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Abstract: The linear exponential distribution is a very well-knowrstdibution for modeling lifetime data in reliability and mlieal
studies. We introduce in this paper a new four-parameteergéined version of the linear exponential distributioniethis called
Kumaraswamy linear exponential distribution. We providecmprehensive account of the mathematical properties efngw
distributions. In particular, a closed-form expressions the density, cumulative distribution and hazard ratecfiom of the
distribution is given. Also, the;, order moment and moment generating function are derivee rifdximum likelihood estimation of
the unknown parameters is discussed.
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1 Introduction and M otivation

The Linear Exponential distribution LED has many applicas in applied statistics and reliability analysis. Broauwitb
[3], uses the (LED) to describe the service of milk bottles #ratfilled in a dairy, circulated to customers, and returned
empty to the dairy. The Linear exponential model was alsa tiseCarbone et al4] to study the survival pattern of
patients with plasmacytic myeloma. The type-2 censored idaised by BainZ] to discuss the least square estimates of
the parameterg andf and by Pandey et al2f] to study the Bayes estimators @, 3).

The linear exponential distribution is also known as theehinFailure Rate distribution, having exponential and
Rayleigh distributions as special cases, is a very wellkndistribution for modeling lifetime data in reliabilitynal
medical studies. It is also models phenomena with incrgdsiiture rate. However, the LE distribution does not previd
a reasonable parametric fit for modeling phenomenon withedsing, non linear increasing, or non-monotone failure
rates such as the bathtub shape, which are common in firm whability modeling, biological studies, see Lai et al.
[15] and Zhang et al.Zg].

A random variableX is said to have the linear exponential distribution with tparameterd and 6, if it has the
cumulative distribution function
F(xA,0)=1—e @+ x5 01,00, (1)
and the corresponding probability density function (pdfyiven by
f(x,A,0) = (A +0x)e" M2 x~0A,6>0. )

The distribution introduced by Kumaraswam4], also refereed to as the minimax distribution, is not vesyncnon
among statisticians and has been little explored in thealitee, nor its relative interchangeability with the batdribution
has been widely appreciated. We use the trdistribution to denote the Kumaraswamy distribution. d§is given by

F(x,ab) =1—(1—x)°, 0<x<1, (3)
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wherea > 0 andb > 0 are shape parameters, and the probability density functio
f(x,a,b) = abx® 1 (1—x®)°1, )

which can be unimodal, increasing, decreasing or consiepgnding on the parameter values. In a very recent paper,
Jones 13| explored the background and genesis of this distributimsh anore importantly, made clear some similarities
and differences between the beta &hdistributions. However, the beta distribution has thedwihg advantages over
theK distribution: simpler formulae for moments and moment gatiieg function (mgf), a one-parameter sub-family of
symmetric distributions, simpler moment estimation andeneays of generating the distribution by means of physical
processes.

In this note, we combine the works of Kumaraswaniyf][and Cordeiro and de Castr@][to derive some
mathematical properties of a new model, called the Kumaaaswlinear exponentidKLE) distribution, which stems
from the following general construction: & denotes the baseline cumulative function of a random viajahen a
generalized class of distributions can be defined by

F(X)=1-[1-G(x)° (5)

wherea > 0 andb > 0 are two additional shape parameters. Khe G distribution can be used quite effectively even if
the data are censored. Correspondingly, its density fom@idistributions has a very simple form

f(x) = abg(x)G(x)* 1 - G(x)*** (6)

The density family §) has many of the same properties of the class of Ratiéstributions (see Eugene et &@)]), but has
some advantages in terms of tractability, since it does madlve any special function such as the beta function.
Equivalently, as occurs with the be@family of distributions, speciak — G distributions can be generated as follows:
the Ky—normal distribution is obtained by taking(x) in (4) to be the normal cumulative function. Analogously, the
K—Weibull (Cordeiro et alf]), general results for the Kumaraswar@®y-distribution (Nadarajah et aR({]).
Kw-generalized gamma (Pascoa et 2d]], Kw—Birnbaum-Saunders (Saulo et aR5]) Beta-Linear Failure Rate
Distribution and its Applications (see Jafari et &2]) andK,,—Gumbel (Cordeiro et alg]) distributions are obtained by
takingG(x) to be the cdf of the Weibull, generalized gamma, Birnbaumn8ars and Gumbel distributions, respectively,
among several others. Hence, each aw— G distribution can be generated from a specifizdistribution.

