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Abstract: This paper obtains the exact 1-soliton solutions to generalized nonlinear Schrödinger equation. Nonlinear Schrödinger
equation has been widely applied in many branches of nonlinear sciences such as nonlinear optics, nonlinear optical fibers and quantum
mechanics. So, finding exact solutions of such equations arevery helpful in the theories and numerical studies. In this paper, the He’s
semi-inverse method and the ansatz method are used to establish new exact solutions of generalized nonlinear Schrödinger equation.
The results reveal that these methods are very effective andpowerful tool for solving nonlinear fractional differential equations arising
in mathematical physics.
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1 INTRODUCTION

In this paper, we consider generalized nonlinear
Schrödinger (GNLS) equation [1,2]

iqt +aqxx+bq|q|2+ icqxxx+ id
(

q|q|2
)

x

= kei(χ(ξ )−wt), (1)

where ξ = α (x− vt) is a real function and
a, b, c, d, w, α, v are non-zero constants andq is a
complex-valued function of two real variablesx, t. The
nonlinear Schrödinger’s equation describes numerous
nonlinear physical phenomena in the field of applied
sciences such as solitons in nonlinear optical fibers,
solitons in the mean-field theory of Bose-Einstein
condensates, rogue waves in oceanography, etc.
In recent years, many powerful methods have been
developed to construct exact solutions of nonlinear
evolution equations. One of the most effective direct
methods to develop the solitary wave solutions of
nonlinear evolution equations is the He’s variational
principle. He’s semi-inverse variational principle, which
is a direct and effective algebraic method for the
computation of soliton solutions, was first proposed by
He [3]. This method was further developed by many
authors [4,5,6,7,8,9,10,11,12,13]. Biswas et. al., [5,6,7,

8,9,10,11] obtained optical solitons and soliton solutions
with higher order dispersion by using the He’s variational
principle. Using extended tanh-coth, sine-cosine,
exp-function and first integral methods [1,2], exact
solutions of GNLS equation have been obtained. The aim
of this paper is to find new exact solutions of GNLS
equation by using the He’s semi-inverse variational
principle method and the ansatz method [14,15].

2 THE SEMI-INVERSE VARIATIONAL
PRINCIPLE METHOD

Let us consider a general nonlinear PDE in the form

P

(

u,
∂u
∂ t

,
∂u
∂x

,
∂ 2u
∂x2 ,

∂ 2u
∂ t∂x

,
∂ 2u
∂ t2 , ...

)

= 0, (2)

whereP is a polynomial in its arguments. Jabbari et. al.,
[13] have been written the He’s semi-inverse method in
the following steps:

Step 1: Seek solitary wave solutions of Eq. (2) by taking
u(x, t) = U(ξ ), ξ = x− ct, and transform Eq. (2) to the
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ordinary differential equation (ODE)

Q

(

U,
dU
dξ

,
d2U
dξ 2 , ...

)

= 0. (3)

Step 2: If possible, integrating Eq. (3) term by term one
or more times. This yields constant(s) of integration. For
simplicity, the integration constant(s) can be set to zero.

Step 3: According to He’s semi-inverse method, we
construct the following trial-functional, we construct the
following trial-functional

J(U) =

∫

L dξ , (4)

whereL is an unknown function ofU and its derivatives.
Step 4: By the Ritz method, we can obtain different forms
of solitary wave solutions , such as

U(ξ ) = A sech(Bξ ) , U(ξ ) = A tanh(Bξ ) (5)

and so on. For example in this paper, we search a solitary
wave solution in the form

U(ξ ) = A sech(Bξ ) , (6)

where A and B are constants to be further determined.
Substituting Eq. (6) into Eq. (4) and makingJ stationary
with respect toA andB results in

∂J
∂A

= 0 (7)

∂J
∂B

= 0 (8)

Solving Eqs. (7) and (8), we obtainA andB. Hence, the
solitary wave solution (6) is well determined.

2.1 APPLICATION TO THE GENERALIZED
NONLINEAR SCHR̈ODINGER EQUATION

In order to solve Eq. (1), we use the following wave
transformation

q(x, t) = ei(χ(ξ )−wt)U(ξ ),
χ(ξ ) = β ξ + x0,

ξ = α (x− vt) , (9)

where α, w, v, β , x0 are constants andU(ξ ) is real
function.
By replacing Eq. (9) into Eq. (1) and separating the real
and imaginary parts of the result, we obtain the two
following ordinary differential equations:

cα3U ′′′(ξ )+
(

−αv+2aβ α2−3cα3β 2)U ′(ξ )

+ 3dαU2(ξ )U ′(ξ ) = 0. (10)

