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In this paper, we establish exact solutions for the Davey-Stewartson (DS) equation. The
rational expansion method is used to construct periodic and solitary wave solutions of
the Davey-Stewartson equation. Moreover, we extend the analysis of this method to
solve different types of nonlinear system of Davey-Stewartson.
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1 Introduction

Searching and constructing exact solutions for nonlinear partial differential equations
(NPDEs) is an ongoing research. These exact solutions when they exist can help to un-
derstand the mechanism of the complicated physical phenomena and dynamically pro-
cesses modelled by these nonlinear partial differential equations (NPDEs). During the past
decades, quite a few methods for obtaining explicit traveling and solitary wave solutions
of nonlinear DS equations have given rise to a variety of powerful methods, such as homo-
geneous balance method [4], the tanh-sech method [3, 6–8], inverse scattering method [1],
bilinear transformation [5], etc.

The motivation of this paper is to extend the analysis of a new compound Riccati equa-
tions rational expansion method to solve different types of nonlinear system of partial dif-
ferential equations (NPDEs). The higher-dimensional nonlinear wave fields have richer
phenomena than that of one-dimensional case since various localized solitons may be con-
sidered in higher-dimensional space. The DS equation has four kinds of soliton solutions:
the conventional line, algebraic, periodic and lattice solitons. The conventional line soliton
has an essentially one-dimensional structure. On the other hand, the algebraic, periodic and
lattice solitons have a two-dimensional localized structure.
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The Davey–Stewartson equation may be written as

iqt +
1
2
σ2

(
qxx + σ2qyy

)
+ λ | q |2 q − φxq = 0, (1.1)

φxx − σ2φyy − 2λ
(| q |2)

x
= 0,

λ = ±1, σ2 = ±1.

When σ = 1 (1.1) is called the DS I equation, while when σ = i (1.1) is the DS II
equation. The parameter λ characterises the focusing or defocusing case.

Davey and Stewartson first derived their model in the context of water wave, with purely
physical considerations. In this context,q(t, x, y) is the amplitude of a surface wave packet,
while φ(t, x, y) is the velocity potential of the mean flow interacting with the surface wave
[2].

The Davey-Stewartson I and II equations (Denoted by DSI and DSII) are two well-
know examples of integrable equation in two dimensions space, which arise as higher di-
mensional generalizations of the nonlinear Schrodinger (NLS) equation, as well as from
physical considerations [2]. Indeed, they appear in many applications, for example in the
description of gravity-capillarity surface wave packets in the limit of shallow water.

2 New Compound Riccati Equations Rational Expansion Method

The Known Riccati equation is used as sub-equation to set up many algorithms to con-
struct particular travelling solutions for a large number of NPDEs. Generally speaking, the
various extensions and improvement of the Riccati sub-equation methods focus mainly on
presenting more general answer. Recently, Wang [9, 10] claimed that solutions of two dif-
ferent Riccati equations with different parameters are used as two variables in the compo-
nents of finite rational expansion. In this work,we further develop the method Wang [9,10],
named the compound Riccati equations rational expansion (CRERE) method, to construct
new styles solutions of NPDEs. For illustration, we apply the new method to the (2+1)-
dimensional Davey-Stewartson system and successfully construct new solutions.

In the following we outline the main steps of our method:

Step 1. Consider a given NPDEs system with some physical fields ui in three variables
x, y, t, where i numbers the physical field and the subscripts x or t indicate differentiation,

Pi (u i, ui t, ui x, ui y, ui tt, ui xx, ui tx, ui ty,ui xy, ui yy, . . .) = 0. (2.1)

By using the wave transformation

ui(x, y, t) = U(ξ), ξ = k(x + ly − λt ), (2.2)
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where k, l and λ are constants to be determined latter, the nonlinear partial differential
equation (2.1) is reduced to a nonlinear ordinary differential equations (ODEs)

Qi(Ui, U
′
i , U

′′
i , U ′′′

i , . . .) = 0. (2.3)

Step 2. We introduce a new solutions in terms of finite rational formal expansion in the
following form

Ui(ξ) = a0 +
mi∑

j=1

∑
r1+r2=j aij

rj1rj2

(
φ′′

)rj1
(
ψ′

)rj2

(
µ1 φ′′ + µ2 ψ′

)j
, (2.4)

where aij
rj1rj2

, µ1 and µ2 (rjn = 1, 2, 3, . . . , j; n = 1, 2) are constants to be determined
and the new variables φ = φ(ξ) and ψ = ψ(ξ) satisfy the Riccati equation, i.e.,

d φ

d ξ
= h1 + h2φ

2,
d ψ

d ξ
= h3 + h4ψ

2, (2.5)

where h1, h2, h3 and h4 are arbitrary constants.

