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1 Introduction

This paper gives a class of weak periodic ground states for an Ising model with com-
peting interactions and spin values ±1, on a Cayley tree of order k ≥ 1. One of the key
problems related to the spin models is the description of the set of Gibbs measures. This
problem has a good connection with the problem of the description the set of ground states.
Because the phase diagram of Gibbs measures (see [6, 12] for details) is close to the phase
diagram of the ground states for sufficiently small temperatures. Usually, more simple and
interesting ground states are periodic ones. But for some set of parameters such a ground
state does not exist. In such a case it would be necessary to find some a weak periodic
ground states.

The Ising model, with two values of spin ±1 was considered in [9, 13] and became
actively researched in the 1990’s and afterwards (see for example [1–5, 7, 8, 10, 11]).

The Cayley tree Γk (See [1]) of order k ≥ 1 is an infinite tree, i.e., a graph without
cycles, from each vertex of which exactly k + 1 edges issue. Let Γk = (V, L, i) , where
V is the set of vertices of Γk, L is the set of edges of Γk and i is the incidence function
associating each edge l ∈ L with its endpoints x, y ∈ V . If i(l) = {x, y}, then x and y are
called nearest neighboring vertices, and we write l = 〈x, y〉.
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The distance d(x, y), x, y ∈ V on the Cayley tree is defined by the formula

d(x, y)=min
{

d : ∃x= x0, x1, . . . , xd−1, xd = y∈ V such that 〈x0, x1〉, . . . , 〈xd−1, xd〉
}

.

For the fixed x0 ∈ V we set

Wn = {x ∈ V : ∂(x, x0) = n},
Vn = {x ∈ V : d(x, x0) ≤ n}, (1.1)

Ln = {l = 〈x, y〉 ∈ L : x, y ∈ Vn},

and we denote |x| = d(x, x0), x ∈ V .
A collection of the pairs 〈x, x1〉, . . . , 〈xd−1, y〉 is called a path from x to y and we write

π(x, y) . We write x < y if the path from x0 to y goes through x.
It is known (see [5]) that there exists a one-to-one correspondence between the set V of

vertices of the Cayley tree of order k ≥ 1 and the group Gk of the free products of k + 1
cyclic groups {e, ai}, i = 1, . . . , k + 1 of the second order (i.e. a2

i = e, a−1
i = ai) with

generators a1, a2, . . . , ak+1.
Denote S(x) the set of “direct successors” of x ∈ Gk. Let S1(x) be denotes the set

of all nearest neighboring vertices of x ∈ Gk, i.e. S1(x) = {y ∈ Gk : 〈x, y〉} and
x↓ = S1(x) \ S(x). (see Figure 1.1).

Figure 1.1

2 The Model

Here we shall give main definitions and facts about the model which we are going
to study (see [11] for details). Consider models where the spin takes values in the set
Φ = {−1, 1}. For A ⊆ V a spin configuration σA on A is defined as a function x ∈
A → σA(x) ∈ Φ; the set of all configurations coincides with ΩA = ΦA. Denote Ω = ΩV

and σ = σV . Also put −σA = {−σA(x), x ∈ A}. Define a periodic configuration as a
configuration σ ∈ Ω which is invariant under a subgroup of shifts G∗k ⊂ Gk of finite index.
More precisely, a configuration σ ∈ Ω is called G∗k -periodic if σ(yx) = σ(x) for any
x ∈ Gk and y ∈ G∗k.

For a given periodic configuration the index of the subgroup is called the period of
the configuration. A configuration that is invariant with respect to all shifts is called
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translational-invariant. Let Gk/G∗k = {H1, . . . ,Hr} factor group, where G∗k is a nor-
mal subgroup of index r ≥ 1. Configuration σ(x), x ∈ V is called G∗k weak periodic, if
σ(x) = σij for x ∈ Hi, x↓ ∈ Hj , ∀x ∈ Gk.

