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1 Introduction

Many phenomena in physics and other fields are often
described by nonlinear partial differential equations
(PDEs). When we want to understand the physical
mechanism of natural phenomenon described by
nonlinear PDEs, exact solutions for these nonlinear PDEs
have to be explored. Thus, investigation of exact solutions
of nonlinear PDEs has become one of the most important
topics in mathematical physics. Powerful methods that
make it possible to generate exact solutions to nonlinear
equations have emerged from the literatures in the past
decades. Among them are the tanh-sech method [1,2],
extended tanh method [3,4], sine-cosine method [5,6],
Hirota method [7,8], homogeneous balance method [9,
10], Jacobi elliptic function method [11,12], F-expansion
method [13,14], homotopy perturbation method [15,16],
variational iteration method [17,18], Lie symmetry
analysis [19,20,21,22] and so on. With the use of the
methods mentioned, many exact solutions, including the
solitary wave solutions, shock wave solutions, and
periodic wave solutions etc. of NLPDEs, were obtained.
Among the other methods, the generalized

(

G′
G

)

-expansion method [23,24,25,26] has been

proposed to construct traveling wave solutions for
nonlinear partial differential equations with variable
coefficients. The method is based on the homogeneous
balance principle and linear ordinary differential equation
(LODE) theory. Being concise and straightforward, this
method has been applied to various nonlinear partial
differential equations with variable coefficients to
discover some more general solutions with some free
parameters [20,27,28,29]. Also, it handles nonlinear
partial differential equations in a direct manner with no
requirement for initial/boundary conditions or initial trial
function at the outset.
The general fifth order KdV equation reads

ut + auuxxx + buxuxx + cu2ux + uxxxxx = 0, (1)

wherea,b andc are real constants. This includes the Lax
[30], Swada-Kotera(SK) [31,32], Kaup-Kupershmidt
(KK) [ 33,34,35] and Ito equations [36].
As the constantsa,b and c take different values, The
properties of eq (1) drastically change. For instance, the
lax equation witha = 10,b = 20 andc = 30, and The SK
equation wherea = b = c = 5, are completely integrable.
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These two equations have N-soliton solutions and an
infinite set of conservation laws. The KK equation, with
a = 10,b = 25 andc = 20, is also known to be integrable
[34] and to have bilinear representations [37], but the
explicit form of its N-soliton solution is apparently not
known. A fourth equation in this class (1) is the Ito
equation, witha = 3,b = 6 and c = 2, which is not
integrable, but has a limited number of conservation laws
[36].
The variable-coefficient version of nonlinear equations
can be considered as generalization of the constant
coefficients equations as there are choices for parameters.
Due to this, much attention has been paid to the study of
nonlinear equations with variable coefficients to obtain
exact solutions, and some recent contributions can be
found in [19,20]. These exact solutions provide much
information about nonlinear phenomena and
well-described various aspects of the physical
phenomena. In the present paper, the general fifth order
KdV equation with time-dependent coefficients,

ut + δ (t)uuxxx +σ(t)uxuxx +β (t)u2ux +ρ(t)uxxxxx = 0,
(2)

which is an important mathematical model in nonlinear
physics, has been studied for exploring exact solutions by

using generalized
(

G′
G

)

-expansion method.

Our interest in the present paper is to search for the exact
solutions for equation (2). In this direction, the layout of
the paper is as follows: In Section 2, we have summarized

the generalized
(

G′
G

)

-expansion method. Then, this

method is applied to variable coefficient version of
general fifth order KdV equation in section 3 and a rich
variety of exact solutions are obtained which included the
hyperbolic functions, the trigonometric functions and
rational functions. Finally, the conclusions and remarks
are given in last section.

