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Abstract: In this work, the generalizeé%’)-expansion method is presented to seek some new exactosaltitir generalized fifth

order KdV equation with time-dependent coefficients. Assalte more explicit traveling wave solutions involving @rary parameters
are found out, which are expressed in terms of hyperbolictfans, the trigonometric functions and rational funcéiolVhen the
parameters are taken special values, different types of salutions can be obtained.
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1 Introduction (%)-expansion method 2B,24,2526] has been

proposed to construct traveling wave solutions for
nonlinear partial differential equations with variable

Many. phenomena In physics _and (_)ther f'.EIdS are pftencoefficients. The method is based on the homogeneous
described by nonlinear partial differential equations

.~ balance principle and linear ordinary differential eqoati
(PDES)'. When we want to understand the .phyS|caI LODE) theory. Being concise and straightforward, this
mechanism of natural phenomenon described b

nonlinear PDEs, exact solutions for these nonlinear PDE%?;;ngtigﬁsegﬁzgoggpl\lxsi?h tovgﬁggltés gggch?s:ngaigal

g?\r/]irﬁ::air?);ptl)oErgdH;Shgz,cgnr\éisgggtgofl’; r?é lr%;(ggtt;ﬁgg'r?:sgiscover some more general solutions with some free
topics in mathematical physics. Powerful methods that arameters 2[0’.27’28’29].' AIS.O’ it .handles nonllr}ear
make it possible to generate exéct solutions to nonlinea artial differential equations in a direct manner with no
: . ; equirement for initial/boundary conditions or initiala
decades. Among them are the tan-sech metigal [ TUncton atthe outset
extended tanh method,H], sine-cosine method5[6], The general fifth order KdV equation reads
Hirota method 7,8], homogeneous balance methd® [ 2 _
10], Jacobi elliptic function methodl[l, 12], F-expansion Ut +@boox+ Dl - CU U+ Uhoooox = 0, @)
method [L3,14], homotopy perturbation method%,16], wherea, b andc are real constants. This includes the Lax
variational iteration method 1[7,18], Lie symmetry [30], Swada-Kotera(SK) 31,32], Kaup-Kupershmidt
analysis [19,20,21,22] and so on. With the use of the (KK)[3334,35]and Ito equations3).
methods mentioned, many exact solutions, including theAs the constants,b and c take different values, The
solitary wave solutions, shock wave solutions, andproperties of eqX) drastically change. For instance, the
periodic wave solutions etc. of NLPDESs, were obtained. lax equation witha = 10,b = 20 andc = 30, and The SK
Among the other methods, the generalizedequation wher@a=b = c =15, are completely integrable.
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These two equations have N-soliton solutions and an % -expansion method.

infinite set of conservation laws. The KK equation, with Step; 1: Suppose that the solution of Eg3)(can be

a=10,b= 25 andc = 20, is also known to be integrable
[34] and to have bilinear representatiord7], but the

ﬁxplicit forr]p of ri]ts N-soliton solhutionI is a)?parerz]ntly not . -~
nown. A fourth equation in this classl)(is the Ito . _

equation, witha = 3,b = 6 and ¢ = 2, which is not u= ao(X)+iZa.(X)<6) > am(X) #£0,  (4)
integrable, but has a limited number of conservation laws -

[36]. whereag(X),ai(X),(i =1,2,....m) and8 = 6(X) are all

The variable-coefficient version of nonlinear equationsfunctions of X, to be determined later an@G = G(6)

can be considered as generalization of the constansatisfies following equation

coefficients equations as there are choices for parameters. B ,

Due to this, much attention has been paid to the study of G'(6) +AG(8) +uG(6) =0, (5)
nonlinear equations with variable coefficients to obtain _ .

exact solutions, and some recent contributions can b%vgteerr%ein_ed (x-+4(t), p(t) andq(t) are functions to be

found in [19,20]. These exact solutions provide much :
information  about nonlinear phenomena and

well-described various aspects of the physical
phenomena. In the present paper, the general fifth ord
KdV equation with time-dependent coefficients,

expressed by a polynomial (r%) as follows:

Step 2 In order to determinau explicitly, the positive
integerm is determined by considering the homogeneous
balance between the highest order derivatives and
“onlinear terms ofi appearing in Eq.J).

Step 3 Substitute 4) into Eq. 3) along with Eq. ) and

Ut + B (1) Ulloe + O (1) Ul ++ B (1) UPUY + P () Uroooox = O, collect all terms with the same order é%) together, the
2) left hand side of Eq.3) is converted into a polynomial in

which is an important mathematical model in nonlinear g)_ Then by setting each coefficient of this polynomial

physics, has been studied for exploring exact solutions by © . : .
to zero, we derive a set of over-determined partial

using generallzeaé%)—expansmn method. differential equations foao(X), a;(X) and{.

