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Abstract: In this paper we study the coefficients of the powers of annargi generating function and their properties. A new class
of functions based on compositions of an integés introduced and is termed composita. We present theorbmg aompositae and
operations with compositae. We obtain the compositae gfaohials, trigonometric and hyperbolic functions.
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1 Introduction 2 Composita

Now we introduce the definition of composita.

Definition 1.The composita of the generating function
The computations based on combinatorial objects are af (x) = ¥ .o f(n)X" is the function of two variables
important direction of research in enumerative 2
combinatorics and related fields of mathematics. For Fo(n,k) = ; f(A1) f(A2)... F(Aw), 1)
example, ordered partitions of a finite set is used to derive Tken
the formula for a composition of exponential generatingwhere G, is a set of all compositions of an integerm, is
functions [l]. Computations that use compositions of an the composition n into k parts such ﬂ"@tl)\i =n.
integern are found in various problems: derivation of a It follows from the definition of a composita that it is
convolution of convolutionsd], composition of ordinary defined for a generating functio(x) for which
generating functions3] that allow us to obtain many f(0) — 0. Let us consider a generating function

properties of polynomials45], calculation of then-th _ox n
order derivatives of a composite functio],[ generation (¥) = 1 = Zn-0X". On the strength of formuld), the

of ordered root tree</], etc. However, there is no unified composita of this function is
approach to solving problems based on compositions. FA( K) = <n — 1)

In this work, we consider a unified approach to the k—1

above problems, using a special function termed arqr aiin > 0 we havef (n) = 1; therefore, the formulal}
compositaThe notion of the composita is close to that of ., ints the number of compositionsrointo k parts.

a Riordan array §,9], but the composita characterizes — \jext we obtain a recurrent formula for the composita
only one funct|0n', and potennal polynomials for of a generating function.
exponential generating functionk(.

Most of all papers and books related to combinatorial;mi%fr:n Ilz(F)gr t:he ;O?](ﬁ?f,:tats e(n,g”gl;\}irr\% gfg;:?rté?]%
n>0

problems and generating functions use coefficients of the

powers of an ordinary generating functioh, 3,10,11]. relation holds true

However, as an independent object of study this has not f(n) ik — 1
considered. So investigation of the coefficients of the FA(nK) — n7k+’1 ' 5
powers of an ordinary generating function is very (n.k) = y f()FA(n—ik—1), ifk<n. (2)

important. i=1
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Proof.The compositiorrg for k = 1 is unique and is equal It follows from

to n; from whence it follows thaF#(n,1) = f(n). Now

for k > 1 we group in the formulal) all products [F(X)]*= zk ;ﬂf(/\l)f(/\z)---f()\k)X"Z Z{FA(n,k)x”.
f(A1)f(A2)... f(Ak) of the compositiormg with equalA;. n>krge n>

Let us takef (A1) out of the brackets; we see that the sum o o

of the products in the brackets is equal to The composita is the coefficients of the powers of an

FA(n—Ag,k—1). Then for all values oh; we obtain ordinary generating function

FA(nk) = F(L)FA(n—Lk—1)+ F(2FA(n—2k—1) +--- F4(n,K) = XF (9"

o FOFA(n—ik—=1)+...+ f(n—(n—k+1))F4 (k—1,k—1).

Thus, the theorem is proved. 3 Operations with composita

It is obviously that The above result allows us to use generating functions for
computation of compositae. In this section we introduce
F4(n,n) = f(1)F4(n—1,n—1)= f(1)". several theorems for computation of compositae.

