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Abstract: This paper obtains the exact 1-soliton solutions to geize@inonlinear Schrodinger equation. Nonlinear Schrieli
equation has been widely applied in many branches of nanliseiences such as nonlinear optics, nonlinear opticakféred quantum
mechanics. So, finding exact solutions of such equationsegehelpful in the theories and numerical studies. In tlaipgy, the He's
semi-inverse method and the ansatz method are used toigistadlv exact solutions of generalized nonlinear Schgetirequation.
The results reveal that these methods are very effectivgpawdrful tool for solving nonlinear fractional differeatiequations arising
in mathematical physics.
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1INTRODUCTION 8,9,10,11] obtained optical solitons and soliton solutions
with higher order dispersion by using the He’s variational
In this paper, we consider generalized nonlinearprinciple. Using extended tanh-coth, sine-cosine,
Schrodinger (GNLS) equatiod 2] exp-function and first integral methodsl,?], exact
. 2, . 2 solutions of GNLS equation have been obtained. The aim
lqt_+aqxx+bq|q| icthooct-id (09|%), of this paper is to find new exact solutions of GNLS
= kdX(@)-w) (1) equation by using the He's semi-inverse variational

where & — a(x—wt) is a real function and principle method and the ansatz methad, [L5].

a, b, ¢, d, w, a, v are non-zero constants amdis a

complex-valued function of two real variablest. The

nonlinear Schrodinger's equation describes numerou® THE SEMI-INVERSE VARIATIONAL
nonlinear physical phenomena in the field of applied pRINCIPLE METHOD

sciences such as solitons in nonlinear optical fibers,

solitons in the mean-field theory of Bose-Einstein , . ,
condensates, rogue waves in oceanography; etc. Let us consider a general nonlinear PDE in the form

In recent years, many powerful methods have been ) ) )

developed to construct exact solutions of nonlinear P(u du du o°u 9J°u oJ°u ): )
evolution equations. One of the most effective direct Tot7 Ox’ X2’ dtox’ at2’ ’

methods to develop the solitary wave solutions of

nonlinear evolution equations is the He’s variational whereP is a polynomial in its arguments. Jabbari et. al.,
principle. He’s semi-inverse variational principle, whic [13] have been written the He's semi-inverse method in
is a direct and effective algebraic method for the the following steps:

computation of soliton solutions, was first proposed by

He [3]. This method was further developed by many Step 1. Seek solitary wave solutions of E®)(by taking
authors 4,5,6,7,8,9,10,11,12,13]. Biswas et. al.,$,6,7, u(x,t) =U(&), & =x—ct, and transform Eq.2) to the
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ordinary differential equation (ODE) (aa? —3ca’B)U” (&)
dU d?U + (apv+w—aa®B?+ca’p®)U(§)
QlU, —, —, ... | =0. 3) o 3rzy
< dZ’ de2 ) + (b—daB)U~(&)—k=0. (12)

. o % 5 Integrating Eq. 10) once, with respect t§, yields:
Step 2: If possible, integrating Eq.3} term by term one 20 11 212
or more times. This yields constant(s) of integration. For caU™(&) + (-v+2aBa —3ca”f)U(Z)
simplicity, the integration constant(s) can be set to zero. + d U3(&) =0, (12)
. , . where we neglect the integration constant.
Step3: According to He's semi-inverse method, we gjnce the same functidd (¢) satisfies two Eqs.1(l) and
construct the following trial-functional, we construceth (12)  we obtain the following constraint condition:
following trial-functional 2 3
(ao“—3ca°f)

ca?
_ (aBv+w—aa?p?+cap®)
(—v+2aBa —3ca?p?)

J(U):/LdE, 4)

whereL is an unknown function df) and its derivatives.