Step 3. The parameter mi in Eq. (2.4) can be found by balancing the highest nonlinear
terms and the highest-order partial derivative term in (2.1) or (2.3).

Step 4. Substituting Eq. (2.4) into Eq. (2.3) along with Eq. (2.5) and then seting all
coefficients of φi and ψj , (i = 1, 2, . . . ; j = 1, 2, . . .) in the resulting system’s numerator
zero to get an over-determined system of nonlinear algebraic equations with respect to λ

and aij
rj1rj2

(rjn = 1, 2, 3, . . . , j; n = 1, 2) .

Step 5. Solve the over-determined system of nonlinear algebraic equations by us-
ing Maple program and we would end up with the explicit expressions for λ and
aij

rj1rj2
(rjn = 1, 2, 3, . . . , j; n = 1, 2) .

Step 6. It is well known that the general solutions of the Riccati equation

d F

d ξ
= r1 + r2 F 2 (ξ),

are

1). if r1 =
1
2
, r2 = −1

2
F (ξ) = tanh(ξ) ± i sech(ξ), F (ξ) = coth(ξ) ± csch(ξ);

2). if r1 = r2 = ±1
2
, F (ξ) = csc (ξ) ± cot(ξ);

3). if r1 = 1, r2 = −1, F (ξ) = tanh(ξ), F (ξ) = coth(ξ);

4). if r1 = r2 = 1, F (ξ) = tan(ξ);

5). if r1 = r2 = −1, F (ξ) = cot(ξ);

6). if r1 = 0, r2 6= 0, F (ξ) =
−1

r2ξ + r0
,

where ξ = k (x + ly − λt) , i =
√−1 and r0 is arbitrary constant.
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3 Application to the (2+1)-Dimensional Davey-Stewartson System

Let us consider the (2+1)-dimensional system DS (1.1). With the transformations

q(x, y, t) = u(ξ) ei θ, φ(x, y, t) = V (ξ), (3.1)

where
ξ = k (x + ly − λt) , θ = k1x + k2y + k3t,

the system (1.1) is converted to the system
{
− k3u− i λku′ +

1
2
σ2

[
− k2

1u + 2i kk1u
′ + k2u′′(−k2u + 2ikk2l u′ + k2l 2u′′)

]

+ λ u3 − k V′
}

ei θ = 0, (3.2)

k(1− σ2l2 )V ′′ − 2λ(u2)′ =0. (3.3)

With straightforward calculations, Eq. (3.2) and Eq.(3.3) give
[
σ2(k1 + σ2k2l )− λ

]
k = 0, (3.4)

σ2k2(1 + σ2)u′′ + 2λu3 − σ2(k2
1 + σ2k2

2 + 2k3)u− 2k V′ = 0, (3.5)

k(1− σ2l2 )V ′ − 2λu2 = 0. (3.6)

By balancing the highest nonlinear terms and the highest-order partial derivative terms
in (3.5) and (3.6) we have n1 = n2 = 1.

Thus, we obtain the following formulas as solutions of (3.5) and (3.6), respectively,

u(ξ) = a0 +
a1φ

′′ + b1ψ
′

µ1φ
′′ + µ2ψ

′ , V (ξ) = b0 +
a2φ

′′ + b2ψ
′

µ1φ
′′ + µ2ψ

′ , (3.7)

where φ and ψ satisfy Eq. (2.5).
Substitution of (3.7) and (2.5) into equations (3.5) and (3.6) gives a set of algebraic

equations in φi and ψj(i = 1, 2, . . . ; j = 1, 2, . . .). Setting the coefficients of these terms
with φi and ψj to zero yields a set of over-determined algebraic equations with respect to
a0, a1, a2, b0, b1, b2, and l. Now, solving the over-determined algebraic equations, we get

a0 =
−µ2 ±

√
µ2

2 + 4µ1µ2

2µ1µ2

, a1 =
−2µ1

−µ2 ±
√

µ2
2 + 4µ1µ2

+ 1, (3.8)

b0 = b0, a2 = a2, b2 = b2, l = ± 1
σ

. (3.9)

Thus briefly ,we can write (3.8) and (3.9) in the following form

a0 = α, a1 =
−1
αµ2

+ 1, b1 = −αµ2, (3.10)

b0 = b0, a2 = a2, b2 = b2, l = ± 1
σ

, (3.11)
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where

α =
−µ2 ±

√
µ2

2 + 4µ1µ2

2µ1µ2

.