The Hamiltonian of the Ising model with competing interactions has the form

H(σ) = J1

∑

〈x,y〉
σ(x)σ(y) + J2

∑

x,y∈V : d(x,y)=2

σ(x)σ(y), (2.1)

where J1, J2 ∈ R are coupling constants and σ ∈ Ω.
For a pair of configurations σ and ϕ that coincide almost everywhere, i.e. everywhere

except for a finite number of positions, we consider a relative Hamiltonian H(σ, ϕ), the
difference between the energies of the configurations σ, ϕ of the form

H(σ, ϕ) = J1

∑

〈x,y〉
(σ(x)σ(y)− ϕ(x)ϕ(y)) + J2

∑

x,y∈V :d(x,y)=2

(σ(x)σ(y)− ϕ(x)ϕ(y)),

(2.2)
where J = (J1, J2) ∈ R2 is an arbitrary fixed parameter.

Let M be the set of unit balls with vertices in V . We call the restriction of a configura-
tion σ to the ball b ∈ M a bounded configuration σb.

Define the energy of a ball b for configuration σ by

U(σb) ≡ U(σb, J) =
1
2
J1

∑

〈x,y〉, x,y∈b

σ(x)σ(y) + J2

∑

x,y∈b: d(x,y)=2

σ(x)σ(y), (2.3)

where J = (J1, J2) ∈ R2.

We shall say that two bounded configurations σb and σ′b′ belong to the same class if
U(σb) = U(σ′b′) and we write σ′b′ ∼ σb.

For any set A we denote by |A| the number of elements in A.

Lemma 2.1 ([11]). 1) For any configuration σb we have

U(σb) ∈ {U0, U1, . . . , Uk+1},

Ui =
(

k + 1
2

− i

)
J1 +

(
k(k + 1)

2
+ 2i(i− k − 1)

)
J2, i = 0, 1, . . . , k + 1. (2.4)

2) Let Ci = Ωi ∪ Ω−i , i = 0, . . . , k + 1, where

Ωi =
{
σb : σb(cb) = +1, |{x ∈ b \ {cb} : σb(x) = −1}| = i

}
,

Ω−i =
{− σb = {−σb(x), x ∈ b} : σb ∈ Ωi

}
,

and let cb be the center of the ball b. Then for σb ∈ Ci we have U(σb) = Ui.

3) The class Ci contains
2(k + 1)!

i!(k − i + 1)!
configurations.
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Definition 2.1. A configuration ϕ is called a ground state for the relative Hamiltonian H

if
U(ϕb) = min{U0, U1, . . . , Uk+1}, for any b ∈ M. (2.5)

We set
Ui(J) = U(σb, J), if σb ∈ Ci, i = 0, 1, . . . , k + 1.

The quantity Ui(J) is a linear function of the parameter J ∈ R2. For every fixed m =
0, 1, . . . , k + 1 we denote

Am = {J ∈ R2 : Um(J) = min{U0(J), U1(J), . . . , Uk+1(J)}}. (2.6)

It is easy to check that

A0 = {J ∈ R2 : J1 ≤ 0; J1 + 2kJ2 ≤ 0},

Am = {J ∈ R2 : J2 ≥ 0; 2(2m− k − 2)J2 ≤ J1 ≤ 2(2m− k)J2}, m = 1, 2, . . . , k,

Ak+1 = {J ∈ R2 : J1 ≥ 0; J1 − 2kJ2 ≥ 0},
and R2 = ∪k+1

i=0 Ai.

For any Ai and Aj with i 6= j, we have

Ai∩Aj =





{J : J1 = 2(2i− k)J2, J2 ≥ 0} if j = i + 1, i = 0, 1, . . . , k,

(0, 0) if 1 < |i− j| < k + 1,

{J : J1 = 0, J2 ≤ 0} if |i− j| = k + 1.

