

(

1+
n lnT

−(a+ n) lnu(xn)+ n lnT

)

(19)

Also empirical Bayes estimations of parameterβ and reliability functionR(t) Under general entropy loss function are
obtained

β̂EGE =

(

Γ (n+ a− q)
Γ (n+ a)

)− 1
q

×
−n

(a+ n) lnu(xn)
(20)

R̂EGE =

(

(a+ n) lnu(xn)

(a+ n) lnu(xn)− nq lnT

)− n+a
q

(21)

And for Linex loss function we have

β̂EL =−
n+ a

k
ln

(

(a+ n) lnu(xn)

(a+ n) lnu(xn)− nk

)

(22)

R̂EL =−
1
k

ln

(

∞

∑
s=0

(−k)s

s!

(

(a+ n) lnu(xn)

(a+ n) lnu(xn)− ns lnT

)n+a
)

(23)

4 Prediction Of The Future Records

In the context of prediction of the future records, the prediction intervals provide bounds to contain the results of a future
record, based upon the results of the previous record observed from the same distribution. This section is devoted to
deriving Bayes predictive density function, which is necessary to obtain bounds for predictive interval of future records.
Let X =

{

XG(1) = X1,XG(2) = X2, ...,XG(n) = Xn
}

with XG(1) ≤ XG(2) ≤ ... ≤ XG(n) be the firstn observed upper record
values from the Generalized Half logistic distribution. Based on such a record sample, Bayesian prediction is needed for
thesth recordXG(s), 1< n < s. For the convenience of notation, letXG(n) = xn andXG(s) = y The conditional pdf ofy for
givenXn is given by Ahsanullah [4] in the form

f (y|xn,β ) =
[w(y)−w(xn)]

s−n−1

Γ (s− n)
f (y)

1−F(xn)
(24)

Where w(·) = − ln[1− F(·)]. For Generalized Half logestic distribution with (pdf) and(cdf) given by (2) and (1)
respectively, the functionf (y|xn,β ) becomes

f (y|xn,β ) =
β s−n

Γ (s− n)
(lng(y,xn))

s−n−1(g(y,xn))
−β ×

1
1+ e−y (25)
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Where

g(y,xn) =
e−xn (1+ e−y)

e−y (1+ e−xn)

The Bayes predictive density function ofy givenxn is given by

f (y|xn) =
∫

f (y|xn,β )π(β |x)dβ (26)

Substituting (7) and (25) in (26), we get

f (y|xn) =
(b− lnu(xn))

n+a

B(n+ a,s− n)
×

(lng(y,xn))
s−n−1

(b+ ln 1+e−y

2e−y )s+a
×

1
1+ e−y (27)

whereB(·, ·) is the beta function. It follows that the lower and upper 100α% prediction bounds forY = XG(s), given the
previous datax, can be derived using the predictive survival function defined by

Pr(Y ≥ λ |x) =
∫ ∞

λ
f (y|xn)dy (28)

The predictive bounds of a two-sided interval with coverα , for the future recordY may be thus obtained by solving the
following two equations, for lower (LL) and upper (UL) limits:

Pr(Y > LL|x) =
1+α

2
, Pr(Y >UL|x) =

1−α
2

In most case, we will predict the first unobserved record valueXG(n+1),the predictive survival function forY = XG(n+1) is
given from (27) and (28) by settingss = n+1, simplifies to

Pr(Y ≥ λ |x) =





b− lnu(xn)

b+ ln 1+e−λ

2e−λ





n+a

(29)

thus, a 100α%, Bayesian prediction interval forY = XG(n+1), satisfying

LL = ln



2exp







b− lnu(xn)
(

1+α
2

)
1

n+a

− b







−1



 (30)

and

UL = ln



2exp







b− lnu(xn)
(

1−α
2

)
1

n+a

− b







−1



 (31)

4.1 Empirical Bayes Prediction Interval

substitutingb̂ into (30) and (31), we obtain the empirical Bayes one-step prediction interval as the following form

LLE = ln



2exp







a
n

lnu(xn)



1−
a+ n

a
(

1+α
2

)
1

n+a











−1



 (32)

and

ULE = ln



2exp







a
n

lnu(xn)



1−
a+ n

a
(

1−α
2

)
1

n+a











−1



 (33)
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5 Simulation study

In this section, the maximum likelihood, Bayes (Minimum Expected Loss, LINEX, General Entropy) and Empirical
Bayes Estimators are compared based on a Monte Carlo simulation study and also compute the Bayes and Empirical
Bayes prediction interval for the future upper record value. we used the following steps to generate a Recored values from
the Generalized Half Logistic distribution and compute different estimates.

1.For a given values of prior parametersa andb (Table 1), we generateβ from the prior density (6).
2.For givenβ obtained in step(1), we generaten = (4,7,10) upper record values from the Generalized Half logistic

distribution with pdf (2) usingxi = ln
(

2(1−Ui)
− 1

β −1
)

, whereUi are independentuni f orm(0,1) random variables.

3.We obtained the estimatesN = 2000 times and calculated the Estimated Risk (ER) given by

ER =
1

2000

2000

∑
i=1

(γ̂i − γ)2

whereγ̂ is an estimate ofγ.

