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Abstract: Inthe present paper we introduce some generalizetnvergent sequence spaces and study some topologicdyabdsc
properties of these spaces. We also make an effort to studg swlusion relations between these spaces.
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1 Introduction and Preliminaries Let o be a mapping of the set of the positive integers into
itself having no finite orbits. A continuous linear

Let w denote the space of all real or complex sequencesiunctional ¢ on |, is said to be an invariant mean or

A double sequence of complex numbers is defined as @-mean if and only if

functionx: N x N — C. We denote a double sequence as (i) ¢(x) > 0 when the sequence= (xx) hasx, > 0 for all

(xij) where the two subscripts run through the sequence;

of natural numbers independent of each other. A numbe(ii) g(e) =1, wheree={1,1,1,...};

ac Cis called a double limit of a double sequerigg) if (i) P(Xg(ny) = @(x) for all X € lc.

for everye > 0 there exists somid = N(¢) € Nsuchthat In case g is the translation mappingn — n+ 1, a
og—mean is often called a Banach limit (s&3)[and Vy

|(%j)—al <&, Vi,jeN. the set of bounded sequences all of whose invariant
o means are equal, is the set of almost convergent
The study of double sequence spaces was initiated b¥equences (see 14)). If x = (x), then

Bromwich [2] and further generalized and studied by Ty — (Tx,) = (Xo(n))- It can be shown that
Hardy [6], Moricz [15], Moricz and Rhoades 1f],

Tripathy ([27], [28]), Basarir and Sonalcad] and many w

others. Quite recently, Zeltse8]] in her Ph.D thesis has Vo = {X= (%) : Y tmk(x) =L uniformally ink L = o —lim X}
essentially studied both the theory of topological double m=1

sequence spaces and the theory of summability of dOUbls\/herem >0 k> 0. Consider (1)
sequences. For more details about double sequence =7 '

spaces (seef)], [17],[18]) and references therein. Lks X+ Xo(k) + X2+ -+ + Xamii

and ¢ denote the Banach spaces of bounded and tmk(X) = ,t1k=0,

convergent sequences, respectively, with norm m+1

IX]le» = supix|. LetV denote the space of sequences of, o e Gm(k) denote themth iterate of o(k) at k. The

k
bounded variation that is, special case of (1) in whickr(n) = n+ 1 was given by
Lorentz [[14], Theorem 1], and that the general result can

(o s - be proved in a similar way. It is familiar that a Banach
V= {X = (%) - %'Xk_ Xe1| <00, Xy = 0}’ limit extends the limit functional on.
K= L X .
A o-mean extends the limit functional anin the sense
whereV is a Banach space normed by that(x) = limx for all x € cif and only if o has no finite
orbits that is to say, if and only if, for ak > 0, j > 1,
- (see 19))
X[=5 —X-1l, (seel9). -
[l kZOI | ol (k) #k.
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Put ABel=AUBeclandAcl,.BCA=Becl. Anon
Gnk(X) = tmk(X) — tm-1.x(X), empty family of sets£(1) C 2V is said to be filter onN if

' ' ' and only if @ ¢ £(1) for A/B € £(1) we haveANB € £(1)

and for eactA € £(1) andA C BimpliesB € £(1).

An ideal | C 2N is called non trivial ifl # 2. A non

assuming that_,, = 0. A straight forward calculation
shows (seed1]) that

m trivial ideal 1 € 2¥ is called admissible if
B m(ﬁ%—H) Z IXgi) —Xgi109)>  (M=1), {{x} : xe N} CI. A non-trivial ideal is maximal if there
Pnk(x) = =1 cannot exist any non trivial idedl # | containingl as a
X, (m=0). subset. For each ideal, there exist a filter£(I)
corresponding td i.e £(1) = {K C N: K¢ ¢ |}, where
For any sequence y and scalai, we have K®=N\K.
Bnk(X+Y) = @nk(X) + @nk(y), Definition 1.1. A double sequencgxj) € w is said to be

B I-convergent to a numbedkt if for every € > 0, the set

Bnk(AX) = A @ink(X). {i,j e N:|xj—L|l>e€} el In this case we write

A sequence € |, is of g-bounded variations if and only | —limx; =L.

it Definition 1.2. A double sequencex;j) € w is said to be

[-null if L = 0. In this case we writé — limx;j; = 0.