(2.7)

We denote

B = A0 ∩Ak+1, Bi = Ai ∩Ai+1, i = 0, . . . , k,

Ã0 = A0 \ (B ∪B0), Ãk+1 = Ak+1 \ (B ∪Bk),

Ãi = Ai \ (Bi−1 ∪Bi), i = 1, . . . , k,

and for fixed J ∈ R2 we denote

NJ (σb) = |{j : σb ∈ Cj}|.

We let GS(H) denote the set of all ground states of the relative Hamiltonian H (see (2.3)).
For any σ = {σ(x), x ∈ V } ∈ Ω we denote σ = −σ = {−σ(x), x ∈ V }.

In [11] the set of periodic ground states for the model (1.1) is described, i.e., the fol-
lowing is proved:

Theorem 2.1. (i) If J = (0, 0) then GS(H) = Ω.
(ii) If J ∈ Ãi, i = 0, . . . , k + 1 then

GS(H) = {σ(i), σ(i)}.
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(iii) If J ∈ Bi \ {(0, 0)}, i = 0, . . . , k then

GS(H) = {σ(i), σ(i), σ(i+1), σ(i+1)} ∪ Si,

where Si contains at least a countable subset of non periodic ground states.
(iv) If J ∈ B \ {(0, 0)}, then

GS(H) = {σ(0), σ(0), σ(k+1), σ(k+1)}.

Here σ(i), σ(i), i = 0, . . . , k + 1 are periodic ground states such that on any b ∈ M

the bounded configurations σ
(i)
b , σ

(i)
b ∈ Ci, i.e. σ(0), σ(0) are translational - invariant and

σ(i), σ(i), i = 1, . . . , k + 1 are periodic with period 2.

Remark 2.1. We note, that weak periodic (non periodic) ground states belong to the set
Si i.e. for parameters J1 = 2(2i− k)J2, J2 6= 0 .

In this paper we explicitly describe the weak periodic (with respect to normal subgroups
of index 2 and 4) ground states.

3 Weak Periodic Ground States

Case 1: index 2.

Let A ⊂ {1, 2, . . . , k + 1}, HA = {x ∈ Gk :
∑

j∈A wj(x)−even}, where wj(x)-is
the number of letters aj in the word x. It is obvious that HA is a normal subgroup of index
two [5].

Let Gk/HA = {HA, Gk \ HA} be the quotient group. We set H0 = HA,H1 =
Gk \HA.

The HA - weak periodic configurations are of the form

(1) ϕ1(x)=±





+1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1,

(2) ϕ2(x)=±





−1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1,

(3) ϕ3(x)=±





+1, x↓ ∈ H0 x ∈ H0

−1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1,

(4) ϕ4(x)=±





+1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

−1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1,

(5) ϕ5(x)=±





+1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

−1, x↓ ∈ H1 x ∈ H1,

(6) ϕ6(x)=±





−1, x↓ ∈ H0 x ∈ H0

−1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1,
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(7) ϕ7(x)=±





−1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

−1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1,

(8) ϕ8(x)=±





+1, x↓ ∈ H0 x ∈ H0

−1, x↓ ∈ H0 x ∈ H1

−1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1.

Hence, we must choose weak periodic ground states among these 16 configurations.
The following theorem gives the result.

Theorem 3.1. Let |A| = i, i ∈ {1, 2, . . . , k + 1}
1) If |A| 6= (k + 1)/2 then each HA-weak periodic ground state is a HA- periodic or

translational-invariant i.e. belongs to the set {±ϕ1(x),±ϕ7(x)}.
2) If |A| = (k + 1)/2 then there are at least two two HA - weak periodic (non-

periodic) ground states which are of the form ±ϕ8(x).

Proof. By (2.7) one can see that a configuration φ is a ground state if and only if there is
j ∈ {0, . . . , k} such that φb ∈ Cj ∪Cj+1 for any b ∈ M . Thus we must check this property
for above mentioned configurations.