Our interest in the present paper is to search for the exacstep 5 The expressions foa(X), a;(X) and { can be
solutions for equation?j. In this direction, the layout of found by solving the system of partial differential
the paper is as follows: In Section 2, we have summarizedquations obtained in above step and hence the solutions

the generalized(%)—expansion method. Then, this of Eq. @) can be derived depending c<r%) since the

method is applied to variable coefficient version of solutions of Eq. %) have been well known to us
general fifth order KdV equation in section 3 and a rich depending on the sign of the discriminant= A2 — 4.
variety of exact solutions are obtained which included the

hyperbolic functions, the trigonometric functions and

rational functions. Finally, the conclusions and remarks

are given in last section. 3 Application of Generalized

%) -Expansion Method to Generalized
2 Description of The Generalized Fifth Order KdV Equation with
<%)-Expansion Method 23] Time-Dependent Coefficients

In this section, some exact solutions of generalized fifth
In this section, we have described the generalizedorder KdV equation with time-dependent coefficierp (
G

(g) expansion method for finding out some new exacthave been furnished by generalize(o%)-expansion

solutions of nonlinear evolution equations. method. As a result, hyperbolic function solutions,

Consider the nonlinear partial differential equation ie th trigonometric function solutions and rational solutions
following form: with various parameters are obtained.

According to the method described in section 2, the

F (U, Ut, Uy, Uy, Uz, ...Ux, Uyt, Uz, U, ...) = O, 3) positive integerm is determined by considering the

homogeneous balance between the highest order
with independent variablesX = (x,y,z...,t) and  derivatives and nonlinear terms ofin Equation ) and
dependent variableu = u(x,y,z...t) is an unknown we foundm= 2. Thus, the solution of Eq} according to
function, F is a polynomial inu = u(x,y,z...t) and its  Eq @)is as follows:
various partial derivatives, in which the highest order

derivatives and nonlinear terms are involved. There are B G "\ 2 6
following three main steps of the generalized u= do(t) + au(t) G +az(t) G ®6)
(@© 2014 NSP
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Substituting 6) into (2) and using %), collecting all terms  solution
with the same order 0( ) together, the left-hand side
of Eq. (@ is converted into polynomial in u(xt)=cy+cCzA <

A%+ap)(~apsin({)+ag cog{)) A)
)

S (arsin({)+azcog{))
x) (%) , (j =0,1). Setting each coefficient of this
polynomial to zero, we derived a system of tes A*+4p)(~apsind)+arcosl))  p 7
overdetermined differential equations for (21 sin(¢)+85cos¢)) 2
ao(t),as1(t), ax(t), as(t), aa(t), p(t) andq(t). Solving this 9)
set of equations, we have following results: where { = (1((01X+ at)y/(=A2+4p))) and q(t) =
Case 1 I (( 28BN 4+ § B2 +603—8eaCo i+ BN 2u—CatoA 2) G35t ) ot
p(D) =c1, P ’
Qo(t) = ¢z op(t)=cs, ar(t) =csh, oft)= 70(1), +
_ 65(t _ 3(t)cs
1) =
B( ) ’ p( ) 48(221 ’
qit) = [ <(48%A +55u* 605 8‘33‘22“'*‘%‘3%)\2”—‘3362/\2)‘:%5@)) dt
+Ca,
| ()
wherec;, Cp, C3 andc, are arbitrary constants.
Substituting the general solutions &) (nto (6) and using
(7), we have three types of exact solutions @ @s
follows:
WhenA? — 4 > 0, we have obtained hyperbolic function
solution in the form
B 1/ (A2-4p)(arsinh({)+azcosid))
U(X,t) =Cp+C3A <? (agsinh({)+a; cosh{)) -2
2
1 (A2-4p)(agsinh({)+apcost({)) A
+Cs| 3 (@28INN({) a1 coshZ)) -2
(8)
where { = (3((cix + q(t))\/(AZ—4p))) and q(t) =  Fig. 2: Graphical representation of solutiog)for A = 2 u
[ ((48(‘%)‘4"‘;0%“ +6¢3—8C3Co i+ 2C3A 2U—C3cpA 2) 35 ) dt 4 =2Cc=20c=1c=2a=1L1La=2anddét)=
. C3
+C4.
When A% — 4u < 0, we have trigonometric function WhenA?—4u =0, we get rational solution as follows:
_ Ay _A
u(x.t) = Go+ C3A (A1+A2((Clx+q(t)))2 3)+ o
$ _A
C3(A1+Az<<c1x+q<t>>> 2)’
where Aj,Az,a3,ap are arbitrary constants and
3234 _ 2\~3
qt) = [ ((303)\ +6c3 C3;03cz)\ )c3a(t) dt+C4>.
Case 2:
ao(t) = 5CA%2+2 30252, aa(t) =z, a1(t) = C2A,
—35(t)c—30
O'(t) _ % (t )CZCZ (t) Cz’
B(t) = w
q(t) = (1655 (41 — A?)%(32p(t)c] + Ot )Cz))dt+(037)
11
_ _ _ _ wherecy, c; andcs are arbitrary constants.
Fig. 1: Graphical representation of solutio)(for A = 4,1 = Consequently, we have the following three types of exact
2c=1c=1c=2c=4a =1a=2andd(t) =t solutions of @):
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Fig. 3: Graphical representation of solutiob0j, for A =5,¢; =
2,cp=2,c3=1c4=2A1 =4,A)=2andd(t) =t