L Definition 1.3. A double sequencgxij) € w is said to be

(i) lim tmk(X), which must exist, should take the same I-Cauchy if for everye > 0, there exist a number= a(e)
Mmoo andb =b(¢) such that{i,j € N : [Xj —Xap| > €} €1.

Definition 1.4. A double sequencgxij) € w is said to be

I-bounded if there exist M > 0 such that

{i,j eN:|xj| >M} el.

0] z | @k (X)|converges uniformly imn;
K=0

value for allk.
We denote byBVy, the space of all sequences of
o-bounded variations (se8]):

_ ) , Definition 1.5. A double-sequence spaé&eis said to be
BVo = {xe leo 2 (@i (X)] < oo, umformalymk}. solid or normal if (xj) € E implies (aijx;) € E for all
" sequence of scalafsij) with |ajj| < 1 foralli,j € N.
BV, is a Banach space normed by Definition 1.6. Let X be a linear metric space. A function
p: X — Ris called paranorm, if
x|l ZSUp%Van(XN (see P2). 1.p(x) > 0forallx e X;
k k= 2.p(—x) = p(x) for all x € X;

oo , 3.p(x+Y) < p(x)+ p(y) forall x,y € X;
Subsequently, invariant mean have been studied by 4 (An) is a sequence of scalars with — A asn —
Raimi [23], Vakeel et al. (9], [1(], [11]), and many 0 asn — o, thenp(An¥y — AX) — 0 asn — oo.
others. For the first timd,—convergence was studied by ) o .
Kostyrko et al. L3]. Later on, it was studied by Salat etal. A paranormp for which p(x) = 0 impliesx = 0 is called
[26], Tripathy and HazarikaZ9] and many others. total paranorm and the paifX,p) is called a total
The notion of difference sequence spaces was introducefranormed space. It is well known that the metric of any

by Kizmaz [7], who defined the sequence spaces linear metric space is given by some total paranorm
y Kizmaz 7}, w I au P ([Theorem 10.4.2, pp. 183] se8()). For more details

Z(A) = {x= (%) € W: (Ax) € Z} for Z = c,Coandle, g}bou; sequence spaces sed|([ [25]) and references
erein.
whereAx = (Ax) = (X — Xc.1). The notion was further L€t p= (pij) be any double bounded sequence of positive

generalized by Et and Colak][by introducing the spaces. €& numbers andi = (u;j) be a double sequence of
Letr be a non-negative integer, then strictly positive real numbers. In this paper we define the

following sequence space:

Z(A") = {x= (%) €ew: (A"x) € Z} for Z=c,cy andle
(A7) = {x= (%) (A"x) € Z} Co JBV (1. p.A")

_ _ -1 -1 Oy, _
whereA"™x= (A"x) = (A" tx— A" 1x;.1) andA % = xi {x:(xu)ew:{hieN:\%,ij(uuArX)—L\p”ze}eL

for all k € N. The generalized difference sequence has the -

following binomial representation for someL € (c},
Ay = io(_l)v (f)ka' If we takeu = (uj) = 1, p= (p;) = L, for all i, and
= v r = 0 then we get the sequence space defined by Vakeel

and Nazneeni[Z].
Let N be a non empty set. Then a family of séts 2 The main purpose of this paper is to introduce the
(Power set ofN) is said to be an ideal if is additive i.e  sequence spacgBV) (u,p,A"). We have also make an
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attempt to study some topological, algebraic propertiesx= (xj) # 0, g(xij) # 0, we have

and inclusion relations between the sequence space$)

ZBVCII(uv var)'

2 Main Results

Theorem 2.1. Let p = (pjj) be a double bounded
sequence of positive real numbers amé= (ujj) be a
double sequence of strictly positive real numbers. The
the space,BV)(u,p,A") is a linear space over the
complex fieldC.