2 Description of The Generalized
(

G′
G

)

-Expansion Method [23]

In this section, we have described the generalized
(

G′
G

)

-expansion method for finding out some new exact

solutions of nonlinear evolution equations.
Consider the nonlinear partial differential equation in the
following form:

F(u,ut ,ux,uy,uz, ...uxt ,uyt ,uzt ,utt , ...) = 0, (3)

with independent variablesX = (x,y,z, ..., t) and
dependent variableu = u(x,y,z, ...t) is an unknown
function, F is a polynomial inu = u(x,y,z, ...t) and its
various partial derivatives, in which the highest order
derivatives and nonlinear terms are involved. There are
following three main steps of the generalized

(

G′
G

)

-expansion method.

Step 1: Suppose that the solution of Eq. (3) can be

expressed by a polynomial in
(

G′
G

)

as follows:

u = α0(X)+
m

∑
i=1

αi(X)

(

G′

G

)i

, αm(X) 6= 0, (4)

whereα0(X),αi(X),(i = 1,2, ...,m) andθ = θ (X) are all
functions of X , to be determined later andG = G(θ )
satisfies following equation

G′′(θ )+λ G′(θ )+ µG(θ ) = 0, (5)

whereθ = p(t)x+ q(t), p(t) andq(t) are functions to be
determined.
Step 2: In order to determineu explicitly, the positive
integerm is determined by considering the homogeneous
balance between the highest order derivatives and
nonlinear terms ofu appearing in Eq. (3).
Step 3: Substitute (4) into Eq. (3) along with Eq. (5) and

collect all terms with the same order of
(

G′
G

)

together, the

left hand side of Eq. (3) is converted into a polynomial in
(

G′
G

)

. Then by setting each coefficient of this polynomial

to zero, we derive a set of over-determined partial
differential equations forα0(X),αi(X) andζ .
Step 5: The expressions forα0(X),αi(X) and ζ can be
found by solving the system of partial differential
equations obtained in above step and hence the solutions

of Eq. (3) can be derived depending on
(

G′
G

)

, since the

solutions of Eq. (5) have been well known to us
depending on the sign of the discriminant∆ = λ 2−4µ .

3 Application of Generalized
(

G′
G

)

-Expansion Method to Generalized
Fifth Order KdV Equation with
Time-Dependent Coefficients

In this section, some exact solutions of generalized fifth
order KdV equation with time-dependent coefficients (2)

have been furnished by generalized
(

G′
G

)

-expansion

method. As a result, hyperbolic function solutions,
trigonometric function solutions and rational solutions
with various parameters are obtained.
According to the method described in section 2, the
positive integer m is determined by considering the
homogeneous balance between the highest order
derivatives and nonlinear terms ofu in Equation (2) and
we foundm = 2. Thus, the solution of Eq (2) according to
Eq (4)is as follows:

u = α0(t)+α1(t)

(

G′

G

)

+α2(t)

(

G′

G

)2

, (6)
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Substituting (6) into (2) and using (5), collecting all terms

with the same order of
(

G′
G

)

together, the left-hand side

of Eq. (2) is converted into polynomial in

x j
(

G′
G

)

, ( j = 0,1). Setting each coefficient of this

polynomial to zero, we derived a system of
overdetermined differential equations for
α0(t),α1(t),α2(t),α3(t),α4(t), p(t) andq(t). Solving this
set of equations, we have following results:
Case 1:

p(t) = c1,

α0(t) = c2, α2(t) = c3, α1(t) = c3λ , σ(t) = 1
4δ (t),

β (t) =− 6δ (t)c2
1

c3
, ρ(t) =− δ (t)c3

48c2
1
,

q(t) =
∫

(

( 1
48c2

3λ 4+ 7
3c2

3µ2+6c2
2−8c3c2µ+ 5

6c2
3λ 2µ−c3c2λ 2)c3

1δ (t)
c3

)

dt

+c4,

(7)
wherec1,c2,c3 andc4 are arbitrary constants.
Substituting the general solutions of (5) into (6) and using
(7), we have three types of exact solutions of (2) as
follows:
Whenλ 2−4µ > 0, we have obtained hyperbolic function
solution in the form

u(x, t) = c2+ c3λ

(

1
2

√

(λ 2−4µ)(a1sinh(ζ )+a2 cosh(ζ ))
(a2sinh(ζ )+a1cosh(ζ )) − λ

2

)