A physical interpretation of th& — G distribution given by %) and @) (for a andb positive integers) is as follows.
Suppose a system is made lbfindependent components and that each component is made apndependent

subcomponents. Suppose the system fails if any obtbemponents fails and that each component fails if all ofahe
subcomponents fail. Letj1, Xj2, ..., Xja denote the life times of the subcomponents with injjagomponentj =1,...,

b with common (cdf)G. Let X; denote the lifetime of th§y, componentj =1,...,b and letX denote the lifetime of the

entire system.Then the (cdf) &fis giveb by

P(X <x) =1—P(Xy > X, X2 > X,...,Xp > X)
=1-[PX >X]°P=1—{1—-P(X < x}°
=1-{1-P(X1 <X, X12 < X,..., X2 < X}°
=1-{1-PXu <¥*° =1-{1-G*(x)}".

So, it follows that theK — G distribution given by %) and @) is precisely the time to failure distribution of the entire
system.

The rest of the article is organized as follows. In Sectiow@ define the cumulative, density and hazard functions of the
KLE distribution and some special cases. Quantile functiondiame moments, moment generating function discussed in
Section 3. Section 4 included the order statistics . Finatlgximum likelihood estimation is performed and the obsdrv
information matrix is determined in Section 6. Section AMes applications to real data sets. Section 8 ends witlesom
conclusions.

2 Kumaraswamy Linear Exponential Distribution

In this section,we propose the Kumaraswamy Linear Expaale(iLE) distribution and provide a comprehensive
description of some of its mathematical properties with hiope that it will attract wider applications in reliabiljty
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engineering and in other areas of research.The linear expiah distribution represents only a special case of the
Kumaraswamy linear exponential distribution. By taking tuf

G(xA,0) =1—e @24 x5 01,00,
of linear exponential, the cdf and pdf of the (KLE) distritaut are obtained from Eq$)and 6) as
b
Fae(cab,6) =1 [1- (1-e x84 (7)

and

1
fce(x,a,b,A,0) = {ab(,\ + Ox)e” ) (1— e*(AX+§x2))a

x {1— (1— e*<AX+3X2>)a} bl} . (8)

Figuresl and? illustrates some of the possible shapes of the pdf and cdfeoKLE distribution for selected values of
the parametera, b, A and6, respectively.

o ] o _|
— [V}
A=0.5 and 6=0.4 A=15 and 6=1.8
[oe] o
o | T
<© ] o _|
o —
N o |
o —
N n
[« o 7]
o | o _|
C T T T T C T T T T T 1
0 1 2 3 4 5 6 00 05 10 15 20 25 3.0
o
o ] ©
A=2.5 and 6=2
wn
Nl 0
o
Nl <
Te}
o ™
o
o N
n
o 7] —
o
> | o
° N T T T T N S e E— — —
0.0 0.5 1.0 1.5 2.0 00 01 0.2 03 04 05 0.6

Fig. 1: The pdf’s of various KLE distributions.

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

4 NS P2 F. Merovci, |. Elbatal: A New Generalization of Linear Expartial Distribution:...

o o

o o

© _] © _]

o o

[{e] [{e}

o 7 o 7

N <

o o

N N

S =0.5 and 6=0.4 S A=15 and 6=1.8

o | o |

S T T T T T 7 C TT—T T T T
00 05 10 15 20 25 3.0

o

S

[o0)

@

o

Q

<

o

N

S A=2.5 and 6=2

o

S

T T T T T T T T T T T T T T
00 02 04 06 08 10 12 00 01 02 03 04 05 06

Fig. 2. The cdf’s of various KLE distributions.