The formula @) allows the conclusion that the composita Th€orem 2Suppose £x) = 5.0 f(n)x" is a generating
is a characteristic of the generating functiefx). function, F*(n,k) is the composita of this generating

In tabular form, the composita is presented as a triangldunction. Then for the generating functior{h = xF(x)
the composita is equal to

as follows
Fi A (nk) = FA(n—k k). 4)
Fa1 4 P2 ProofUsing @), we get
A F3,1 A F3,2 A F3,3 A
Fin Fi2 Fis Fia A = DFEOOI* =X [F ] = 5 F4(n kxX™*,
_ . : : . msk
i Ry Foni Fin Substitutingn for m+ k, we get the following expression
or, sinceF{, = f(n), B, = [f(1)]", as AXK= T FA(n—k kX"
' ' n>2k
f(1
A (n,k) = F2(n—Kk k).
3 F4 £3(1) (n,k) =FE(n—kKk)
f(4) Fis Fis f4(1) Corollary 1.Suppose B) = ¥ -ob(n)x" is a generating
. : : : . function such that[B(x)]X = ¥n-oB(n,k)x". Then the
' ' ' ' ' composita of the generating functio = xB(x) is
) F4, FA L (1) P 9 9 o4 = XB(x)

equal to

A _
Presented below are the first terms of the composita of A% (n.k) =B(n—k k). ()

th_e generating functiorF (x) = % (it is the Pascal Corollary 2. Suppose &) = S n-0a(n)x" is a generating
triangle) function, A (n,k) is the composita of this generating

1 1 1 function. Then for the generating function
121 Bk = [EXk — 5  Bnkx" such that
1 3 3 1 E)(x) = Y n=0b(n)x" the expression of coefficients is equal
1 4 6 41

For the given generating functidh(x) = S,.o f(n)x" ~ Theorem 3Suppose B) = 3 n-ob(n)x" is a generating
the compositde2 (n, k) always exists and is unique. function such that[B(x)* = ¥n-0B(n,k)x". Then the

Next we consider a generating function of the composita of the generating functiori = B(x) — b(0)
composita. The generating function of the composita ofis equal to

F(x) is equal to )

U
FOO= 5 FANIOR, 3) AA(”vk):Z(OB(n,J)(—l)k b 1. (7)

=1
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ProofRaising the generating functidk(x) to the power of
k and applying the binomial theorem, we obtain

A = [B(X) — (O] = k(ﬂB@ﬂ«&ﬁjbmﬁl
PRV
From
[BX)J* = ZOB(n,k)X”,
andB(x)° = 1, we have i
1, ifn=0
B0 =10, in=o.
SinceA(x) = ¥ p-oa(n)x", we get
A%(n,k) = f (k) B(n, j)(—1)% ()
’ & J )

Theorem 4Suppose k) = S,.of(N)x" is the

generating function, #(n,k) is the composita of this
generating function, andx is constant. Then for the
generating function &) = aF (x) the composita is equal

to
A% (n,k) = a"F2(n,k). (8)

ProofUsing 3), we get
A = [aF (x)]* = a“[F(x)]* =

kgA n A n
=Y a'F?(nkx"'=Y A%(nKk)x

Therefore,
A% (n,k) = a*F2(n,k).

Theorem 5Suppose  KX) = S,.of(N)x" is the

generating function, #(n,k) is the composita of this
generating function, andx is constant. Then for the
generating function &) = F(ax) the composita is equal

to
A2 (n,k) = a"F2(n,k). (9)

ProofUsing @), we get
(AKX = [F(ax)) = EkFA(n,k)(aX)” =
n>
=Y a"FA(n,k)x A2 (n, k)X
2= g A
Therefore,
A2(n,k) = a"F2(n,k).

Theorem 6Suppose we have the generating function
F(X) = Yn-of(n)X", the composita of this generating

function F*(n,k); the following generating functions

B(X) = Sn=ob(Mx" and B(x)]X = 31-0B(n,k)x". Then
for the generating function %) = F(X)B(x) the
composita is equal to

n
A2(n,k) = Z{FA(i,k)B(n—i,k). (10)
i=

ProofSincea(0) = f(0)b(0)
compositad® (n, k).
Using 3), we get

=0, the functiorA(x) has the

Then, from the rule of product of generating functions, we
have
(n,k) = Z{FA

Corollary 3.1f for the generating function &) we have
b(0) = 0, then the formulaX0) takes the form