WhenA? — 4 > 0, we have obtained hyperbolic function
solution in the form
1/ (A2=4p)(agsinh(Q)+apcosil))
u(x,t) = c2A (? (azsinh({)+az cosH?)) T2
2
1\ (A2=4p)(agsinh({)+azcosh())
+C3| 3 (agsinh({)+ay coskQ)) 2

+2CoH + 50202,

(12)
where ¢ = (3((ax + qt)\/(A2—4p))) and
q(t) = J (— 3563 (4 — A2)(32p(t)c] + 3(t)cz)) ot + Cs.

When A2 —
solution

4u < 0, we have trigonometric function

)

2
(~A2+4p)(~apsin({)+ay cog 7)) A)
-4,

\/ (~A%+4p) (~agsin({)+ay cos())
(g SiN() +aco5 7))

u(x,t) = cA <%

+C3

(agsin({)+azco?))

+2Col + 5022,

(13)
where { = (3((cix + q(t))y/(—A2+4p))) and
a(t) = J (— 3661 (4p — A3)2(32p(t)cF + B(t)cz)) dit + ca.

WhenA? — 4u = 0, we get rational solution as follows:

Ao A
U(t) = 3C2A% + CoA (A1+A2<< ) ?) - (14)
A
CZ(A1+A2 ((c1x+c3)) 2)

whereAs, Az, a1,a, andcs are arbitrary constants.
Case 3:

3
1

—~

at)=J (2—3 65(t)c3 — 83(t)cacs + 25()3u2) ) dt
( (—16p(t)c3cap? + 8p(t )clcg)\zu))dt
J (—p(t)c2caA® + 8(t)cBA 21 — 8(t)cacsA ?) dt + 4,

p(t)—CL ao(t)—chy Gz(t)—C& Ofclz(t)—Csf\,
—5(t)cs—60p(t 65(t
oft) = ()Csc3 Op(t) 1, B(t)=— £3) 1

8%

(15)
wherecy, ¢, andcg are arbitrary constants.
Again, substituting Equations1$) together with the
general solution Equatiorm) into the Equation®), yields
the following exact solutions of EquatioB)(
WhenA? —4u > 0, we have obtained hyperbolic function
solution in the form

(A2—4p)(ag sinh({)+azcosh({))

u(x,t) = c2+ CzA <% @S Tarcosiy)) %)
11/ (A2-4p)(asinh¢) +agcoshiy))
+C3 2 (azsinh({)+ajs cosH?)) T2
(16)
where { = (3((cix + q(t))y/(A2—4p))) and
Cf 2 2
a(t) = [ (2 (65(1)c3 83 (t)ueacs + 25(1)Gu?) )
3
i (g_; (—16p(t)c2cau? + 8p (t)c2ca) Zu)) dt
+ f (—p(t)C%Cg)\él-l- 5(t)C:2;’)\ 2[.1 — O(t)cocsA 2) dt + c4.
When A2 — 4u < 0, we have trigonometric function
solution

\/Tzlu —apsin(¢)+ay cog{))

(arsin({)+azcog?)) )
2

\/Tzlu —agsin({)+arcogl))
(a1sin({)+azcoq{)) 2

(7)
and

N[>

u(x,t) =cp+c3A <

+C3<2

where ¢ (3((cix + q(t)\/(-A%+4p)))
q(t) = J( (65(t)c; — 85 ()u0203+25(t)05u2))dt
(—16p(t)Bcsp? +8p(t )c§c3)\2u)) dt
p(t)cieaA®+ 5(t)c3A 21 — 8(t)CaCaA ?) dit + ca.