1) Let

ϕ1(x) =





+1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1.

It is obvious, that HA weak periodic ground states are translational-invariant.
2) Let

ϕ2(x) =





−1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1.

∀b ∈ M we have |{x ∈ S1(cb) : x ∈ H0}| = i, |{x ∈ S1(cb) : x ∈ H1}| = k + 1− i.

Denote A− = {x ∈ S1(x) : ϕb(x) = −1}, A+ = {x ∈ S1(x) : ϕb(x) = +1}, and
ϕi,b = (ϕi)b, i = 1, 2, . . . , 8.

Assume cb ∈ H0. The possible cases are:
a) cb↓ ∈ H0 and ϕ2,b(cb↓) = +1, then

ϕ2,b(cb) = −1 and |A−| = i− 1, |A+| = k + 2− i, ϕ2,b ∈ Ck+2−i.

b) cb↓ ∈ H0 and ϕ2,b(cb↓) = −1, then

ϕ2,b(cb) = −1 and |A−| = i, |A+| = k + 1− i, ϕ2,b ∈ Ck+1−i.

c) cb↓ ∈ H1 and ϕ2,b(cb↓) = +1, then

ϕ2,b(cb) = +1 and |A−| = i, |A+| = k + 1− i, ϕ2,b ∈ Ci.
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If cb ∈ H1 then we have
d) if cb↓ ∈ H0 and ϕ2,b(cb↓) = −1, then

ϕ2,b(cb) = +1 and |A−| = 1, |A+| = k, ϕ2,b ∈ C1.

e) If cb↓ ∈ H0?ϕ2,b(cb↓) = +1, then

ϕ2,b(cb) = +1 and A−| = 0, |A+| = k + 1, ϕ2,b ∈ C0.

By (2.7) we find that Ck+2−i ∩ Ck+1−i ∩ Ci = ∅ if i 6= (k + 1)/2, (k + 2)/2. If i =
(k + 1)/2, from d) and e) we get i = 0 and k = −1, which is impossible. If i = (k + 2)/2,

then i = 1 and k = 0, which also is impossible. Thus, ϕ2(x) is not a ground state.
3) Let

ϕ3(x) =





+1, x↓ ∈ H0 x ∈ H0

−1, x↓ ∈ H0 x ∈ H1

+1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1.

Let cb ∈ H0. We consider several cases:
a) cb↓ ∈ H0 and ϕ3,b(cb↓) = +1, then

ϕ3,b(cb) = +1 and |A−| = k + 1− i, |A+| = i, ϕ3,b ∈ Ck+1−i.

b) cb↓ ∈ H1 and ϕ3,b(cb↓) = +1, then

ϕ3,b(cb) = +1 and |A−| = k − i, |A+| = i + 1, ϕ3,b ∈ Ck−i.

c) cb↓ ∈ H1 and ϕ3,b(cb↓) = −1, then

ϕ3,b(cb) = +1 and |A−| = k + 1− i, |A+| = i, ϕ3,b ∈ Ck+1−i.

Let cb ∈ H1. We have
d) cb↓ ∈ H0 and ϕ3,b(cb↓) = +1, then

ϕ3,b(cb) = −1 and |A−| = 0, |A+| = k + 1, ϕ3,b ∈ Ck+1.

e) cb↓ ∈ H1 and ϕ3,b(cb↓) = −1, then

ϕ3,b(cb) = +1 and |A−| = 1, |A+| = k, ϕ3,b ∈ C1,

f) cb↓ ∈ H1 and ϕ3,b(cb↓) = +1, then

ϕ3,b(cb) = +1 and |A−| = 0, |A+| = k + 1, ϕ3,b ∈ C0.