+c3

(

1
2

√

(λ 2−4µ)(a1sinh(ζ )+a2cosh(ζ ))
(a2sinh(ζ )+a1cosh(ζ )) − λ

2

)2

,

(8)
where ζ = (1

2((c1x + q(t))
√

(λ 2−4µ))) and q(t) =
∫

(

( 1
48c2

3λ 4+ 7
3c2

3µ2+6c2
2−8c3c2µ+ 5

6c2
3λ 2µ−c3c2λ 2)c3

1δ (t)
c3

)

dt

+ c4.
When λ 2 − 4µ < 0, we have trigonometric function

Fig. 1: Graphical representation of solution (8), for λ = 4,µ =
2,c1 = 1,c2 = 1,c3 = 2,c4 = 4,a1 = 1,a2 = 2 andδ (t) = t

solution

u(x, t) = c2+ c3λ

(

1
2

√

(−λ2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1 sin(ζ )+a2 cos(ζ )) − λ

2

)

+c3

(

1
2

√

(−λ2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1sin(ζ )+a2cos(ζ )) − λ

2

)2

,

(9)
where ζ = (1

2((c1x + q(t))
√

(−λ 2+4µ))) and q(t) =
∫

(

( 1
48c2

3λ 4+ 7
3c2

3µ2+6c2
2−8c3c2µ+ 5

6c2
3λ 2µ−c3c2λ 2)c3

1δ (t)
c3

)

dt

+ c4.

Fig. 2: Graphical representation of solution (9), for λ = 2,µ =
4,c1 = 2,c2 = 2,c3 = 1,c4 = 2,a1 = 1,a2 = 2, andδ (t) = 1

Whenλ 2−4µ = 0, we get rational solution as follows:

u(x, t) = c2+ c3λ
(

A2
A1+A2((c1x+q(t))) −

λ
2

)

+

c3

(

A2
A1+A2((c1x+q(t))) −

λ
2

)2
,

(10)

where A1,A2,a1,a2 are arbitrary constants and

q(t) =
∫

(

( 3
8c2

3λ 4+6c2
2−3c3c2λ 2)c3

1δ (t)
c3

dt + c4

)

.

Case 2:

p(t) = c1,

α0(t) =
1
12c2λ 2+ 2

3c2µ , α2(t) = c2, α1(t) = c2λ ,
σ(t) = 1

2
−3δ (t)c2−3δ (t)c2

1c2
c2

,

β (t) = 144ρ(t)c4
1−3δ (t)c2

1c2

c2
2

,

q(t) =
∫
(

− 1
16c3

1(4µ −λ 2)2(32ρ(t)c2
1+ δ (t)c2)

)

dt + c3,

(11)
wherec1,c2 andc3 are arbitrary constants.
Consequently, we have the following three types of exact
solutions of (2):
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Fig. 3: Graphical representation of solution (10), for λ = 5,c1 =
2,c2 = 2,c3 = 1,c4 = 2,A1 = 4,A2 = 2 andδ (t) = t

Whenλ 2−4µ > 0, we have obtained hyperbolic function
solution in the form

u(x, t) = c2λ

(

1
2

√

(λ 2−4µ)(a1sinh(ζ )+a2cosh(ζ ))
(a2 sinh(ζ )+a1cosh(ζ )) − λ

2

)

+c3

(

1
2

√

(λ 2−4µ)(a1 sinh(ζ )+a2cosh(ζ ))
(a2sinh(ζ )+a1 cosh(ζ )) − λ

2

)2

+ 2
3c2µ + 1

12c2λ 2,

(12)
where ζ = (1

2((c1x + q(t))
√

(λ 2−4µ))) and
q(t) =

∫
(

− 1
16c3

1(4µ −λ 2)2(32ρ(t)c2
1+ δ (t)c2)