Proof. Letx= (xj), y= (Vij) € 2BV} (u,p,A") anda, B €
C. Then for a givere > 0, we have

{i,i €N |@m,j(UijA™) — Ly |Pi > %} el,
for somé.; € C, {i,j eN:|@m,j(uijA"y) —Lao|Pi > %} €

I
for somé., € C. Now let

A= {i.] €N g (U A —LafPr > $ ] e,
forsomé.; € C, Ap = {i,j EN|@m,j(ujATy) —Lo|Pi >
srel

for somé., € C be such thaf], A5 € |. Now consider
|@m,ij (UijAT (ax+ By)) — (aLy+ BLo)|Pi

= [@m,ij (aUjA™X) + @m,ij (BuijA"Y) — aly — BLo|P

= [@miij(aUijA™X) — aLy + @mij(BuijA"y) — BLo|P

< |@miij(auijA"x) — aLa|™ + [ @m;j (BuijA"y) — BLo|™
= |a||@m,ij(UijA"X) — La|Pi + [ B]|@mij (uijA"y) — Lo| Pl

€ €
S|G|§+|B|§

€
= (lal+1BD)3
< ¢ (say)
This implies that the sequence space
Az {i,j €
| (A7 (ax-+ BY)) — (aLa + BLa)Pi < &'}
€ I, forsome L, Lo € C. Hence
(ax+ By) € 2BV, (u, p,A"). ThereforeBV) (u, p,A") is a

linear space over the complex fielt] This completes the
proof.

Theorem 2.2. Let p = (pij) be a double bounded
sequence of positive real numbers amé= (ujj) be a

N

double sequence of strictly positive real numbers. Then
the space ,BV/!(u,p,A") is a paranormed space, that
a

paranormed by
9(xij) = sup|dm,j (uijA"x)[Pi.
i]

Proof. For x = (xj) = 0, g(xj) = 0 is trivial. For

g(x) = supl@mij(uA'x)[Pi > 0, for all
ij

X € 2BVL (U, p,A").
(i) 9(—x) sup| @m,ij (—uijA )|
1]

SUP| — Gm,ij (Ui A™)|™ = sup|@m,ij (WA [P = g(x),
i ij
for all x € ,BV/.(u, p,A").

(i) g(x +y) = supl@m;j(ujA'x + u;ATy)[Pi <
i]
Sup @m,ij WA+ supl@m,j(ujATY)P =
1] i
9(x) +9(y).-
(iv) Let Aj; be a sequence of scalars with

Aij = A as (ij — «) andx € 2BV (u, p,A") such that
@m,ij(UijA™x) — L as (ij — o)
in the sense that
9(@miij (UijA™x) —L)Pi — 0 as (ij — ).

Therefore

g()\ijqqmij(uijA’x)—)\L)pii

< g(Aij @mij (UijATX))PT —g(AL)P

= Aij9(@mij(uijA"x))Pi — Ag(L)Pi

— 0 asij — oo.

Hence ,BV)(u,p,A") is a paranormed space. This

completes the proof.

Theorem 2.3. The space,BV/ (u,p,A") is solid and
monotone.

Proof. Let x = (xj) € 2BV} (u,p,A") and (aij) be a
sequence of scalars witl;j| < 1, for all i, j € N. Then
we have
|0 @m,ij (Ui A™X) |1 < (@i | @i (Ui A"™) [P

< |@m,ij (A" [P0, Vi, j €N,
The space;BV)(u,p,A") is solid follows from the
following inclusion relation:

{i,i € Nt |@hm,jj (uijA™) [P > 8}

2 {i,j € N [dij@m;ij(uijA"™x)|[Pi > e}. Also a sequence
is solid implies monotone. Hence the space
2BV} (u, p,A") is monotone. This completes the proof.
Theorem 2.4.,BV) (u,p,A") is a closed subspace of
2|l|30(u7 pvdr)'

Proof. Let (xfjbd)) be a Cauchy sequencezBV/) (u, p,A")
such thatx®® — x. We show thatx € ,BV) (u,p,A").

Since (xX*) € ,BV! (U, p,A"), then there existg such

1)

{i,j €N @i (U A XYY — apg|Pi > s} el.

We need to show that
(i) (apg) converges t@.
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(ii) If U :{i,j eN:|>qj—a|<£},thenUCEI.

Since (xfjbd)) is a Cauchy sequence BV (u,p,A").