Step 4: By the Ritz method, we can obtain differentforms _ (b—dap) (13)
of solitary wave solutions , such as d '

By He’s semi-inverse principle3[4], we can obtain the
U(§) =AsechBE), U(&)=Atanh(B¢) () following variational formulation

and so on. For example in this paper, we search a solitary © ca’, .2
wave solution in the form J :/o [_T (U )

U(&)=AsechBS), (6) +(_V+2aﬁz_3w2[32)uz+%U“]df. (14)

where A and B are constants to be further determined. By a Ritz-like method, we search a solitary wave solution
Substituting Eq. §) into Eq. @) and making) stationary  in the form

with respect toA andB results in U(&) = Asech(BE), (15)
0J where A and B are unknown constants to be further
A 0 () determined. Substituting EqL%) into Eq. (L4), we have
®  A2R20n2

53 J:/ - ABCO R (BE) tant? (BE)
=0 ®) o 2
oB (—v+2aBa — 3ca?p?) A2 .
Solving Egs. 7) and @), we obtainA andB. Hence, the 2 sectt (Bf)
solitary wave solutiong) is well determined. 4 2Bcg?2

+dTAsecH(BE)]dE _ A BGCO’

(—v+2aBa —3ca?p?) A? N da

2.1 APPLICATION _'_I'O THE GENERALIZED + B B (16)
NONLINEAR SCHRDINGER EQUATION Making J stationary withA andB yields
2 (_ _2rn2R32
In order to solve Eq.1), we use the following wave 9 = _ABx + (-v+2apa - 3cap?) A
transformation oA 3 B
. 20 A3
q(x,t) = XE-Wy(g), +¥ =0, a7)
)E((E)UZ(XB_EVJ;)XO’ ©) 9J  Alca®  (-v+2aBa—3ca’f?) A
B ’ B 6 2B2
wherea, w, v, B, Xp are constants and (&) is real dad
function. i 0. (18)
By replacing Eq. 9) into Eqg. (1) and separating the real .o Egs. 17) and (8), we have
and imaginary parts of the result, we obtain the two ' ’
following ordinary differential equations: A_i\/Z(V+3CGZB2—2aBa)
= § ,
3 2 3p2
ca’U"” (&) + (—av+2aBa*—3ca°p?)U’(§) 5aBa v 30757
+ 3daU?(&)U’(&) =0. (10) B==+ o2 : (19)
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Using the travelling wave transformatio®)( we have the
following bright soliton solutions of the Eql):

22 _
q(x,t):i\/z(v+3ca§ 2afa)
i\/Zaﬁa—v—Bcazﬁz

c

sech (x—vt)

wd (Bar (x—vt)—wt+xo) ) (20)

3 ANSATZ APPROACH

This section will utilize the ansatz method to solve GNLS
equation. The bright soliton, dark soliton and singular

soliton solutions to Eq.1) will be obtained by the aid of
ansatz method. In order to solve EQ) by the ansatz
method, we use the following wave transformation

a(xt) = X0y (),

X(1) =BT+X0,

T=0(X—Vt). (21)
By replacing Eq.21) into Eq. (1), we have

ca®U” (1) + (—v+ 2aBa — 3ca?B?)U (1)

+d U3(1) =0. (22)
3.1 BRIGHT SOLITON SOLUTION
For bright soliton, the hypothesis is
U (1) = AseclBr, (23)
where
T=a(X—Wwt) (24)

The value of the unknown exponepwill fall out during
the course of derivation of the soliton solutions. Afsand
B are free parameters, whileis the speed of the soliton.
Thus from @3), we have

dz(;JT(ZT) = AB?p? secBrt

—AB?p(p+1) sec®*?Br (25)
and
U3(r) = A® sechiPBr. (26)

Substitution of 23) into Eq. 2) leads to

+ ca® {AB?p? secl¥BT — AB?p(p+ 1) sec? 2Bt}

+ (—v+2aBa —3ca’B?)A sechBt

+ d A3 sechPBT = 0. (27)

By virtue of balancing principle, on equating the
exponents p andp+ 2, from 27), gives

p=1 (28)

Next, from Q7) setting the coefficients of the linearly
independent functions to zero implies

sech coeff.:
ca’AB? + (—v+2aBa —3ca’f?)A=0, (29)
secH coeff.:
dA3 — 2ca®AB? = 0.
Solving the above equations yields
232 _
A:i\/Z(v+3ca§ 2aBa)7 (30)
and
VvV 2R2
B:i\/ZaBa V23CG!B . (31)
ca
Equations 80) and @1) prompts the constraints
d (v+3ca®p? —2aBa) > 0, (32)
and
c(v+3ca®p?—2aBa) >0, (33)

respectively. Thus, the bright 1-soliton solution to ED. (
is given by

axt) = i\/2(v+ 30a252— 2afa)
i\/ZaBo( —v—3ca?p?

