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Abstract: In this paper, majorization problem is studied for certain subclasses of meromorphic functions in the punctured unit disk
having a pole of orderp at the origin. The subclasses under investigation is the meromorphic analogue of the operator defined by
Prajapat (2012) on thep-valent analytic function. Several corollaries and consequences of the main results are also considered.
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1 Introduction and Definition

Let ∑p denote the class of meromorphic functions of the
form

f (z) =
1
zp +

∞

∑
k=1

ak−pzk−p (1)

which are analytic andp-valent in the punctured unit disk

U
∗ = {z ∈ C : 0< |z|< 1}= U\ {0}

having a pole of orderp at origin. In particular forp = 1,
we write∑1 = ∑.

Let f (z) andg(z) be analytic in the open unit diskU.
Then we say thatf is majorized byg in U (see [9]) and we
write

f (z) ≺≺ g(z) (z ∈U),

if there exists a functionφ(z) analytic in U such that
|φ(z)| ≤ 1 and

f (z) = φ(z)g(z) (z ∈ U). (2)

The majorization (2) is closely related to the concept of
quasi subordination between analytic functions inU (see
[1]).

For two analytic functionsf and g, we say f (z) is
subordinate tog(z), written as f (z) ≺ g(z) (z ∈ U), if
there exists a Schwarz functionw, which (by definition) is
analytic in U with w(0) = 0 and|w(z)| < 1 such

thatf (z) = g(w(z)) (z ∈ U). It follows from this definition
that

f (z) ≺ g(z) =⇒ f (0) = g(0) and f (U)⊂ g(U).

In particular, if the functiong is univalent inU, then we
have the following equivalence (see [10]).

f (z) ≺ g(z) (z ∈ U)⇐⇒ f (0) = g(0) and f (U) ⊂ g(U).

For f ∈ ∑p, f (q) denoteqth order ordinary differential
operator given by

f (q)(z) = (−1)q (p+q−1)!
(p−1)!

z−p−q +
∞

∑
k=1

(k− p)!
(k− p−q)!

ak−pzk−p−q

(p ∈ N, q ∈ N0 =N∪{0}, z ∈ U
∗). (3)

Analogue to the operator defined by Prajapat (see [12]) on
the p-valent analytic function, we introduce a generalized
multiplier transformation operatorI m

p (λ , l) as follows.
For z ∈ U∗,

I −m
p (λ , l) f (z) = p+l

λ z−p− p+l
λ
∫ z

0 t
p+l
λ +p−1

I
−(m−1)
p (λ , l) f (t)dt,
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I
−2
p (λ , l) f (z) =

p+ l
λ

z−p− p+l
λ

∫ z

0
t

p+l
λ +p−1

I
−1
p (λ , l) f (t)dt,

I
−1
p (λ , l) f (z) =

p+ l
λ

z−p− p+l
λ

∫ z

0
t

p+l
λ +p−1 f (t)dt,

I
0
p (λ , l) f (z) = f (z),

I
1
p (λ , l) f (z) =

λ
p+ l

z1−p− p+l
λ

(

z
p+l
λ +p f (z)

)′

I
2
p (λ , l) f (z) =

λ
p+ l

z1−p− p+l
λ

(

z
p+l
λ +p

I
1
p (λ , l) f (z)

)′
,

...

I
m
p (λ , l) f (z) =

λ
p+ l

z1−p− p+l
λ

(

z
p+l
λ +p

I
m−1
p (λ , l) f (z)

)′
.

Thus for f ∈ ∑p, we have

I
m
p (λ , l) f (z) =

1
zp +

∞

∑
k=1

(

λ k+ p+ l
p+ l

)m

ak−pzk−p
, (4)

(λ > 0, l >−p, p∈N, m∈Z= {0,±1,±2, ...}, z ∈U
∗).

It is easily verified from (4) that

λ z(I m
p (λ , l) f (z))′ = (p+ l)I m+1

p (λ , l) f (z)

−(l + p+λ p)I m
p (λ , l) f (z) (λ > 0). (5)

By using the operatorI m
p (λ , l) given by (4), we now

introduce a new class of meromorphicallyp-valent
analytic functions defined as follows.