The associated hazard (failure) rate function (hrf) is

fkie(x.a,b,A4,0
hKLE(Xa a, b?)\ ’ 6) = 1_K|§EL(E(X a b )\ )e)

ab(A + 6x)e (Ax+2%) (1— e*<AX+§X2>)
= . 9
1- (1—e‘<“+26x2))a ©)

a—1

Figure3illustrates some of the possible shapes of the hazard amofithe KLE distribution for selected values of the
parameters, b, A and@, respectively.
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Fig. 3: The hazard function’s of various KLE distributions.

The following are special cases of tKéE (a,b,A,0):

1.If b= 1 we get the generalized linear failure rate cumulativeithistion ( see Sarhan, A., Kundu, 2€]).
2.1f a=b =1 we get the linear exponential (failure rate) cumulativaribution.

3.If 6 = 0 we get the Kumaraswamy exponential cumulative distritputi

4.1f A = 0 we get the Kumaraswamy generalized Rayleigh cumulatisteiloliition.

5.1f b=1 andA = 0 we get the Kumaraswamy Rayleigh cumulative distribution.

From the above, we see that the Kumaraswamy linear expahdisgiribution generalizes all the distributions menédn
above.

3 Statistical properties
This section is devoted to studying statistical propetfieshe kumaraswamy linear exponential, specifically Quent
function ,median, moments, moment generating function.

3.1 Quantile and Median

Starting with the well known definition of the 1§6- th quantile, which is simply the solution of the following edjiaa,
with respect tokg, 0 < g < 1,
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gx§+/\xq+éln{1—[1—(1—q)%”:0. (10)

= 9
Sincexq is positive, then
A +\//\2—2—§|n{1— [1—(1_q)%”
Xq = ] ; (11)

which completes the proof.
The median can be derived frorhlj be settingg = % . That is, the median is given by the following relation

A +\/A2—2—a@|n{1— [1—(%)%]}

]

M(X) =

3.2 The moments

In this subsection, we derive thg, moments and moment generating functitvix (t)) of the KLE(¢) where
¢ =(a,b,A,0).

Lemma 1: If X hasKLE (¢), then thersy moment ofX, r = 1,2, ... has the following form:

i {555 )

AF(2i+4r+1) 6 (2i+r+2) }
Pr oof:

[)\ (k+1)]2i+f+l [)\ (k+1)]2i+r+2
We start with the well known definition of thg, moment of the random variablewith pdf f(x) given by

[ee]

u =EX") = /xr fLe (X, @)dx
0

- {/”’Xr (A +0xge W8 (1 e BT 1 (1 e xed)T] b—l}

0

ajb—1
Since 0< &= +$%) ~ 1 forx > 0, then by using the binomial series expansiorﬁb# (1— e‘<"x+gx2)) } given by

(e 0t S () (et 2

(@© 2015 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Let®2, No. 1, 1-14 (2015) www.naturalspublishing.com/Journals.asp NS = 7

we get
“r/:abzo(_l)j< ) /xr (A + Ox)g Ax+22)
1= 0
% (1_6—()\x+7x )) (1_6—()\x+7x ))ja} dx
[ —(Ax§) (xS 20D
:A/x()\+6x)e ) (1 0 80) dx, (13)
0
where
S (") (14)
A=abS (—1)i (> ),
JZO ]
Also "
(1-e e de) 20 ( e 1)ew+gx2>k’ (15)
and the series expansionef? (<+1%) is
o 1)) _ [g(kfl)xz] (16)
izo i!

Substituting 15) and (6) into (13), we get

0

IJI{ A /()\ + ex)x2i+re—)\(k+l)xdx
0

A |:)\ ]0X2i+reA(k+l)XdX+ 97X2i+r+le)\ (k+l>XdX]
0

AF(2i4r+1)  OF(2i+r+2)

[/\ (k+ 1)]2i+r+1 [)\ (k+ 1)]2i+r+2

w=3 3 2 u ()T

Lemma 2: If X haskLE (¢), then the moment generating functiblx (t) has the following form

where

which completes the proof .