By (2.7) C0 ∩ C1 ∩ Ck+1 = ∅ if k 6= 0. Thus, ϕ3(x) is not a ground state.
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4) For ϕj(x), j = 4, 5, 6 one similarly can prove that they are not ground states.
5) Consider now

ϕ7(x) =





−1, x↓ ∈ H0 x ∈ H0

+1, x↓ ∈ H0 x ∈ H1

−1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1

=

{
−1, x ∈ H0

+1, x ∈ H1.

Consequently ϕ7(x) is a periodic ground state which is not interesting for us.
6) Consider

ϕ8(x) =





+1, x↓ ∈ H0 x ∈ H0

−1, x↓ ∈ H0 x ∈ H1

−1, x↓ ∈ H1 x ∈ H0

+1, x↓ ∈ H1 x ∈ H1.

Let cb ∈ H0. The possible cases are:

a) cb↓ ∈ H0 and ϕ8,b(cb↓) = +1, then

ϕ8,b(cb) = +1 and |A−| = k + 1− i, |A+| = i, ϕ8,b ∈ Ck+1−i.

b) cb↓ ∈ H0 and ϕ8,b(cb↓) = −1, then

ϕ8,b(cb) = +1 and |A−| = k + 2− i, |A+| = i− 1, ϕ8,b ∈ Ck+2−i.

c) cb↓ ∈ H1 and ϕ8,b(cb↓) = −1, then

ϕ8,b(cb) = −1 and |A−| = k + 1− i, |A+| = i, ϕ8,b ∈ Ci.

d) cb↓ ∈ H1 and ϕ8,b(cb↓) = +1, then

ϕ8,b(cb) = −1 and |A−| = k − i, |A+| = i + 1, ϕ8,b ∈ Ci+1.

For cb ∈ H1 we have
e) cb↓ ∈ H0 and ϕ8,b(cb↓) = +1, then

ϕ8,b(cb) = −1 and |A−| = k − i, |A+| = i + 1, ϕ8,b ∈ Ci+1.

f) cb↓ ∈ H0 and ϕ8,b(cb↓) = −1, then

ϕ8,b(cb) = −1 and |A−| = k + 1− i, |A+| = i, ϕ8,b ∈ Ci.

g) cb↓ ∈ H1 and ϕ8,b(cb↓) = −1, then

ϕ8,b(cb) = +1 and |A−| = k + 2− i, |A+| = i− 1, ϕ8,b ∈ Ck+2−i.



Description of Weak Periodic Ground States of Ising Model 245

h) cb↓ ∈ H1 and ϕ8,b(cb↓) = +1, then

ϕ8,b(cb) = +1 and |A−| = k + 1− i, |A+| = i, ϕ8,b ∈ Ck+1−i.

If {
i 6= k + 1− i,

i + 1 6= k + 2− i,
or

{
i 6= k + 2− i,

i + 1 6= k + 1− i,

We obtain Ci ∩ Ci+1 ∩ Ck+1−i ∩ Ck+2−i = ∅. Only following system has solution

{
i = k + 1− i

i + 1 = k + 2− i
⇒ i =

k + 1
2

.

Thus the configuration ϕ8 is a ground state iff i = (k + 1)/2. The theorem is proved.

Corollary 3.1. If k is a even number then each weak periodic ground state is a periodic
one.

Case 2: index 4.

We take

A ⊂ {1, 2, . . . , k + 1}, HA =
{

x ∈ Gk :
∑

j∈A

wj(x)− even
}

,

G
(2)
k = {x ∈ Gk : |x| − even}, where wj(x) is the number of aj in wordx;

G
(4)
k = HA ∩G

(2)
k − normal subgroup of index 4 [5],

Gk/G
(4)
k = {H0,H1,H2,H3},

where

H0 =
{

x ∈ Gk :
∑

j∈A

wj(x)− even, |x| − even
}

,

H1 =
{

x ∈ Gk :
∑

j∈A

wj(x)− odd, |x| − even
}

,

H2 =
{

x ∈ Gk :
∑

j∈A

wj(x)− even, |x| − odd
}

,

H3 =
{

x ∈ Gk :
∑

j∈A

wj(x)− odd, |x| − odd
}

.