Definition 1. A function f ∈ ∑p is said to be in the class
R

m,q
p (λ , l,γ;A,B) (−1 ≤ B < A ≤ 1) of meromorphic

functions of complex orderγ 6= 0 inU∗ if and only if

1− 1
γ

(

z
(

I
m,q
p (λ , l) f (z)

)′

I
m,q
p (λ , l) f (z)

+ p+ q

)

≺ 1+Az
1+Bz

,

(q ∈ N0, γ ∈ C
∗ = C\ {0}, p ∈N, l >−p; z ∈U),

(6)

where I
m,q
p (λ , l) f :=

(

I m
p (λ , l) f

)(q) represents theq
times derivative ofI m

p (λ , l) f .
In particular, forA = 1 andB =−1, we have

R
m,q
p (λ , l,γ,1,−1) = R

m,q
p (λ , l,γ)

= ℜ
{

1− 1
γ

(

z(I m,q
p (λ , l) f (z))′

I
m,q
p (λ , l) f (z)

+ p+ q

)}

> 0.

We note that, by specializing the parametersp,m,q and
γ, we obtain the following subclasses studied by various
authors.

(i) For m = 0 andq = 0, R
0,0
p (λ , l,γ) is the class of

p-valent meromorphic starlike function of orderγ in U∗;
(ii) for m = 0 andq = 1, R

0,1
p (λ , l,γ) is the class of

p-valent meromorphic convex function of orderγ in U∗;

(iii) for m = 0, q = 0 and p = 1,
R

0,0
1 (λ , l,γ) = S(γ) (γ ∈ C∗), the class of meromorphic

starlike univalent function of orderγ;
(iv) for m = 0, q = 1 and p = 1,

R
0,1
1 (λ , l,γ) = K(γ) (γ ∈ C∗), the class of meromorphic

convex function of orderγ;
(v) for m = 0, q = 0, p = 1 andγ = 1−η (0≤ η <

1), R
0,0
1 (λ , l,1−η) = ∑∗(η), the class of meromorphic

starlike function of orderη has been studied in [8];
(vi) for m = 0, q = 1, p = 1 andγ = 1−η (0≤ η <

1), R
0,1
1 (λ , l,1−η) = ∑k(η), the class of meromorphic

convex function of orderη has been studied in [8].
There are good amount of literature about

majorization problems for normalized univalent function
and p-valent analytic functions defined by various
researchers for different classes. For instance, a
majorization problem for the normalized classes of
starlike functions have been investigated by Altinas et al.
[2] and MacGregor [9]. Goswami and Wang [3], Goyal
and Goswami [6] generalized these results for the class of
multivalent functions using fractional derivatives. For
recent expository work on majorization problem see ([4,
5,7]).

Motivated by the aforementioned works, in this paper
the author investigates the majorization problem for the
class of meromorphic functions using generalized
multiplier transformation operatorI m

p (λ , l) which is
analogue to the operator defined by Prajapat (see [12]) on
the p-valent analytic function.

2 Majorization problem for the class
R

m,q
p (λ , l,γ;A,B)

We state and prove the following results.

Theorem 1. Let the function f ∈ ∑p and suppose that
g ∈ R

m,q
p (λ , l,γ;A,B). If I

m,q
p (λ , l) f (z) is majorized by

I
m,q
p (λ , l)g(z) in U∗, then

|I m+1,q
p (λ , l) f (z)| ≤

∣

∣I
m+1,q
p (λ , l)g(z)

∣

∣ (7)

for |z| < r1, wherer1 = r1(p,λ , l,γ;A,B) is the smallest
positive root of the equation

|(A−B)λ γ − (p+ l)B|r3− (p+ l+2λ |B|)r2

−(|(A−B)λ γ − (p+ l)B|+2λ )r+(p+ l)= 0. (8)

Proof. Define

h(z) = 1− 1
γ

(

z
(

I
m,q
p (λ , l)g(z)

)′

I
m,q
p (λ , l)g(z)

+ p+ q

)

. (9)

Since g ∈ R
m,q
p (λ , l,γ;A,B), hence by Definition1 we

have

h(z) =
1+Aw(z)
1+Bw(z)

(10)
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wherew(z) = c1z+ c2z2 + ... andw ∈ P, P denote the
well-known class of the bounded analytic functions inU

and satisfies the condition (see [11])

w(0) = 0 and |w(z)| ≤ |z| (z ∈ U).