(

aα2−3cα3β
)

U ′′(ξ )

+
(

αβv+w−aα2β 2+ cα3β 3)U(ξ )
+ (b−dαβ )U3(ξ )− k= 0. (11)

Integrating Eq. (10) once, with respect toξ , yields:

cα2U ′′(ξ )+ (−v+2aβ α−3cα2β 2)U(ξ )
+ d U3(ξ ) = 0, (12)

where we neglect the integration constant.
Since the same functionU(ξ ) satisfies two Eqs. (11) and
(12) , we obtain the following constraint condition:

(aα2−3cα3β )
cα2

=
(αβv+w−aα2β 2+ cα3β 3)

(−v+2aβ α−3cα2β 2)

=
(b−dαβ )

d
. (13)

By He’s semi-inverse principle [3,4], we can obtain the
following variational formulation

J =

∫ ∞

0
[−

cα2

2

(

U ′
)2

+

(

−v+2aβ α −3cα2β 2
)

2
U2+

d
4

U4]dξ . (14)

By a Ritz-like method, we search a solitary wave solution
in the form

U(ξ ) = A sech(Bξ ) , (15)

where A and B are unknown constants to be further
determined. Substituting Eq. (15) into Eq. (14), we have

J =

∫ ∞

0
[−

A2B2cα2

2
sech2 (Bξ ) tanh2 (Bξ )

+

(

−v+2aβ α −3cα2β 2
)

A2

2
sech2 (Bξ )

+
dA4

4
sech4 (Bξ )]dξ =−

A2Bcα2

6

+

(

−v+2aβ α −3cα2β 2
)

A2

2B
+

dA4

6B
. (16)

MakingJ stationary withA andB yields

∂J
∂A

=−
ABcα2

3
+

(

−v+2aβ α −3cα2β 2
)

A

B

+
2dA3

3B
= 0, (17)

∂J
∂B

=−
A2cα2

6
−

(

−v+2aβ α−3cα2β 2
)

A2

2B2

−
dA4

6B2 = 0. (18)

From Eqs. (17) and (18), we have

A=±

√

2(v+3cα2β 2−2aβ α)

d
,

B=±

√

2aβ α − v−3cα2β 2

cα2 . (19)
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Using the travelling wave transformation (9), we have the
following bright soliton solutions of the Eq. (1):

q(x, t) =±

√

2(v+3cα2β 2−2aβ α)

d

sech

[

±

√

2aβ α − v−3cα2β 2

c
(x− vt)

]

×ei(β α(x−vt)−wt+x0). (20)

3 ANSATZ APPROACH

This section will utilize the ansatz method to solve GNLS
equation. The bright soliton, dark soliton and singular
soliton solutions to Eq. (1) will be obtained by the aid of
ansatz method. In order to solve Eq. (1) by the ansatz
method, we use the following wave transformation

q(x, t) = ei(χ(τ)−wt)U(τ),
χ(τ) = β τ + x0,

τ = α (x− vt) . (21)

By replacing Eq. (21) into Eq. (1), we have

cα2U ′′(τ)+ (−v+2aβ α−3cα2β 2)U(τ)
+d U3(τ) = 0. (22)

3.1 BRIGHT SOLITON SOLUTION

For bright soliton, the hypothesis is

U(τ) = A sechpBτ, (23)

where

τ = α (x− vt) (24)

The value of the unknown exponentp will fall out during
the course of derivation of the soliton solutions. AlsoA and
B are free parameters, whilev is the speed of the soliton.
Thus from (23), we have

d2U(τ)
dτ2 = AB2p2 sechpBτ

−AB2p(p+1) sechp+2Bτ (25)

and

U3(τ) = A3 sech3pBτ. (26)

Substitution of (23) into Eq. (22) leads to

+ cα2{AB2p2 sechpBτ −AB2p(p+1) sechp+2Bτ
}

+ (−v+2aβ α −3cα2β 2)A sechpBτ
+ d A3 sech3pBτ = 0. (27)

By virtue of balancing principle, on equating the
exponents 3p andp+2, from (27), gives

p= 1. (28)

Next, from (27) setting the coefficients of the linearly
independent functions to zero implies

sech1 coeff.:

cα2AB2+(−v+2aβ α−3cα2β 2)A= 0, (29)

sech3 coeff.:
dA3−2cα2AB2 = 0.