Then for a givere > 0, their existsky € N such that
SUP| GAmjij (uijArXi(jbd)) — (i (uijArXi(J?f)”pii < %,

Vb, dI,Je, f > ko. For a givens > 0, we have

Bodet = {i,j eEN:

| @i (U1 AXEY) = @mij (U AT ) [P < %},

- . &
Bod = {I,J € N [mij (U A7) — 2ol I < 5},

.. f - &
Ber = {LJ €N: |(Pmn,ij(UijArXi(je ) — e [P < 5}.
whereB = {i,] € N: |apg — aef| < €}. ThenB® € 1. We
choosekg € B, then for eaclb,d, e, f > kg, we have

{ij € N: jawa—ar < ¢ 2 {ij €N

(ba)

[ (W ATY) — el < § )

o €
ﬂ{l,] eN: |(p}m’ij(uijArxi(de))—(pm’ij(uijA’&(ff)ﬂpu < 5}

. . f Vi )
ﬂ{l,] eN: |(pm,ij(uijArxi(}E ))—aef|PJ < é}'

Then(ayq) is a Cauchy sequence of scalarfNinso their
exists a scalaa € C such thatay,q) — aasb,d — .
For the next step, let & & < 1 be given. Then, we show

that if U = {i,j € N |@mij(uijA"™x) —alPi < 5}, then
UC € 1. Since @mij(uijA X)) — @mij(uijATx), then
their exist a scalabgdy € N such that
- 0
P= {I,j eN: |(pmn,ij(uijArXi(jbodO))—(ﬂnn,ij(uijArx)|le < §}
2

which implies thatP® € I. The numberbydy can be so
chosen together with , we have

Q=@J6N4%m—ﬂm<g}

such thatQ® e I. Since{i,j € N ¢ g (U A7X0%))
Apgao P11 > 6} € 1, then we have a subsBof N such that
S c |, where

Qi bod )

Let u¢ = P N Q° n <, where
U= {i,j € N: |[@m,j(uijA™x) —aPi < 6}, therefore for
eachi, j e U¢ we have

{i,7 €N [@mij (uja7) —alPi < 5

. .
2 {'71 € N2 @i (Ui AXPC)) — @i (U ATX)|PT < §}

. d S
N {I,j eN: |(nmij(uijArxi(jb° 0))—ab0do|Pu < §}

ﬂ{i,j eN: |abodo —aPi < %}
Hence the resulBV/ (u, p,A",) C oIl (u,p,A") follows.
This completes the proof.

Theorem 2.5.The spaceBV,.(u, p,A") is nowhere dense
subset 0bl!, (u, p,A").

Proof. Proof of the result follows from the previous
theorem.

Theorem 2.6. The inclusions
ZC(I)(U7 padr) - ZBVé(U, paArv) - 2|l|30(u7 padr) are proper.

Proof. Letx = (xj) € 2C}(u, p,A"). Then, we have{i,j €
N juijA x5 |Pi > e} € 1. Since
2Co C 2BV, X = (Xij) € 2BV, (u, p,A") implies
{i,j €N [@miij(ujA"x)| P > e} el.
Now let

A = {i,j eN: |uijArXij|pij < 8},

Po={i,] € N: |@mij (AP < e}
be such thaf, A5 € |. As
2l (U, p,A") = {x = (%ij)  sup|ujATx; [P < °°} el,
taking supremum over j we g”etA‘i C AS. Hence
2Co(U, p,A") C 2BV (U, p,A") C 2liy(u, p,A").
Next we show that the inclusion is proper. First for

Ch(u,p,A) < BV(up,AT). Consider
X € ,BV)(u, p,A"), then by the definition

zBVé(U, var)
= {x: (%) EW: {i,j €N | @mij (Ui A™X) — L|Pi 28} el,
for somel € (C,}
we have