C

sech

(X=vt)

Xei(ﬁa(x—vt)—vvt-&-xo)’ (34)

with the constraints32) and @3).

3.2 TOPOLOGICAL (DARK) SOLITON
SOLUTION

The starting hypothesis for dark 1-soliton solution to Eq.
(22 is

U (1) = AtanHBr, (35)

whereT is the same as2d). However, for dark solitons
the parameterd andB are indeed free soliton parameters,
althoughv still represents the velocity of the dark soliton.
Thus from 85), we have

d?U (1)
dr?

—2AB?p’tantPBT

+AB?p(p+ 1)taniP 2Bt

= AB?p(p—1) tantP~2Bt

(36)
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and
U3(r) = A% tank*PBr. (37)

In this case, substituting this hypothes3§)into Eq. 22
leads to

ca?{AB?p(p— 1) tani’~2Br

—2AB?p’tantPBr

+AB?p(p+ 1)tantP2Br}

+(—v+2aBa — 3ca’B?)AtantPBr

+dA’tan*PBT = 0. (38)
By balancing the power of tafih? and tanfi in Eq. (38)
we have:
p=1. (39)
Now, from (38), setting the coefficients of the linearly

independent functions taffi )1 to zero, wherg = 0, 2,
gives

tantt coeff.:
—2ca’AB+ (—v+2aBa —3ca’B?)A=0,  (40)
tant? coeff.:
2ca?AB? +dA® = 0.
Solving the above equations yields
232 _
A:i\/v+3cai 23507 41)
and
2aBa —v— 3ca?p?
B=+ . 42
\/ 2ca? (42)
Equations41) and @2) prompts the constraints
d (v+3ca?p? - 2aBa) >0, (43)
and
c(v+3ca®B?—2aBa) > 0, (44)

respectively. Thus, the topological 1-soliton solutioftp
(2) is given by

232 _
(4()(7,[)21\/v4—3(:¢11[(3j 2aBa
\/ZaBa—v—Scazﬁz
+
2c

tanh

(x=vt)

wd(Ba(x-v)-wtixo)

with the constraints43) and @4).

(45)

Remark: In this case, comparing our results with
Taghizadeh’s results], it can be seen that our solutions
are same.

3.3 SINGULAR SOLITON SOLUTION

For singular soliton, the hypothesis is

U (1) = AcsciT, (46)
whereT is the same as2@l). The value of the unknown
exponentp will fall out during the course of derivation of
the soliton solutions. Als® andB are free parameters,

while A is the speed of the soliton. Substitution @)
into Eq. 22) leads to

ca?{AB?p? csciP1 -+ AB?p(p+ 1) cscP 21}
+(—v+2aBa — 3ca’B?)A cscHBr

+d A cschPBT = 0. (47)
From @7), the balancing principle yields
p=1 (48)

Next, from @7) setting the coefficients of the linearly
independent functions to zero implies

—v—3ca2B2
A:i\/Z(Zaﬁa \é 3ca2p )’ (49)
and
_v— 2R2
oo [HE T
ca
Equations49) and 60) prompts the constraints
d (2aBa —v—3ca?p?) >0, (51)
and
c(v+3ca®B?—2aBa) > 0, (52)

respectively. Thus, the singular 1-soliton solution to Eq.
(2) is given by

VvV — 2R2
q(x,t):i\/z(zaﬁa \(; 3ca2B?)

—v_ 300232
jE\/ZaBor v—3ca?p

c

csch (X—vt)

wd(Ba(x-v)-wtixo)

with the constraintsy1) and 62).

(53)

4 CONCLUSIONS

In this paper, the He's semi-inverse variational principle
method and the ansatz method have been applied to
obtain the new exact solutions of generalized nonlinear
Schrodinger equation. The results show that these
methods are powerful tool for obtaining the exact
solutions of complex nonlinear partial differential
equations. We have predicted that the He's semi-inverse
variational principle method and the ansatz method can be
extended to solve many systems of complex nonlinear
partial differential equations in mathematical and phgksic
sciences.
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