A(n,k) = Z(FA

Theorem 7Suppose we have the generating functions
F(X) = Snoof (X", G(X) = Tnuog(MX, and their
compositae P (n,k), GA(n,k) respectively. Then for the
generating function &) = F(x) + G(x) the composita is
equalto

(n—i,k).

n—i,k). (11)

A2(n,k) = F2(n,k) + G?(n,k)+
k—1 (k>n k+j A
+ . F
le J Z

ProofUsing 3) and the binomial theorem, we get

n—i,k—j). (12)

MWF=§(DF®HWW“V

Note that

Fol = 3 FAnj)x,

and
G ="y G*(nk—j)x
n>Z j

Then, fromF (x)° = 1, G(x)° = 1 and the rule of product
of generating functions, we have

A%(n,k) = F2(n,k) + G2 (n,k)+
k—1 K n—k+j A
+ . F n—ik—j).
20) 2
RemarkFor the casé = 0, we haveF (x)° = 1. It is mean
that
1, ifn=0;
A _ ) il
F=(n,0) = {o, if n> 0. (13)
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4 Compositae of generating functions Substituting n for m+k, we get the following
expression

In this section we consider several examples of

computation of compositae. 2

2%
For derivation of a composita of the generating [F(xab)]*= Z(( k )az"‘“b“‘kx”: Z(FA(n,k,a,b)xn
functionF (X) = S50 f(N)X", we have to find coefficients Ak \N— =

of the generating functioR (x)¥. As an example, in Table

1 we present compositae of several known generatingf herefore, the composita is

functions fL,2,10].

F4(n.k,ab) = ( nE >a2k”b”k. (14)

Table 1: Examples of generating functions and their compositae
Generating function F(x) | CompositaF2(n,k)

Next we obtain the composita of the generating
function F(x) = ax+ bx? + 3. For this purpose, we

X" Shmk. Mm> 0 write the generating function as the sum of the functions
2 (A1) an—kpk F1(x) = axandRy(x) = x(bx+ o). ' .
xe& (rl1<” kk) The_ composita of the generating functib(x) = ax,
according to Theorem, is equal to
In(1+x) 5 K s(n, k)
&1 K S(n,k) F2(nk.a) = auk.

Using Theoren? and the formulal4), the composita

Here &, is the Kronecker deltas(n,k) and S(n,k) of the generating functioR,(x) is equal to
stand for the Stirling numbers of the first kind and of the
second kind, respectively (seE)2]). FA(n k,b,C) = ( )b3k—ncn—2k
The Stirling numbers of the first king[n, k) count the 2V n—2k '
number of permutations ofi elements withk disjoint
cycles. The Stirling numbers of the first kind are defined  ysing Theoren¥, we obtain
by the following generating function

n k n—k+j )
l,Uk(x)zZ(s(n,k)%:%lnk(lﬂ). F4(n.k,ab,c) = Z}() Z F(i,.b,0) 8y ja ).

The Stirling numbers of the second kisth, k) count  Since
the number of ways to partition a setmelements intdk . . .
5 {1, ifn—i=k—j;
i,k—]j

nonempty subsets. A general formula for the Stirling i
0, otherwise

numbers of the second kind is given as follows

S(n,k) = o i( 1)k-] (k> in. the composita oF (x) = ax+bx? + ¢ is
J

k .
k j i oin L
A k- jp2i+k-nan—k
The Stirling numbers of the second kind are defined byF ™ (n:k.a.b.¢) = Z) <J> (n Ck— j) a T e,
the following generating function =

(15)
X With the above theorems (Section 3), we can obtain
k . ) :
X) = Z{S(m Ko = W(e"— 1)~ compositae for different polynomials. Some examples are
' ' presented in Tabl2.
Compositae of polynomials Compositae of trigonometric functions