Solving the above equations yields

A=±

√

2(v+3cα2β 2−2aβ α)

d
, (30)

and

B=±

√

2aβ α − v−3cα2β 2

cα2 . (31)

Equations (30) and (31) prompts the constraints

d
(

v+3cα2β 2−2aβ α
)

> 0, (32)

and

c
(

v+3cα2β 2−2aβ α
)

> 0, (33)

respectively. Thus, the bright 1-soliton solution to Eq. (1)
is given by

q(x, t) =±

√

2(v+3cα2β 2−2aβ α)

d

sech

[

±

√

2aβ α − v−3cα2β 2

c
(x− vt)

]

×ei(β α(x−vt)−wt+x0), (34)

with the constraints (32) and (33).

3.2 TOPOLOGICAL (DARK) SOLITON
SOLUTION

The starting hypothesis for dark 1-soliton solution to Eq.
(22) is

U(τ) = A tanhpBτ, (35)

whereτ is the same as (24). However, for dark solitons
the parametersA andB are indeed free soliton parameters,
althoughv still represents the velocity of the dark soliton.
Thus from (35), we have

d2U(τ)
dτ2 = AB2p(p−1) tanhp−2Bτ

−2AB2p2tanhpBτ
+AB2p(p+1)tanhp+2Bτ (36)
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and

U3(τ) = A3 tanh3pBτ. (37)

In this case, substituting this hypothesis (35) into Eq. (22)
leads to

cα2{AB2p(p−1) tanhp−2Bτ
−2AB2p2tanhpBτ
+AB2p(p+1)tanhp+2Bτ}
+(−v+2aβ α−3cα2β 2)A tanhpBτ
+dA3tanh3pBτ = 0. (38)

By balancing the power of tanhp+2 and tanh3p in Eq. (38)
we have:

p= 1. (39)

Now, from (38), setting the coefficients of the linearly
independent functions tanh(p+ j)τ to zero, wherej = 0, 2,
gives

tanh1 coeff.:

−2cα2AB+(−v+2aβ α−3cα2β 2)A= 0, (40)

tanh3 coeff.:
2cα2AB2+dA3 = 0.

Solving the above equations yields

A=±

√

v+3cα2β 2−2aβ α
d

, (41)

and

B=±

√

2aβ α − v−3cα2β 2

2cα2 . (42)

Equations (41) and (42) prompts the constraints

d
(

v+3cα2β 2−2aβ α
)

> 0, (43)

and

c
(

v+3cα2β 2−2aβ α
)

> 0, (44)

respectively. Thus, the topological 1-soliton solution toEq.
(1) is given by

q(x, t) =±

√

v+3cα2β 2−2aβ α
d

tanh

[

±

√

2aβ α − v−3cα2β 2

2c
(x− vt)

]

×ei(β α(x−vt)−wt+x0), (45)

with the constraints (43) and (44).

Remark: In this case, comparing our results with
Taghizadeh’s results [2], it can be seen that our solutions
are same.

3.3 SINGULAR SOLITON SOLUTION

For singular soliton, the hypothesis is

U(τ) = A cschpτ, (46)

whereτ is the same as (24). The value of the unknown
exponentp will fall out during the course of derivation of
the soliton solutions. AlsoA and B are free parameters,
while λ is the speed of the soliton. Substitution of (46)
into Eq. (22) leads to

cα2{AB2p2 cschpτ +AB2p(p+1) cschp+2τ
}

+(−v+2aβ α−3cα2β 2)A cschpBτ
+d A3 csch3pBτ = 0. (47)

From (47), the balancing principle yields

p= 1. (48)

Next, from (47) setting the coefficients of the linearly
independent functions to zero implies

A=±

√

2(2aβ α − v−3cα2β 2)

d
, (49)

and

B=±

√

2aβ α − v−3cα2β 2

cα2 . (50)

Equations (49) and (50) prompts the constraints

d
(

2aβ α − v−3cα2β 2)> 0, (51)

and

c
(

v+3cα2β 2−2aβ α
)

> 0, (52)

respectively. Thus, the singular 1-soliton solution to Eq.
(1) is given by

q(x, t) =±

√

2(2aβ α − v−3cα2β 2)

d

csch

[

±

√

2aβ α − v−3cα2β 2

c
(x− vt)

]

×ei(β α(x−vt)−wt+x0), (53)

with the constraints (51) and (52).

4 CONCLUSIONS

In this paper, the He’s semi-inverse variational principle
method and the ansatz method have been applied to
obtain the new exact solutions of generalized nonlinear
Schrödinger equation. The results show that these
methods are powerful tool for obtaining the exact
solutions of complex nonlinear partial differential
equations. We have predicted that the He’s semi-inverse
variational principle method and the ansatz method can be
extended to solve many systems of complex nonlinear
partial differential equations in mathematical and physical
sciences.
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