The G
(4)
k −weak periodic configuration is of the form
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ϕ(x) =





a13, x↓ ∈ H1 x ∈ H3,

a31, x↓ ∈ H3 x ∈ H1,

a03, x↓ ∈ H0 x ∈ H3,

a30, x↓ ∈ H3 x ∈ H0,

a21, x↓ ∈ H2 x ∈ H1,

a12, x↓ ∈ H1 x ∈ H2,

a02, x↓ ∈ H0 x ∈ H2,

a20, x↓ ∈ H2 x ∈ H0,

(3.1)

where apq = ±1 and p, q ∈ {0, 1, 2, 3}.
Thus we have to determine which of them are ground states.

Theorem 3.2. Let |A| = i, i ∈ {1, 2, . . . , k + 1}.
i) If i 6= (k + 1)/2 then each G

(4)
k -weak periodic ground state is a periodic.

ii) If i = (k + 1)/2, then there are periodic and four G
(4)
k -weak periodic ground states:

±ϕ′(x) =





+1, x↓ ∈ H1 x ∈ H3

+1, x↓ ∈ H3 x ∈ H1

−1, x↓ ∈ H0 x ∈ H3

−1, x↓ ∈ H3 x ∈ H0

−1, x↓ ∈ H2 x ∈ H1

−1, x↓ ∈ H1 x ∈ H2

+1, x↓ ∈ H0 x ∈ H2

+1, x↓ ∈ H2 x ∈ H0,

and ±ϕ′′(x) =





−1, x↓ ∈ H1 x ∈ H3

+1, x↓ ∈ H3 x ∈ H1

+1, x↓ ∈ H0 x ∈ H3

−1, x↓ ∈ H3 x ∈ H0

−1, x↓ ∈ H2 x ∈ H1

+1, x↓ ∈ H1 x ∈ H2

−1, x↓ ∈ H0 x ∈ H2

+1, x↓ ∈ H2 x ∈ H0.

Remark 3.1.
a) Using Theorems 1-3 we can give the phase diagram of the ground states for any k. For
k = 3 it is shown in Figure 3.1.

Figure 3.1: Only on the line J1 = 2J2 there are weak periodic ground states.

b) By Remark 2.1 and our theorems we get J1 = 2J2, J2 > 0. Consequently, for ordinary
Ising model (i.e. J2 = 0) there is no weak periodic ground state. Since for J1 = 2J2 = 0
the Hamiltonian equals to zero.
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c) For cases of index other than 2 and 4 the description of weak periodic ground states
becames a technically difficult problem.
d) We note that any normal subgroup of index two has a form HA for a suitable A ⊂
{1, 2, . . . , k+1}. But there are many normal subgroups of index four which do not coincide
with G

(4)
k , for example, HA ∩HB for A, B & {1, 2, . . . , k + 1} with A 6= B is a normal

subgroup of index four but it does not coincide with G
(4)
k .

Proof of Theorem 3.2. Consider several cases of configurations (3.1).

1) Let apq = +1(apq = −1), ∀p, q ∈ {0, 1, 2, 3}. Obviously, G
(4)
k -weak periodic

ground states are translation invariant.
2) ∀b ∈ M we have

|{x ∈ S1(cb) : cb ∈ H0, x ∈ H3}| = i, |{x ∈ S1(cb) : cb ∈ H0, x ∈ H2}| = k + 1− i,

|{x ∈ S1(cb) : cb ∈ H1, x ∈ H2}| = i, |{x ∈ S1(cb) : cb ∈ H1, x ∈ H3}| = k + 1− i,

|{x ∈ S1(cb) : cb ∈ H2, x ∈ H1}| = i, |{x ∈ S1(cb) : cb ∈ H2, x ∈ H0}| = k + 1− i,

|{x ∈ S1(cb) : cb ∈ H3, x ∈ H0}| = i, |{x ∈ S1(cb) : cb ∈ H3, x ∈ H1}| = k + 1− i.