My (t) = A*

Ar@i+1)  6r+2)
A(k+1) =t} A (k+1) —t]?+2
Proof.

We start with the well known definition of the moment genemgfiunction given by
My (t) = E(&%) = / e (x, @)dx
0
—ab { / &X(A + Bx)e~ WX+
0

< (1-e 0 d) 1 (1)) “} (17)
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Substituting 14) , (15 and (L6) into (17)), we get

|: /XZIe (k+1)— de+ 9/ 2I+l — (A (k+1)—t XdX]
0

Al (2i4+1) or (2i+2)
A(k+1) =t} A (k4 1) —t)2+2

*

which completes the proof.

4 Order statistics

Moments of order statistics play an important role in qyationtrol testing and reliability,where a practitioner deg¢o
predict the failure of future items based on the times of adavly failures. These predictors are often based on moments
of order statistics. We now derive an explicit expressiarttie density function of they, order statistic.n, say fr:n(x),

in a random sample of sizefrom theK LE distribution. To prove they, order statistick., we need the following Lemma.

Lemma 3:
The probability density function of.n, r = 1,2,...,n of Ky-LE distributio is

n—r

where _(n 1) (n r)
i =ai andd; = AN 19
a a an J(nv r) r+ J ( )
Proof:
The pdf ofX;:n, r = 1,2,...,nis given by, David (1981)
_ 1 r—lmq n—r
fr:n(x) - B(ra n—r + 1) [F (Xv ¢)] [1 F(Xa (D)] f(X, ®)

whereF (x,¢) and f(x,¢) are CDF and pdf given byrf and @), respectively. since €& F(x, @) < 1 for x > 0, by using
the binomial series expansion [df— F(x, ¢)]"", given by

~ nr_ ¢ (_qi(NT j
1FogI =3 (") P
we have
)= =TS (1) (”_ r) FOI™I2(x) (20)
' B(r,n—rjtl)gO j
Substituting 7) and @) into (20), we get
frn(X ng;d (0.0 e (%3 bre g, 1. 0). (21)

The coefficientsdj(n,r),j = 1,2,...,n —r do not depend oa,b,A, 6. Thus f;.n(x) is the weighted average of the_E
distribution with different shape parameters.

Theorem (4.1):
Theks, moment of order statistiX; - is

IJr(:l;) = iiliki):”dj (n, r)(_1)i+1+k<br+jl - 1) <ar+j (I -I|(- 1)— 1)

AF(2i+k+1) O (2i+k+2)
[)\(j+1)]2i+k+1 [)\ (k+1)]2i+k+2

(22)
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Proof: The general definition of tHg, moment of order statisti¥;.p, is

u = / X f,n(x.8,b, 7, 6)dx (23)
0
Substituting from 21) into (23), one gets
= god (1) / (%@t j,brj. A, B)x. (24)

Since the integral in24) is thek:, moment ofKy-LE(A, 6,a,,j,br1j), then from @4) with the Lemma (3) we get2Q)
which completes the proof.

5 Estimation and I nference

In this section, we derive the maximum likelihood estimabésthe unknown parameterg = (a,b,A,0) of KLE
distribution based on a complete sample. Let us assume thdtave a simple random sampig, X, ..., X, from
KLE(a,b,A,8). The likelihood function of this sample is

L:_ﬁf(xi,a,b,)\,e). (25)

Substituting from 8) into (25), we get

n

Lzﬂ{ab()mtex (At 3) (1 e M*?’ﬁ)

x [1 (1 e M+ﬂ) }

n L :
— @]+ oxge S (1o e e 4)
=
n

-1

a—1

x I_l [1— (1—e—<M+gz&'2>)a] o (26)

The log-likelihood function for the vector of parametérs- (a,b,A, 8) can be written as

n

=log L = nloga+ nlogb+_ilog()\ +6x) +_lei
+(a—1>_ilog<1—@>
+(b— 1ZIog (1— &)Y (27)

where g
—(Axi+ Exiz)