From (9) and (10) we have

z
(

I
m,q
p (λ , l)g(z)

)′

I
m,q
p (λ , l)g(z)

=− p+ q+[(A−B)γ+(p+ q)B]w(z)
1+Bw(z)

.

(11)
An application of principle of mathematical induction on
(5) gives

λ z
(

I
m,q
p (λ , l)g(z)

)′
= (p+ l)I m+1,q

p (λ , l)g(z)
−(l + p+λ p+λ q)I m,q

p (λ , l)g(z). (12)

Now using (12) in (11), we get

I
m,q
p (λ , l)g(z) =

1
(p+ l)− [(A−B)λ γ− (p+ l)B]w(z)

[(p+ l)(1+Bw(z))I m+1,q
p (λ , l)g(z)]. (13)

Since|w(z)| ≤ |z| (z ∈ U), the equation (13) gives

|I m,q
p (λ , l)g(z)| ≤ 1

(p+ l)−|(A−B)λ γ− (p+ l)B||z|
[

(p+ l)(1+ |B||z|)
∣

∣I
m+1,q
p (λ , l)g(z)

∣

∣

]

. (14)

SinceI
m,q
p (λ , l) f (z) is majorized byI m,q

p (λ , l)g(z) in
the punctured unit diskU∗, hence from (2) we have

I
m,q
p (λ , l) f (z) = φ(z)I m,q

p (λ , l)g(z). (15)

Differentiating both sides of (15) with respect to z and
simplifying, we get

z
(

I
m,q
p (λ , l) f (z)

)′
= φ(z)z

(

I
m,q
p (λ , l)g(z)

)

+zφ ′(z)I m,q
p (λ , l)g(z). (16)

Using (12) and (15) in (16) yields

I
m+1,q
p (λ , l) f (z) =

λ
p+ l

zφ ′(z)I m,q
p (λ , l)g(z)

+φ(z)I m+1,q
p (λ , l)g(z). (17)

Sinceφ ∈ P, it follows that (see [11])

|φ ′(z)| ≤ 1−|φ(z)|2
1−|z|2 (z ∈ U). (18)

Making use of (14) and (18) in (17), we get

|I m+1,q
p (λ , l) f (z)| ≤

(

|φ(z)|+ λ (1−|φ(z)|2)
1−|z|2

|z|(1+ |B||z|)
[(p+ l)−|(A−B)λ γ− (p+ l)B||z|]

)

|I m+1,q
p (λ , l)g(z)|.

Upon setting

|z|= r and|φ(z)| = ρ (0≤ ρ ≤ 1),

leads to the inequality

|I m+1,q
p (λ , l) f (z)| ≤ ψ(ρ)

(1− r2)(p+ l −|(A−B)λγ − (p+ l)B|r)
|I m+1,q

p (λ , l)g(z)|,

where

ψ(ρ) =−λ r(1+ |B|r)ρ2+(1− r2)
[

(p+ l)−|(A−B)λ γ
−(p+ l)B|r

]

ρ +λ r(1+ |B|r) (19)

takes its maximum value at ρ = 1, with
r1 = r1(p,λ , l,γ;A,B), wherer1 is the smallest positive
root of the equation (8). Furthermore, if 0≤ σ ≤ r1, then
the functionχ(ρ) defined by

χ(ρ) =−λ σ(1+ |B|σ)ρ2+(1−σ2)(p+ l

−|(A−B)λ γ − (p+ l)B|σ)ρ +λ σ(1+ |B|σ) (20)

is an increasing function on the interval 0≤ ρ ≤ 1, so that

χ(ρ)≤ χ(1) = (1−σ2)
[

p+ l−|(A−B)λ γ − (p+ l)B|σ
]

(0≤ ρ ≤ 1,0≤ σ ≤ r1).