Let us obtain compositae for polynomials. First we  For computation of compositae of trigonometric
obtain the composita of the generating function functions, we use the Euler identitf = cogx) +isin(x).
F(x) = ax+ bxX%. Raising this generating function to the Let us obtain the composita of the generating function
power ofk and applying the binomial theorem, we get F(x) = sin(x).
Using the expression

£ K N
[F(x,a,b)]k = x*(a+ bx)k = x¥ > (m) a“MpmxM. sin(x) = g — g X

m=0 2i ’
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Table 2: Compositae of polynomials

GFF(x) CompositaF4 (n,k)
ax+ bxé (nkk) a2¢—npn—k
ax+bx +ox éo () (nill;ij)akfinkanCn—k—j
el T
— L3

we obtain sirfx)*

sin(x) i% ) @mxgritk-mx _gykem _
2kik £\ m
1 X 7k
- (2m—k) k—m _
24k mZO <m>e' =1
k _
_ zkikin—k z <k> (2m : k) ( 1)k—mxn
S 2 e \m n!
Then the composita is equal to
k _ kD
2_][<in7k Z (::]) (Zmn| k) (_1)k7m.
m=0 :

Sincen —k is an even number and the function is
symmetric with respect t&, we obtain the composita of
the generating functioR (x) = sin(x):

if n—kis even, we have

n+k

2T (16)

FA(n,k) = 2klnlz<>2m k)"(—1) =2

if n—kis odd, we have

FA4(n,k) =

With the above theorems (Section 3), we can obtain

compositae for different trigonometric and hyperbolic
functions. Some examples are presented in Table

5 Composition of generating functions and
its composita

Let us consider the application of compositae for
computation of compositions of ordinary generating

conditiona(0) =

Table 3: Compositae of trigonometric and hyperbolic functions

GF F(x) CompositaF2 (n,k)

n- LKJ n+
sing | LG 5 (%) em—kn(-1E
m=0
__1\yn—k n— Lk;zlj
Xcogx) l—;%f—i()!( 1) jZO (lj()(k—zl)nfk
) | HEEN 5 i ol

J:
(D (-1 )k n .
arctar{x) ( T jgk % (T,i) s(J,k)

, K o
sinh(x) Z*lkjgo(—l)'(lj()( L

k k—2j)n-k

xcosh(x) * ].ZO (Ij() ( (nJQ)!

function F*(n,k), and the generating function

R(X) = Snsor(n)x". Then for the composition of
generating functions &) = R(F(x)) the following
condition holds

dmz{

where AX) = 3 >pa(n)x"

ProofFor computatior\(x) =

r(0), ifn=0;

Sk FA(nKr(k), ifn>0, (17)

R(F(x)) we can write

Z)r(k)F(x)k.

k>

A(X) = R(F(x))

ReplacingF (X)X by 5 .-k F2(n,k)x" and considering that
F(x)° =1, we get

():(0

r(0)+
+r(1)F(1,1)x +r(1)F (2,1)%
+r(2)F(2,2)x?

(DF(n1)x" + -

T
A TQF(N,2)X" -

tit

r(n)F(n,n)x" +---

Summing the coefficients of equal powers®fwe obtain
the desired formula

a(0) =r(0), n=0;

n> 0.

S R Kr(k),
n) k; (n,K)r (k)

Further, for the compositiorA(x) =
r(0) is implied.

R(F(x)) the

functions. For this purpose, we prove the following Example iLet us obtain an expression of coefficients of

theorem.

Theorem 8Suppose we have the generating function
F(X) = Snsof(n)X", the composita of this generating

the generating function

1

A = 1—ax—bxe—

o3’
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wherea, b,c # 0.

RepresentA(x) as the composition of generating
functionsA(x) = R(F(x)), whereF (x) = ax+ bx2 + ¢
andR(x) = 1.

According to Table2, the composita oF (x) = ax+
bx2 + o is

k K ;
J
506k
Using Theorem8, we obtain the expression of
coefficients ofA(X)

n k k i Lo .