@m.ij (UijA™X) = tim;ij (UijA"X) = tm-1)(n-1),ij (UijAX),

where
tm,ij (Ui A"X) =
UijAerj + UijArXU(ij) + UijArxaz(ij) + ...+ UijArXGmn(iD
mn '
Therefore
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tmij (Ui A"X) = Em-1)(n-1.ij (U A7)
Uij AT + Ui A Xg (i) + UijA X2

mn
oy UiAemi))
mn
AT + UijA g (i) + UijA Xg2i))
(m—1)(n—1)
UijA™X (m-1)(n-1) i
ok z oL
(m—1)(n—1)
(M= 1) (n— D) (UATX Ui A (i) + Ui A Xz
mn(m—1)(n—1)
o D)
mn(m—1)(n—1)
MN(UiA™j + Ui A g (i) + UijA g2
mn(m—1)(n— 1)
UijA"X (m-1)(n-1) i
ok z L

mn(m—1)(n—1) "
On solving we get
mnu;i A" Xgmn i
@i (U AX) = ez
(L—m—n)(UjA™j + UijA Xg (i) + Ui A X2 )
mn(m—1)(n—1)

UijArXUmn(ij)
mn(m—1)(n—1)
As o is a translation map, that &(n) = n+ 1, we have

+.+

mNU; A" 4 (ien
Gimij (UjA) = Tt T
(L=m—n)(UijA™j + Uij A 1 1)(j+1)
mn(m—1)(n—1)
+....+UijArX(i+m)(J‘+n)
mn(m—1)(n—1)
taking limiti, j — o, we have

lim qqm“(uijA'x)

(i,j) o

= lim
(i,j)—o0

X(itm)(j4+n) + (1 —m—n)(uijA ]
+UijArX(i+l>(j+1) + ... +UijArX(i+m><j+n))
(mn(m—1)(n—1))"2],

[(mnuijA'

L(mn(m—1)(n—1))= lim

(i,j) o

(1—m-— n)(uijA'xij

[mnuijArx<i+m)(j+n>+

+ UijArX(i+1)(j+1) + ...+ UijArX(i+m)(j+n)):| .

Since mn,L # 0O, therefore ' _I)im @m,ij(ujA™x) # 0
i,j)—o0

which implies thatx ¢ ,Cl\(u,p,A"). Hence we get that
the inclusion is proper. FoBV) (u, p,A") C oIk (u, p,A"),
the result of this part follows from the proof of the
Theorem (2.4). This completes the proof.

Theorem 2.7. The inclusions
2C' (U, p,A") C 2BV (U, p,A") C 2l¢,(u, p,A) are proper.
Proof. Let x = (xj) € 2C'(u,p,A"). Then, we have
{i,j € N : |ujd"™%j — L[Pi > s} € |. Since
2C(|)(u7 paAr) C ZBV(|T(U7 paAr) C 2|<|>o(u7 paAr)a which
impliesx = (xj) € 2BV} (u,p,A") then
{17 €N U @y ()~ LI > e €.
Now let
B1 = {i,j eN: |UijArXij _|_|Pij < 8},

By = {i,j €N |y (UjATX) — L|PI < s}
be such that B, B < I As
zllo(u, p,A") = {x = () : s.up|uijAfxij|Pij < oo} el,

i]
taking lim sup overi,j we get B C B§. Hence
2C' (U, p,A") C 2BV (U, p,A") C 2li,(u, p,A"). Next we
show that the inclusion is proper. First for
2C|(u7 paAr) - ZBVé(U, paAr)' Let
x=(Xj) € 2BV} (u, p,A"), then by the definition
ZBV(;(ua paAr)
= {x: (Xij) ew: {i,j €N |@m;j(uijA"™x) —L[Pi > e} el,
for someL € (C}.
We have|@m,jj(uijA"x) — L|Pi > . We say that the
| — Ii_m(qqm,ij(uijArx)) =L.
i]

Now considering the case wh@pmjj (uijA'™x) —L|Pi < €.
Then

{Itmij (Ui§A"X) = tm-1)(n-1),i§ (UijATX) — L[PT < 8}
whenm,n = 0, then we have
@,ij (UijAX) =t (UijA™X) = Ui A"
Therefore, we get
luijA"™; —LIPT < g, Vi, j eN.
Hence,
x¢ oC' (U, p,AT) = {i,j eN: |ujATx; — L|Pi > e} cl.

Hence, the inclusion is proper. For
2BV (u,p,A") C oll(u,p,A"), the result of this part
follows from the proof of the Theorem (2.4). This
completes the proof.
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