Hence, upon settingρ = 1 in (20), we conclude that (7)
of Theorem 1 holds true for|z| ≤ |r1| = r1(p,λ , l,γ;A,B)
wherer1 is the smallest positive root of the equation (8).
This complete the proof of Theorem 1.�

Letting A = 1 andB =−1 in Theorem 1, we have

Corollary 1. Let the function f ∈ ∑p and suppose that
g ∈ R

m,q
p (λ , l,γ). If I

m,q
p (λ , l) f (z) is majorized by

I
m,q
p (λ , l)g(z) in U∗, then

|I m+1,q
p (λ , l) f (z)| ≤ |I m+1,q

p (λ , l)g(z)| for |z|< r2,

wherer2 = r2(p,λ , l,γ) is the smallest positive root of the
equation

|2λ γ + p+ l|r3− (p+ l+2λ )r2

−(|2λ γ + p+ l|+2λ )r+ p+ l = 0.

Puttingm = 0 in Corollary 1, we get

Corollary 2. Let the functionf ∈ ∑p and suppose thatg ∈
R

0,q
p (λ , l,γ). If f (q)(z)≺≺ g(q)(z) in U∗, then

|I 1,q
p (λ , l) f (z)| ≤ |I 1,q

p (λ , l)g(z)| for |z| ≤ r3,

where

r3 =
k1−

√

k2
1−4(p+ l)|2λ γ+ p+ l|
2|2λ γ + p+ l|

and

k1 = |2λ γ + p+ l|+ p+ l+2λ (q ∈ N0,γ ∈C
∗
,λ > 0).
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Further settingq = 0 andλ = 1 in the above result yields
Corollary 3. Let the functionf ∈ ∑p and suppose thatg ∈
R

0,0
p (1, l,γ). If f (z)≺≺ g(z) in U∗, then

|(2p+ l) f (z)+z f ′(z)| ≤ |(2p+ l)g(z)+zg′(z)| for |z| ≤ r4

where

r4 =
k2−

√

k2
2−4(p+ l)|2γ + p+ l|
2|2γ + p+ l|

and
k2 = |2γ + p+ l|+2+ p+ l.

Taking γ = 1, p = 0 and l = 0, the above corollary
reduces to the following.
Corollary 4. Let the functionf ∈ ∑ and suppose thatg ∈
R

0,0
1 (1,0,1). If f (z) ≺≺ g(z) in U∗, then
∣

∣

∣

∣

f (z)+
z f ′(z)

2

∣

∣

∣

∣

≤
∣

∣

∣

∣

g(z)+
zg′(z)

2

∣

∣

∣

∣

for |z| ≤ r5

where

r5 =
3−

√
6

3
.

3 Majorization problem for the class R(α,γ)

Let R(α,γ) be the class of functionsh(z) of the form

h(z) = 1−
∞

∑
k=1

ckzk (ck ≥ 0), (21)

that are analytic inU satisfying the inequality

|h(z)+αzh′(z)−1|< |γ| (z ∈ U; ℜ(α)≥ 0, γ ∈ C
∗).
(22)

For γ = 1−β (0≤ β < 1), the classℜ(α,γ) = ℜ(α,1−
β ) was considered by Altintas and Owa [1].

We need the following lemma to prove our result:
Lemma 1. (see [2]) If the functionh(z) defined by (21) is
in the classR(α,γ), then

1− |γ|
1+ℜ(α)

|z| ≤ |h(z)| ≤ 1+
|γ|

1+ℜ(α)
|z| (z ∈ U).

(23)
Theorem 2.