_ J k—jhn2j+k—n~n—k—]j

a(n) = E : )a“ b c )
( ) kZlJ: <J) (n_k_J)

Example et us consider the generating functi(x) =
esinh(x).
Using the composita of (x) = sinh(x) (see Table3)

) ak—jb2j+k—ncn—k—j.

and Theoren8, we obtain the expression of coefficients of function, Bx) =

A(X)

(k— 2])

=855 ()5

F(X) = Snof(MX', G(X) = Fn-0g(n)x", and their
compositae P(n,k), GA(n, k) respectively. Then for the
composition of generating function$d = G(F(x)) the
composita is equal to

_1
Theorem QSuppose we have the generating functions  , B (LD’
i (nK) = ¢ nk (rmk—l)

A(n,k) = i(FA(n,m)GA(m, K). (18)

ProofUsing the formula3), we have

¢ = zkAA(n,k)x“

A< =

The function of coefficients of the generating function

[G(X)]¥ is the composit&? (n, k)

=5 G*(n,k)x"
2

Then, according to Theore& we get
n
@wwﬁzng%mmﬁmm
m=1

Since

GA(m,k) = if m<Kk,

functionsA(x) = G(F(x))

we obtain the composita of the composition of generating 1
Mk {W’

n

A% (n k) = Z(FA(n,m)GA(m,k).

6 Composita of reciprocal generating
function

First we consider the notion ofeciprocal generating
functions[12].

Definition 2.Reciprocal  generating
functions that satisfy the condition

functions are

H(x)B(x) = 1.

Remarkf we have the reciprocal generating functions
H(X) = Sn>oh(n)x™ and B(x) = 3,50B(n)x" such that
H(x)B(x) = 1, then by the composita of the reciprocal
generating function oB(x) we mean the composita of
XH(X) = %.

In the following theorem we give the formula of the
composita of a reciprocal generating function.

Theorem 10Suppose ki) = 3 ,-oh(n)x" is a generating
Y n=0b(n)x" is the reciprocal generating
function of Hx), and B (n,k) is the composita of x&).
Then the composita of the generating function(xHis
equal to

ifn=Kk;
m (,1)1'(“") L X
L jZlBe(Ll)ijBQ(n—kJrJ,J), if n > k.
(19)
ProofBy Definition 2, we get
X
XH(X) = .
() b(0) 4+ B(x) — b(0)

Raising this generating function to the powerkpive
obtain

K k
k X _ 1 X
[XH(X)]* = [_b(O)JrB(x)fb(O)} = | B0 T 5% (B0 b )} :
Using Corollary2, Theorem3 and Theorem4 we
obtain the composita df (x) = ¢- (B(x) — bo)

k

i (Vo
5 50)1(-27 ({) B+ 1.

J:

F4(n,k) =

The expression of coefficients of the generating

B k -
functionR(x) = {%ml_ix} is equal to
1 /n+k-1 n
R("h'@—w( K1 >(—1) .
Then, according to Theorem8, we get
if n=0;
no o (mik-1 V' (] pa -
Sme1 (1) 2T e BA(N+1.0), ifn>0.
Therefore, from Corollany andb(0) = B4(1,1), we

obtain the composita of the reciprocal generating function
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of B(x) 7 Conclusion
L ifn=Kk
B4A(1,1)k’ - . . .
HAMNK) = nok e Mo Coi(m) g L In this paper we introduce the concept of composita for
(" )ng——ﬁae(n)w BY(n—k+1j,j), ifn>k ordinary generating functions and provide a number of
applications. The proposed apparatus of compositae is
For applications of TheoremlO0 we give some applicable to solve the following problems: calculation of
examples. the composition of ordinary generating functions; finding
expressions of reciprocal generating functions; finding
Example 3.et us find a composita of the generating expressions of inverse generating functions; finding
functionF (x) = x2csqx). For this purpose, we write solutions of functional equations; obtaining expressions
of polynomials and etc.

m=1

F(x) = x2csqX) = —

sin(x) ’
X
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