)

dt + c3.
When λ 2 − 4µ < 0, we have trigonometric function
solution

u(x, t) = c2λ

(

1
2

√

(−λ 2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1 sin(ζ )+a2 cos(ζ )) − λ

2

)

+c3

(

1
2

√

(−λ2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1sin(ζ )+a2cos(ζ )) − λ

2

)2

,

+ 2
3c2µ + 1

12c2λ 2,

(13)
where ζ = (1

2((c1x + q(t))
√

(−λ 2+4µ))) and
q(t) =

∫
(

− 1
16c3

1(4µ −λ 2)2(32ρ(t)c2
1+ δ (t)c2)

)

dt + c3.

Whenλ 2−4µ = 0, we get rational solution as follows:

u(x, t) = 1
4c2λ 2+ c2λ

(

A2
A1+A2((c1x+c3))

− λ
2

)

+

c2

(

A2
A1+A2((c1x+c3))

− λ
2

)2
,

(14)

whereA1,A2,a1,a2 andc3 are arbitrary constants.
Case 3:

q(t) =
∫

(

c3
1

c3

(

6δ (t)c2
2−8δ (t)µc2c3+2δ (t)c2

3µ2
)

)

dt

+
∫

(

c3
1

c3

(

−16ρ(t)c2
1c3µ2+8ρ(t)c2

1c3λ 2µ
)

)

dt

+
∫
(

−ρ(t)c2
1c3λ 4+ δ (t)c2

3λ 2µ − δ (t)c2c3λ 2
)

dt + c4,

p(t) = c1, α0(t) = c2, α2(t) = c3, α1(t) = c3λ ,
σ(t) =

−δ (t)c3−60ρ(t)c2
1

c3
, β (t) =− 6δ (t)c2

1
c3

,

(15)
wherec1,c2 andc3 are arbitrary constants.
Again, substituting Equations (15) together with the
general solution Equation (5) into the Equation (6), yields
the following exact solutions of Equation (2):
Whenλ 2−4µ > 0, we have obtained hyperbolic function
solution in the form

u(x, t) = c2+ c3λ

(

1
2

√

(λ 2−4µ)(a1 sinh(ζ )+a2cosh(ζ ))
(a2sinh(ζ )+a1cosh(ζ )) − λ

2

)

+c3

(

1
2

√

(λ 2−4µ)(a1sinh(ζ )+a2 cosh(ζ ))
(a2sinh(ζ )+a1cosh(ζ )) − λ

2

)2

,

(16)
where ζ = (1

2((c1x + q(t))
√

(λ 2−4µ))) and

q(t) =
∫

(

c3
1

c3

(

6δ (t)c2
2−8δ (t)µc2c3+2δ (t)c2

3µ2
)

)

dt

+
∫

(

c3
1

c3

(

−16ρ(t)c2
1c3µ2+8ρ(t)c2

1c3λ 2µ
)

)

dt

+
∫
(

−ρ(t)c2
1c3λ 4+ δ (t)c2

3λ 2µ − δ (t)c2c3λ 2
)

dt + c4.
When λ 2 − 4µ < 0, we have trigonometric function
solution

u(x, t) = c2+ c3λ

(

1
2

√

(−λ 2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1 sin(ζ )+a2 cos(ζ )) − λ

2

)

+c3

(

1
2

√

(−λ2+4µ)(−a2 sin(ζ )+a1cos(ζ ))
(a1sin(ζ )+a2cos(ζ )) − λ

2

)2

,

(17)
where ζ = (1

2((c1x + q(t))
√

(−λ 2+4µ))) and

q(t) =
∫

(

c3
1

c3

(

6δ (t)c2
2−8δ (t)µc2c3+2δ (t)c2

3µ2
)

)

dt

+
∫

(

c3
1

c3

(

−16ρ(t)c2
1c3µ2+8ρ(t)c2

1c3λ 2µ
)

)

dt

+
∫
(

−ρ(t)c2
1c3λ 4+ δ (t)c2

3λ 2µ − δ (t)c2c3λ 2
)

dt + c4.