We denote A− = {x ∈ S1(x) : ϕb(x) = −1}, A+ = {x ∈ S1(x) : ϕb(x) = +1}.
and we put a13 = −1, and apq = +1 for others. Assume cb ∈ H0, then the following cases
are possible:

a) cb↓ ∈ H3 and ϕb(cb↓) = a13 = −1, then

ϕb(cb) = a30 = +1, |A−| = 1, |A+| = k.

Consequently ϕb ∈ C1.
b) cb↓ ∈ H3 and ϕb(cb↓) = a03 = +1, then

ϕb(cb) = a30 = +1, |A−| = 0, ; |A+| = k + 1.

Thus ϕb ∈ C0.

If cb ∈ H3, then we have
c) cb↓ ∈ H1 and ϕb(cb↓) = a31 = +1, then

ϕb(cb) = a13 = −1, |A−| = 0, |A+| = k + 1.

Consequently ϕb ∈ Ck+1.

By (2.7) one can see that a configuration φ is a ground state if and only if there is
j ∈ {0, . . . , k} such that φb ∈ Cj ∪ Cj+1 for any b ∈ M . Thus it is enough to check this
property for above mentioned configurations. We have C0∩C1∩Ck+1 6= ∅ for any k ≥ 1.

Thus ϕ is not a ground state. Similarly one can prove that if p0, q0, ap0q0 = −1 and others
apq = +1, then the configuration is not a ground state.
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3) Let a13 = a31 = −1 and others apq = +1.
If cb ∈ H0, we have

a) cb↓ ∈ H3 and ϕb(cb↓) = a13 = −1, then

ϕb(cb) = a30 = +1, |A−| = 1, |A+| = k.

Thus ϕb ∈ C1.

b) cb↓ ∈ H3 and ϕb(cb↓) = a03 = +1, then

ϕb(cb) = a30 = +1, |A−| = 0, |A+| = k + 1.

Consequently ϕb ∈ C0.

If cb ∈ H1 then
c) cb↓ ∈ H3 and ϕb(cb↓) = a03 = +1, then

ϕb(cb) = a31 = −1, |A−| = k − i, |A+| = i + 1.

Thus ϕb ∈ Ci+1.

d) cb↓ ∈ H3 and ϕb(cb↓) = a13 = −1, then

ϕb(cb) = a31 = −1, |A−| = k − i + 1, |A+| = i.

Consequently ϕb ∈ Ci.

e) cb↓ ∈ H2 and ϕb(cb↓) = a12 = +1, then

ϕb(cb) = a21 = +1, |A−| = k − i + 1, |A+| = i.

Thus ϕb ∈ Ck−i+1.

By (2.7) C0 ∩C1 ∩Ci ∩Ci+1 ∩Ck+1 6= ∅ for all k ≥ 1. Thus ϕ is not a ground state.
All other cases can be checked similarly.

Now we shall prove (ii) for configurations ϕ′. Let a13 = a31 = a02 = a20 = −1, and
apq = +1 for others. If cb ∈ H0, we consider the cases:

a) cb↓ ∈ H3 and ϕ′b(cb↓) = a13 = −1, then

ϕ′b(cb) = a30 = +1, |A−| = k + 2− i, |A+| = i− 1.

Thus ϕ′b ∈ Ck+2−i.

b) cb↓ ∈ H3 and ϕ′b(cb↓) = a03 = +1, thus

ϕ′b(cb) = a30 = +1, |A−| = k + 1− i, |A+| = i.