Let the function f (z) ∈ ∑p and g(z) ∈ R(α,γ) be
analytic in U and suppose that the functiong(z) is so
normalized that it also satisfies the following inclusion
property

I
m+1,q
p (λ , l)g(z)

I
m,q
p (λ , l)g(z)

∈ R(α,γ). (24)

If I
m,q
p (λ , l) f (z) is majorized byI m,q

p (λ , l)g(z) in U∗,
then

|I m+1,q
p (λ , l) f (z)| ≤ |I m+1,q

p (λ , l)g(z)| (|z|< r6)
(25)

wherer6 = r6(p, l,α,λ ,γ) is the smallest positive root of
the cubic equation

(p+ l)|γ|r3− (p+ l)[1+ℜ(α)]r2− [2λ +(p+ l)|γ|
+2λ ℜ(α)]r+[1+ℜ(α)](p+ l) = 0. (26)

Proof.
For appropriately normalized analytic functiong(z)

satisfying the inclusion property (24), we find from (23)
of Lemma 1 that

∣

∣

∣

∣

∣

I
m+1,q
p (λ , l)g(z)

I
m,q
p (λ , l)g(z)

∣

∣

∣

∣

∣

≥ 1− |γ|
1+ℜ(α)

r

(|z|= r, 0< r < 1), (27)

which implies

|I m,q
p (λ , l)g(z)| ≤ 1+ℜ(α)

1+ℜ(α)−|γ|r |I
m+1,q
p (λ , l)g(z)|

(|z|= r, 0< r < 1). (28)

Since I
m,q
p (λ , l) f (z) ≪ I

m,q
p (λ , l)g(z) (z ∈ U∗), there

exists an analytic functionw with |w(z)| < 1 such that

I
m,q
p (λ , l) f (z) = w(z)I m,q

p (λ , l)g(z). (29)

Therefore, in view of (28) and proceeding as in the proof
of Theorem 1, we have

|w′(z)| ≤ 1−|w(z)|2
1−|z|2 (z ∈ U), (30)

and

∣

∣I
m+1,q
p (λ , l) f (z)

∣

∣ ≤
[

|w(z)|+ λ
(p+ l)

(1−|w(z)|2)(1+ℜ(α))r
(1− r2)(1+ℜ(α)−|γ|r)

]

∣

∣I
m+1,q
p (λ , l)g(z)

∣

∣ . (31)

Taking|w(z)| = ρ in (31), we have

|I m+1,q
p (λ , l) f (z)| ≤ θ (ρ)

(p+ l)(1− r2)(1+ℜ(α)−|γ|r)
∣

∣I
m+1,q
p (λ , l)g(z)

∣

∣ , (32)

where

θ (ρ) = (p+ l)(1− r2)(1+ℜ(α)−|γ |r)ρ +λ r(1+ℜ(α))−
λ r(1+ℜ(α))ρ2 (0≤ ρ ≤ 1),

takes on its maximum value atρ = 1 with
r6 = r6(p, l,α,λ ,γ) given by (26). Moreover, if
0 ≤ η ≤ r6(p, l,α,λ ,γ) wherer6(p, l,α,λ ,γ) is the root
of the cubic equation (26) such that
0 < r6(p, l,α,λ ,γ) < 1, then the functionH(ρ) defined
by

H(ρ) = (p+ l)(1−η2)(1+ℜ(α)−|γ|η)ρ +λ η(1+ℜ(α))

−λ η(1+ℜ(α))ρ2 (0≤ ρ ≤ 1) (33)
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is seen to be an increasing function on the interval 0≤ ρ ≤
1 so that

H(ρ)≤ H(1) = (p+ l)(1−η2)(1+ℜ(α)−|γ|η)
(0≤ ρ ≤ 1,0≤ η ≤ r6(p, l,α,λ ,γ)). (34)

Therefore, upon settingρ = 1 in (32), we complete the
proof of Theorem 2.�

4 Open Problem

In the present paper, we have investigated the majorization
problems for the class ofp-valent meromorphic function.
If we define a classf ∈ Ap such that

f (z) = zp +
∞

∑
k=1

ak+pzk+p (z ∈ U),

then we need to modify the generalized operator
I

m,q
p (λ , l) for the class ofp-valent analytic function.

Further using this modified operator we have to find the
new majorization conditions for the modified operator.
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