Whenλ 2−4µ = 0, we get rational solution as follows:

u(x, t) = c2+ c3λ
(

A2
A1+A2((c1x+q(t))) −

λ
2

)

+c3

(

A2
A1+A2((c1x+q(t))) −

λ
2

)2
,

(18)

whereA1,A2,a1,a2 andc3 are arbitrary constants and

q(t) =
∫

(

c3
1(6δ (t)c2

2−3δ (t)c2c3λ 2+ 3
8δ (t)c2

3λ 4)

c3

)

+ c4.
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Case 4:

q(t) =
∫

(

− c1
144(4µ −λ 2)

2
(144ρ(t)c4

1+12δ (t)c2
1c2+β (t)c2

2)
)

dt

+c3

p(t) = c1, α0(t) =
1
12c2λ 2+ 2

3c2µ , α2(t) = c2,

α1(t) = c2λ , σ(t) = 1
6
−12δ (t)c2

1c2−360ρ(t)c4
1−β (t)c2

2
c2
1c2

,

(19)
wherec1,c2 andc3 are arbitrary constants.
By using the general solutions of (5) and (19) into (6), we
found three types of exact solutions of (2) as follows:
Whenλ 2−4µ > 0, we have obtained hyperbolic function
solution in the form

u(x, t) = c2λ

(

1
2

√

(λ 2−4µ)(a1sinh(ζ )+a2cosh(ζ ))
(a2 sinh(ζ )+a1cosh(ζ )) − λ

2

)

+c2

(

1
2

√

(λ 2−4µ)(a1 sinh(ζ )+a2cosh(ζ ))
(a2sinh(ζ )+a1 cosh(ζ )) − λ

2

)2

+ 1
12c2λ 2+ 2

3c2µ ,
(20)

where ζ = (1
2((c1x + q(t))

√

(λ 2−4µ))) and q(t) =
∫

(

− c1
144(4µ −λ 2)

2
(144ρ(t)c4

1+12δ (t)c2
1c2+β (t)c2

2)
)

dt
+ c3.
When λ 2 − 4µ < 0, we have trigonometric function
solution

u(x, t) = c2λ

(

1
2

√

(−λ2+4µ)(−a2sin(ζ )+a1 cos(ζ ))
(a1sin(ζ )+a2cos(ζ )) − λ

2

)

+c2

(

1
2

√

(−λ2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1 sin(ζ )+a2 cos(ζ )) − λ

2

)2

+ 1
12c2λ 2+ 2

3c2µ ,
(21)

where ζ = (1
2((c1x + q(t))

√

(−λ 2+4µ))) and q(t) =
∫

(

− c1
144(4µ −λ 2)

2
(144ρ(t)c4

1+12δ (t)c2
1c2+β (t)c2

2)
)

dt
+ c3.

Whenλ 2−4µ = 0, we get rational solution as follows:

u(x, t) = c2+ c3λ
(

A2
A1+A2((c1x+k)) −

λ
2

)

+c3

(

A2
A1+A2((c1x+k)) −

λ
2

)2
,

(22)

whereA1,A2,a1,a2,k andc3 are arbitrary constants.
Case 5:

q(t) =
∫

(

− 7
192

δ (t)c2c3
1(4µ−λ 2)

2
(

−25δ (t)c2+817c2δ (t)
(

41
416−

√
849

416

))

−δ (t)c2+41c2δ (t)
(

41
416−

√
849

416

)

)

dt

+c3

p(t) = c1, α1(t) = 2c2

(

λ
2 −

√
(−4µ+λ 2)

2

)

, α2(t) = c2,

α0(t) =
−4δ (t)c2

2µ+δ (t)c2
2λ 2+116c2

2µδ (t)
(

41
416−

√
849

416

)