The log-likelihood can be maximized either directly or bylviag the nonlinear likelihood equations obtained by
differentiating 7). The components of the score vedlén @) are given by

dlogL n 2 :
T = —+zilog(1—e‘)

(1—€%)2log(1—¢€%)
—(b— 121 “d-ep

éa:

(28)
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dlog L
by = £=E+Z\Iog e)?, (29)
_dlogL 2 1 n e"‘x'
ZA((D)_d—/\_zi(/\+6x. zf”a V3 1o
ax(1—er)at
- 1ZW’ -
and
_dlogL 2 Xi N x?
fo="50 _-21 A+ 6x) _izﬁ
N x?(1—eA)at a(bl 1eﬁall
_12 2(1-e4) Zl (1-en)a 1)

We can find the estimates of the unknown parameters by maxiikalimood method by setting these above non-linear
equations28)- (31) to zero and solve them simultaneously.

The Hessian matrix, second partial derivatives of the Ikglihood, is given by

Zaa éab éa)\ éa@
Loa Loo by loe
ralan Lax lre
Loa Lob Lox Lo

faaz—ﬂ—(b_l) n (1—e*’\xi*1/29m2)a(|n (1—e*“i*1/29><42))2
a2 ; (_1+ (1_efo471/29Xi2)a)2
1—e*AXifl/29X42 a|n 1—67)‘Xi*1/29Xi2
o _ii( 1- (1—2—)\Xi§1/29)q2)a )
N xeA%—1/20%2 n

bar = ZW (b— 1)_21(Ai +Bj)
=
(1_67)\x|'71/29x,' ) x e %—1/26x2 (aln (1—e*“i*1/29><4‘2) N 1)
(~1+ehx1/200%) (1 (1 eAx-1/20%)°)
((1_ e—A>q—1/29>q2)a)2|n (1_ e—/\x.-—l/29x.-2) axe ) %i~1/26x?

(1_ (1- e—A>q—1/29>q2)a)2 (1—eAx-1/26x2)

A =—

Bi=—
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X|2e—/\x. 1/29)(. n

(1— e_)‘xi_l/zexi ) Xize—)\xi—l/ZGXiz (aln (1—e_/\xi_1/29xi2) 4 1)
(—1+eA6-1/20%2) (_1+ (1—e—A><a—1/26xa2)a)

((1_ e—)\x.-—1/29x.-2)a)2 In (1_ e—Ax.-—l/zex.-Z) ax 2~ %i—1/26x2

~1/2

Di=-1/2 i
(1— (1— e*/\><ifl/29x42)a) (1_ e—/\xifl/zexi2)
n
lop = 2
N (1_e—)\x.'—l/zexaz)aaxie—)\x.-—1/29x.-2

lry = —
b i; (1—eAx-1/26x2) (1_ (1_efo471/29>q2)a)
(1 e M- 1/29x|) ax‘_ZEf)\xi—l/Zexiz

lhe = 1/2
o Zl e 12047 (1 (1— e An-1/2087)7)

2e—)\x.-—1/26x.-2

n

n
ba=—S (A+6%x)2—(a—1)
=2 2

\ (1_67)\X|‘71/29X|‘ ) ax2e %—1/26%7 (aefoifl/zexi2 14 (1_efoi71/29xi2)a)

(b—1)
i; (_1+E_M_1/29>q2)2(_1+(1—e—/\>Q—1/29>q2)a)2

—1+ e—)\x. 1/29x. )

n Xisefoifl/zsxiZ
lyg=— (a—1) 1/2
16 Z\()\Jrex. Z 1_|_e7)\xifl/29x|'2)2

(1_ o Axi—1/20% ) aXi3e_)‘X‘_1/29X‘2 (ae—/\xi—l/zex.-z 14 (1_e—A>q—1/29>q2)a)

(—1+ e—A>q—1/29>q2)2 (—1+ (1—e—/\><a—1/29><a2)a)2

—(b-1) 211/2

n X2 x4e AX— l/20x|
log = — 2'7 (a—1) le/4 '
G (A +0x)? —1+4erx-1/26%2 )