+f(
+/(=

WhenA2—4pu =0, we get rational solution as follows:

A A
u(x,t) = c + ca (Wixw(tm 7)
2
A
3)"

whereAq, Ay, a;1,a2 andcs are arbitrary constants and
3 2_ 2,3 4
o) = <cl(66(t)cz 38(t)cpca 2+ 5(t)c3A )) e

C3

o (18)
+°3(—A1+A2<<7clx+q<t>>>
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Case 4:

q(t)

[ (-~ Ha(4n — A2)(1440(1)c + 125(t) o + B(1)GD) )
+C3

p(t) =c1, ao(t)=

o(t) =c2A, aft)

2/\2+ 302% 02( ) - C2’
—125(t)c2c, 3600 (t)ct—B(t) 2

1
= 021(;2 s

1
6

(19)
wherecy, ¢, andcg are arbitrary constants.
By using the general solutions d)(and (L9) into (6), we
found three types of exact solutions @j @s follows:
WhenA? —4u > 0, we have obtained hyperbolic function
solution in the form

(agsinh({)+aj cosH{()) 2

1/ (A2=4p)(agsinh({)+agcoshq))
TC2| 2 -2

(agsinh({)-+ay cosh{))
(20)

where ¢ = (3((cix+ q(t)/(A2—4p))) and q(t) =

(-~ Haan — A2) (1440 (t)c] + 125(t) ez + B()GD) )
+C

Wh?én A2 —
solution

u(x,t) = cA <% M(alsmh(z )+agcosh(?)) A)

+45CoA 2+ 3cop,

4u < 0, we have trigonometric function

. A)
2
)2
(21)

where { = (3((cix+q(t))y/(—A2+4p))) and q(t) =

[ (= Shal4n — 27 (144p(0)ct + 125(t) ez + B(1)) )
-+ Ca.

(—A%+4p)(—agsin({)+ay co{))
(a1sin({)+azcoq{))

iof 1 (—)\2+4H)(—azsin(5)+alcos(5))_
2\ 2 (a1 sin({)+a;co57))

N[>

+%C2u7

WhenA?—4pu =0, we get rational solution as follows:

A A
) = 2+ oA (e — )

Ao )2
b

03 (A1+A2((01X+k)) N

Ry

(22)

N>

whereAq, A, a1, ay, k andcs are arbitrary constants.
Case 5:

at) = | (_La(t)czcgmu,\2>2(255(t)cz+817cz5(t)(;‘116@))) "

192 —5(t)cz+410,5(t) (#4438
+C3
—_A4p+A2
p(t)=c1, ar(t)=2c2( 4~ %) . aa(t) =cy,

—45(t)cBu+5(t)3A2+116c3u5(t) (411 _\@) —212A25(t) (ﬁl @)

aop(t) =
olt) 48( 45— V8% ) co0(t)
482250 (- @)(%7\/(*4IJ+)\2)>
+ )
48( s~ 458 c20(0)
~35(t)cp—56c,3(t) RVIY
0'('[):% - (416 716 )
48025(t)c§(f—116—%)—36(t)c%c2
B(t) = &
1 (- 88)e28t)

(23)
wherec, c; andcg are arbitrary constants.
The following three types of solutions aZ)(are found by
substituting the general solutions &) (nto (6) and using

(19:
WhenA2 — 4y > 0, we have obtained hyperbolic function
solution in the form
(A2-4p)(ag sinh()+azcoshZ))
uxt —/(—4u+2?) < qh(éﬂalco:ftzl)) 3)
2
(A2-4p1)(ag sinh(Z)+azcostZ))
+Cp <% \/EWJZ.)+31COS”2Z)) B é) +o(t),
(24)
where { = (3((cix + q(t))\/(A2—4p))) and q(t) =

f<_i5(t)czc§(4u—A2)2(—255( oo 1817625 s m>>> "

192 8(t)co+41028(t) 5~ Y5
+C3
When A2 — 4u < 0, we have trigonometric function
solution
1/ )\2+4y (—agsin({)+aycod())
u(x,t) = Co(A — v/ (—4u+A2) < (alsi)n«>+2azcos(z>>1 %>
V (~A2+4p)(~agsin({)+a; cog )
+CZ<% ST 326050)] =3 | +aol),
(25)
where { = (3((cix+q(t))V/(-A2+4p))) a d qt) =
I , 8(t)cacd(4u— 2)2(—255( )Co+817c,5(t (41 ))
192 ~5(t)co+41028(t) (45— 438
+C3.
WhenA? — 4u = 0, we get rational solution as follows:

_1o)2 A A
u(x,t) = 7C2A "+ C2A (A1+A2((2c1x+k)) - 7)
2

(26)
A A
+C2(A1+A2((%21X+k)) - ?) ’

whereAq, Ay, a1, ap, k andcs are arbitrary constants.
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