−41c2
2λ 2δ (t)

(

41
416−

√
849

416

)

48
(

41
416−

√
849

416

)

c2δ (t)

+
48c2

2λ δ (t)
(

41
416−

√
849

416

)

(

λ
2 −

√
(−4µ+λ2)

2

)

48
(

41
416−

√
849

416

)

c2δ (t)
,

σ(t) = 1
2

−3δ (t)c2−56c2δ (t)
(

41
416−

√
849

416

)

c2
,

β (t) =
48c2δ (t)c2

1

(

41
416−

√
849

416

)

−3δ (t)c2
1c2

c2
2

,

ρ(t) = 1
3

(

41
416−

√
849

416

)

c2δ (t)

c2
1

,

(23)
wherec1,c2 andc3 are arbitrary constants.
The following three types of solutions of (2) are found by
substituting the general solutions of (5) into (6) and using
(19):
Whenλ 2−4µ > 0, we have obtained hyperbolic function
solution in the form

u(x, t) = c2(λ −
√

(−4µ +λ 2))

(

1
2

√

(λ 2−4µ)(a1sinh(ζ )+a2cosh(ζ ))
(a2sinh(ζ )+a1cosh(ζ )) − λ

2

)

+c2

(

1
2

√

(λ 2−4µ)(a1sinh(ζ )+a2cosh(ζ ))
(a2sinh(ζ )+a1cosh(ζ )) − λ

2

)2

+α0(t),

(24)
where ζ = (1

2((c1x + q(t))
√

(λ 2−4µ))) and q(t) =

∫

(

− 7
192

δ (t)c2c3
1(4µ−λ 2)

2
(

−25δ (t)c2+817c2δ (t)
(

41
416−

√
849

416

))

−δ (t)c2+41c2δ (t)
(

41
416−

√
849

416

)

)

dt

+ c3
When λ 2 − 4µ < 0, we have trigonometric function
solution

u(x, t) = c2(λ −
√

(−4µ +λ 2))

(

1
2

√

(−λ2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1sin(ζ )+a2cos(ζ )) − λ

2

)

+c2

(

1
2

√

(−λ2+4µ)(−a2sin(ζ )+a1cos(ζ ))
(a1sin(ζ )+a2cos(ζ )) − λ

2

)2

+α0(t),

(25)
where ζ = (1

2((c1x + q(t))
√

(−λ 2+4µ))) and q(t) =

∫

(

− 7
192

δ (t)c2c3
1(4µ−λ 2)

2
(

−25δ (t)c2+817c2δ (t)
(

41
416−

√
849

416

))

−δ (t)c2+41c2δ (t)
(

41
416−

√
849

416

)

)

dt

+ c3.

Whenλ 2−4µ = 0, we get rational solution as follows:

u(x, t) = 1
4c2λ 2+ c2λ

(

A2
A1+A2((c1x+k)) −

λ
2

)

+c2

(

A2
A1+A2((c1x+k)) −

λ
2

)2
,

(26)

whereA1,A2,a1,a2,k andc3 are arbitrary constants.
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4 Conclusions

The generalized
(

G′
G

)

-expansion method has been

successfully used to obtain some new exact solutions of
generalized fifth order KdV equation with time-dependent
coefficients. We found a rich variety of exact solutions
which include hyperbolic, trigonometric, and rational
functions involving arbitrary parameters. Also, We have
presented the graphical representation of obtained
solutions, so that they can depict the importance of each
obtained solution and physically interpret their
importance. The free parametersc1,c2,c3,c4,k and
especially the arbitrary functionδ (t),β (t),ρ(t) in various
solutions, can make us discuss the behaviors of solutions
and also provide us enough freedom to construct
solutions that may be related to real physical problem.
Note that the nonlinear evolution equation proposed in the
present paper is difficult and more general. Therefore, the
solutions of generalized fifth order KdV equation with
time-dependent coefficients equation in this paper have
many potential applications in physics.

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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