Table 1: True values for simulation .
a b β k q t R(t)
2 1 0.998182 1 1 0.5 1.324361

Table 2: Averaged values of Estimated Risk for estimates of the parameterβ .

n ER(β̂ ) ER(β̂ME) ER(β̂L) ER(β̂GE) ER(β̂EME) ER(β̂EL) ER(β̂EGE)
4 0.60702 0.16958 0.09114 0.11290 0.33807 0.32493 0.42270
7 0.15894 0.14083 0.08439 0.10342 0.18408 0.13721 0.16002
10 0.09972 0.12485 0.07800 0.09432 0.14710 0.10101 0.11830

Table 3: Averaged values of Estimated Risk for estimates of theR(t).
n ER(R̂) ER(R̂ME) ER(R̂L) ER(R̂GE) ER(R̂EME) ER(R̂EL) ER(R̂EGE)
4 0.34548 0.01300 0.28649 0.17297 0.07741 0.21409 0.23131
7 0.29785 0.01133 0.26478 0.02497 0.08867 0.17295 0.02100
10 0.28123 0.01002 0.25510 0.01341 0.09343 0.16091 0.01363

6 Real data

We apply the proposed procedures by considering a real data given by Hinkley [12], which represents the thirty
successive values of March precipitation (in inches) in Minneapolis/StPau over a period of 30 years. The Torabi and
Bagheri [13] showed that the data fits well the extended generalized halflogistic distribution. 0.77, 1.74, 0.81, 1.20, 1.95,
1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48,
0.96, 1.89, 0.90, 2.05

If only the five upper record values have been observed, theseare(seo et al. [11])

0.77,1.74,1.95,3.37,4.75
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Table 4: Bayes and Empirical Bayes prediction interval for the future upper record valuexn+1.
Bayes Empirical Bayes

α n xn LL UL Width LLE ULE Width

90% 4 2.2258 2.2603 4.6730 2.4127 2.2491 3.8966 1.6475
7 3.3788 3.4067 5.2711 1.8644 3.3995 4.7848 1.3853
10 5.8200 5.8506 7.8444 1.9938 5.8465 7.5681 1.7216

95% 4 2.2258 2.2428 5.4112 3.1684 2.2372 4.3993 2.1621
7 3.3788 3.3925 5.8001 2.4076 3.3889 5.1779 1.7890
10 5.8200 5.8351 8.3887 2.5536 5.8330 8.0380 2.2050

99% 4 2.2258 2.2291 7.4834 5.2543 2.2280 5.8040 3.5760
7 3.3788 3.3815 7.1946 3.8131 3.3808 6.2129 2.8321
10 5.8200 5.8229 9.7805 3.9576 5.8225 9.2398 3.4173

Using the formulae presented in Section 1, the maximum likelihood estimates ofβ and reliability functionR(0.5) are
β̂ = 1.229871 and̂R = 0.7078611, respectively. Using results of Sections 1 and 2 andprior parametersa andb (Table 1),
different Bayes and Empirical Bayes estimates for the parameter and reliability function are computed and presented in
Tables 5 and 6.

Using the result of Section 4, the 90%, 95% and 99%, Bayesian prediction intervals for the sixth record are
(4.794986, 7.998011), (4.772166, 8.966793)and (4.754382, 11.62267), respectively. Similarly, the 90%, 95% and 99%,
empirical Bayes one-step prediction intervals for the sixth record are(4.792214,7.798273), (4.7708,8.707398) and
(4.754112, 11.19964), respectively.

Table 5: Bayes and Empirical Bayes estimates of the parameterβ , (Hinkley data).

β̂ME β̂L β̂GE β̂EME β̂EL β̂EGE
0.8243388 0.9892066 1.068253 0.8784792 1.054175 1.133021

Table 6: Bayes and Empirical Bayes estimates of the reliability function R(t), (Hinkley data).

R̂ME R̂L R̂GE R̂EME R̂EL R̂EGE
1.354185 1.401091 1.303358 1.047037 1.401091 1.250818

7 Conclusion

Based on upper record values, the present paper proposes Bayesian and Empirical Bayesian approaches to estimate the
parameter and reliability function for the Generalized Half Logistic distribution .We also considered the problem of
predicting future record in a Bayesian and Empirical Bayesian approaches. The Bayes estimators are obtained using both
symmetric and asymmetric loss functions. There are some conclusions which have been noticed as follows

1.Table 2 shows that the Bayes estimates of parameterβ under the LINEX loss function has the smallest Estimated
Risk (ER) as compared with other estimates (Bayes estimatesunder the General Entropy and Minimum Expected loss
functions, maximum likelihood estimator (MLEs) and different Empirical Bayes estimates). Also, the Estimated Risk
decrease asn increases.

2.Table 3 shows that the Bayes estimates of reliability function under the Minimum Expected loss has the smallest
Estimated Risk (ER) as compared with other estimates (Bayesestimates under the General Entropy and LINEX loss
functions, maximum likelihood estimator (MLEs) and different Empirical Bayes estimates). Also, the Estimated Risk
decrease asn increases.
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3.Table 4 shows that for different sizen, The length of the Empirical Bayes prediction interval for the future upper
record value always shorter than the Bayes prediction interval.
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