From (3.1), (3.7), (3.10) and (3.11), we obtain a new type of solutions for the system
(1.1) as the following:

Family 1.

u= α+
αµ2−1
αµ2

[
2 tanh ξ(sech2ξ∓ isechξ tanh ξ)± isechξ

]−αµ2

[
csch2ξ± cschξ coth ξ

]

µ1

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]
+ µ2

[
csch2ξ ± cschξ coth ξ

]

(3.12)

∴ q = u ei (k1x +k2y +k3t )

φ(x, y, t) = V (ξ)

= b0 +
a2

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]
+ b2

[
csch2ξ ± cschξ coth ξ

]

µ1

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]
+ µ2

[
csch2ξ ± cschξ coth ξ

] ;

Family 2.

u = α+
αµ2−1
αµ2

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]
+αµ2

[
sec ξ tan ξ ± sec2 ξ

]

µ1

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]− µ2 [sec ξ tan ξ ± sec2 ξ]
(3.13)

∴ q = u ei (k1x +k2y +k3t )

φ(x, y, t) = V (ξ)

= b0 +
a2

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]− b2

[
sec ξ tan ξ ± sec2 ξ

]

µ1

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]− µ2 [sec ξ tan ξ ± sec2 ξ]
;

Family 3.

u = α+
αµ2−1
αµ2

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]−αµ2

[
csc ξ cot ξ ± csc2 ξ

]

µ1

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]
+ µ2 [csc ξ cot ξ ± csc2 ξ]

(3.14)

∴ q = u ei (k1x +k2y +k3t )

φ(x, y, t) = V (ξ)
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= b0 +
a2

[
2 tanh ξ(sec h2ξ ∓ isechξ tanh ξ)± isechξ

]
+ b2

[
csc ξ cot ξ ± csc2 ξ

]

µ1

[
2 tanh ξ(sech2ξ ∓ isechξ tanh ξ)± isechξ

]
+ µ2 [csc ξ cot ξ ± csc2 ξ]

;

Family 4.

u = α+
αµ2−1
αµ2

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]
+αµ2

[
csch2ξ ± cschξ coth ξ

]

µ1

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]− µ2

[
csch2ξ ± cschξ coth ξ

]

(3.15)

∴ q = u ei (k1x +k2y +k3t )

φ(x, y, t) = V (ξ)

= b0 +
a2

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]− b2

[
csch2ξ ± cschξ coth ξ

]

µ1

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]− µ2

[
csch2ξ ± cschξ coth ξ

] ;

Family 5.

u = α +
αµ2−1
αµ2

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]− αµ2

[
sec ξ tan ξ ± sec2 ξ

]

µ1

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]
+ µ2 [sec ξ tan ξ ± sec2 ξ]

.

(3.16)

∴ q = u ei (k1x +k2y +k3t )

φ(x, y, t) = V (ξ)

= b0 +
a2

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]
+ b2

[
sec ξ tan ξ ± sec2 ξ

]

µ1

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]
+ µ2 [sec ξ tan ξ ± sec2 ξ]

;

Family 6.

u = α +
αµ2−1
αµ2

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]
+ αµ2

[
csc ξ cot ξ ± csc2 ξ

]

µ1

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]− µ2 [csc ξ cot ξ ± csc2 ξ]
(3.17)

∴ q = u ei (k1x +k2y +k3t )

φ(x, y, t) = V (ξ)

= b0 +
a2

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]− b2

[
csc ξ cot ξ ± csc2 ξ

]

µ1

[
2 coth ξ(csch2ξ ± cschξ coth ξ)∓ cschξ

]− µ2 [csc ξ cot ξ ± csc2 ξ]
.
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Here ξ = k
[
x± y/σ − σ2 (k1 + σk2) t

]
, k, µ1, µ2, b0, b2, a2, k1, k2 and k3 are

arbitrary constants,

α =
−µ2 ±

√
µ2

2 + 4µ1µ2

2µ1µ2

. (3.18)
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