. (1_ e AX—1/20% ) axte%—1/26%7 (aef)\xifl/29xi2 14 (1_ ef)\x,'fl/29x,'2)a)

b—1)Y 1/4
'; (—1+e*)‘xi*1/29xi2)2(—1—|—(1—e7)\X471/29X4‘2)a)2

We can compute the maximized unrestricted and restricigdikelihood functions to construct the likelihood ratio
(LR) test statistic for testing on some the KLE sub-modets.éxample, we can use the LR test statistic to check whether
the KLE distribution for a given data set is statisticadlyperior to the LE distribution. In any case, hypothesis tests of
the typeHo : 6 = 6y versusHp : 6 # 6y can be performed using a LR test. In this case, the LR tesstatdor testing
Ho versusH; is w = 2(£(8;x) — £(6o; X)), where and 6y are the MLEs undek; andHo, respectively. The statisti®
is asymptotically (as — oo) distributed asxf, wherek is the length of the parameter vectrof interest. The LR test

rejectsHo if w > £, wherexZ, denotes the upper 19 quantile of thex? distribution.

6 Aplication

In this section, we provide a data analysis to see how the nedehworks in practice. This data set is studied by
Abuammoh et al.g], which represent the lifetime in days of 40 patients surfiigfrom leukemia from one of the Ministry
of Health Hospitals in Saudi Arabia.
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Table 1. (Leukemia data) Lifetimes of 40 patients suffering from kemia
115 181 255 418 441 461 516 739 743 789
807 865 924 983 1024 1062 1063 1165 1191 1222
1222 1251 1277 1290 1357 1369 1408 1455 1478 1549
1578 1578 1599 1603 1605 1696 1735 1799 1815 1852

Table 2: The estimated parameters,AlIC, AICC, BIC and K-S of the matieked on data set

Model a b A 0 -LL AIC AICC BIC K-S
LE. - - 9.499.104 2.10° 335.627 675.254 675578 678.631 0.512
KLE 0.083 0.050 0.005 4.10° 313905 63581 636.952 642.565 0.198

In order to compare the two distribution models, we consaieria like —¢, AIC (Akaike information criterion),
AICC (corrected Akaike information criterion) and BIC (Bzsian information criterion) for the data set. The better
distribution corresponds to smalle2¢, AIC,AICC and BIC values:'

2k(k+ 1)

AIC = 2k—2¢,AICC = AIC +
n—-k—1

andBIC = 2¢+ kx«log(n)

wherek is the number of parameters in the statistical moddghe sample size anélis the maximized value of the
log-likelihood function under the considered model.

The LR test statistic to test the hypotheblgsa=b=c=1versuH;:a£1vb#A1vc#1lisw=9.574>7.815=
X3.00s SO We reject the null hypothesis.

Table2 shows parameter MLEs to each one of the three fitted disiwibsifor data set and the values-e2log(L),
AIC and AICC values. The values in Talffeindicate that the KLE is a strong competitor to other digttion used here
for fitting data set.

A P-P plot compares the fitted cdf of the models with the erogiredf of the observed data (Fig).

Ecdf of distances

1.0

0.8

Fn(x)

—— Empirical
— KLE
— LE

0.4

0.2

0.0
|

T T T T T
0 500 1000 1500 2000

Fig. 4. Empirical, fitted KLE and LE cdf of the data set.
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KLE LE

Empirical cdf
Empirical cdf

Fitted Kw-LE Fitted LE

Fig. 5. PP plots for fitted KLE and the LE distributions.

7 Conclusion

Here, we propose a new model, the so-called the Kumaraswaeayr exponential distribution distribution which extend
the linear exponential distribution in the analysis of daith real support. An obvious reason for generalizing addad
distribution is because the generalized form provide<lditgxibility in modelling real data. We derive expansioosthe
moments and for the moment generating function. The estmat parameters is approached by the method of maximum
likelihood, also the information matrix is derived. We cles the likelihood ratio statistic to compare the modelhwit
its baseline model. An application of the KLE distributianreal data show that the new distribution can be used quite
effectively to provide better fits than the LE distribution.
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