Thus ϕ′b ∈ Ck+1−i.

c) cb↓ ∈ H2 and ϕ′b(cb↓) = a02 = −1, then

ϕ′b(cb) = a20 = −1, |A−| = k + 1− i, |A+| = i.
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Consequently ϕ′b ∈ Ci.

d) cb↓ ∈ H2 and ϕ′b(cb↓) = a12 = +1, then

ϕ′b(cb) = a20 = −1, |A−| = k − i, |A+| = i + 1.

Consequently ϕ′b ∈ Ci+1.

Assume cb ∈ H1, then
a1) cb↓ ∈ H3 and ϕ′b(cb↓) = a03 = +1, then

ϕ′b(cb) = a31 = −1, |A−| = k − i, |A+| = i + 1.

Consequently ϕ′b ∈ Ci+1,

b1) cb↓ ∈ H3 and ϕ′b(cb↓) = a13 = −1, then

ϕ′b(cb) = a31 = −1, |A−| = k + 1− i, |A+| = i.

Consequently ϕ′b ∈ Ci.

c1) cb↓ ∈ H2 and ϕ′b(cb↓) = a12 = +1, then

ϕ′b(cb) = a21 = +1, |A−| = k + 1− i, |A+| = i.

Thus ϕ′b ∈ Ck+1−i.

d1) cb↓ ∈ H2 and ϕ′b(cb↓) = a02 = −1, then

ϕ′b(cb) = a21 = +1, |A−| = k + 2− i, |A+| = i− 1.

Thus ϕ′b ∈ Ck+2−i.

If cb ∈ H2, we consider:
a2) cb↓ ∈ H0 and ϕ′b(cb↓) = a20 = −1, then

ϕ′b(cb) = a02 = −1, |A−| = k + 1− i, |A+| = i.

Thus ϕ′b ∈ Ci.

b2) cb↓ ∈ H0 and ϕ′b(cb↓) = a30 = +1, then

ϕ′b(cb) = a02 = −1, |A−| = k − i, |A+| = i + 1.

Hence ϕ′b ∈ Ci+1.

c2) cb↓ ∈ H1 and ϕ′b(cb↓) = a21 = +1, then

ϕ′b(cb) = a12 = +1, |A−| = k + 1− i, |A+| = i.

Thus ϕ′b ∈ Ck+1−i.

d2) cb↓ ∈ H1 and ϕ′b(cb↓) = a31 = −1, then

ϕ′b(cb) = a12 = +1, |A−| = k + 2− i, |A+| = i− 1.
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Consequently ϕ′b ∈ Ck+2−i.

Suppose cb ∈ H3, then
a3) cb↓ ∈ H0 and ϕ′b(cb↓) = a20 = −1, then

ϕ′b(cb) = a03 = +1, |A−| = k + 2− i, |A+| = i− 1.

Consequently ϕ′b ∈ Ck+2−i.

b3) cb↓ ∈ H0 ? ϕ′b(cb↓) = a30 = +1, then

ϕ′b(cb) = a03 = +1, |A−| = k + 1− i, |A+| = i.

Thus ϕ′b ∈ Ck+1−i.

c3) cb↓ ∈ H1 and ϕ′b(cb↓) = a21 = +1, then

ϕ′b(cb) = a13 = −1, |A−| = k − i, |A+| = i + 1.

Thus ϕ′b ∈ Ci+1.

d3) cb↓ ∈ H1 and ϕ′b(cb↓) = a31 = −1, then

ϕ′b(cb) = a13 = −1, |A−| = k − i + 1, |A+| = i.

Hence ϕ′b ∈ Ci.

If {
i 6= k + 1− i,

i + 1 6= k + 2− i,
or

{
i 6= k + 2− i,

i + 1 6= k + 1− i,

We have Ci ∩ Ci+1 ∩ Ck+1−i ∩ Ck+2−i = ∅. Thus it is easy to see that the configuration
is a ground state iff i = (k + 1)/2. Similarly one can prove that ϕ′′(x) is a ground state iff
i = (k + 1)/2. The theorem is proved. ¤
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