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Abstract: The linear exponential distribution is a very well-known distribution for modeling lifetime data in reliability and medical
studies. We introduce in this paper a new four-parameter generalized version of the linear exponential distribution which is called
Kumaraswamy linear exponential distribution. We provide acomprehensive account of the mathematical properties of the new
distributions. In particular, a closed-form expressions for the density, cumulative distribution and hazard rate function of the
distribution is given. Also, therth order moment and moment generating function are derived. The maximum likelihood estimation of
the unknown parameters is discussed.
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1 Introduction and Motivation

The Linear Exponential distribution LED has many applications in applied statistics and reliability analysis. Broadbent
[3], uses the (LED) to describe the service of milk bottles thatare filled in a dairy, circulated to customers, and returned
empty to the dairy. The Linear exponential model was also used by Carbone et al. [4] to study the survival pattern of
patients with plasmacytic myeloma. The type-2 censored data is used by Bain [2] to discuss the least square estimates of
the parametersα andβ and by Pandey et al. [23] to study the Bayes estimators of(α,β ).

The linear exponential distribution is also known as the Linear Failure Rate distribution, having exponential and
Rayleigh distributions as special cases, is a very well-known distribution for modeling lifetime data in reliability and
medical studies. It is also models phenomena with increasing failure rate. However, the LE distribution does not provide
a reasonable parametric fit for modeling phenomenon with decreasing, non linear increasing, or non-monotone failure
rates such as the bathtub shape, which are common in firm ware reliability modeling, biological studies, see Lai et al.
[15] and Zhang et al. [28].

A random variableX is said to have the linear exponential distribution with twoparametersλ andθ , if it has the
cumulative distribution function

F(x,λ ,θ ) = 1− e−(λ x+ θ
2 x2), x > 0,λ ,θ > 0, (1)

and the corresponding probability density function (pdf) is given by

f (x,λ ,θ ) = (λ +θx)e−(λ x+ θ
2 x2), x > 0,λ ,θ > 0. (2)

The distribution introduced by Kumaraswamy [14], also refereed to as the minimax distribution, is not very common
among statisticians and has been little explored in the literature, nor its relative interchangeability with the beta distribution
has been widely appreciated. We use the termK distribution to denote the Kumaraswamy distribution. Its cdf is given by

F(x,a,b) = 1− (1− xa)b , 0< x < 1, (3)
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wherea > 0 andb > 0 are shape parameters, and the probability density function

f (x,a,b) = abxa−1(1− xa)b−1 , (4)

which can be unimodal, increasing, decreasing or constant,depending on the parameter values. In a very recent paper,
Jones [13] explored the background and genesis of this distribution and, more importantly, made clear some similarities
and differences between the beta andK distributions. However, the beta distribution has the following advantages over
theK distribution: simpler formulae for moments and moment generating function (mgf), a one-parameter sub-family of
symmetric distributions, simpler moment estimation and more ways of generating the distribution by means of physical
processes.

In this note, we combine the works of Kumaraswamy [14] and Cordeiro and de Castro [8] to derive some
mathematical properties of a new model, called the Kumaraswamy linear exponential(KLE) distribution, which stems
from the following general construction: ifG denotes the baseline cumulative function of a random variable, then a
generalized class of distributions can be defined by

F(x) = 1− [1−G(x)a]b (5)

wherea > 0 andb > 0 are two additional shape parameters. TheK −G distribution can be used quite effectively even if
the data are censored. Correspondingly, its density function is distributions has a very simple form

f (x) = abg(x)G(x)a−1 [1−G(x)a]b−1 (6)

The density family (6) has many of the same properties of the class of beta-G distributions (see Eugene et al. [9]), but has
some advantages in terms of tractability, since it does not involve any special function such as the beta function.
Equivalently, as occurs with the beta-G family of distributions, specialK −G distributions can be generated as follows:
the Kw−normal distribution is obtained by takingG(x) in (4) to be the normal cumulative function. Analogously, the
K−Weibull (Cordeiro et al.[7]), general results for the Kumaraswamy-G distribution (Nadarajah et al.[20]).
Kw-generalized gamma (Pascoa et al.[22]), Kw−Birnbaum-Saunders (Saulo et al. [25]) Beta-Linear Failure Rate
Distribution and its Applications (see Jafari et al.[12]) andKw−Gumbel (Cordeiro et al. [8]) distributions are obtained by
takingG(x) to be the cdf of the Weibull, generalized gamma, Birnbaum-Saunders and Gumbel distributions, respectively,
among several others. Hence, each newKw−G distribution can be generated from a specifiedG distribution.

A physical interpretation of theK −G distribution given by (5) and (6) (for a and b positive integers) is as follows.
Suppose a system is made ofb independent components and that each component is made up ofa independent
subcomponents. Suppose the system fails if any of theb components fails and that each component fails if all of thea
subcomponents fail. LetX j1,X j2, . . . ,X ja denote the life times of the subcomponents with in thejth component,j = 1, ...,
b with common (cdf)G. Let X j denote the lifetime of thejth component,j = 1, . . . ,b and letX denote the lifetime of the
entire system.Then the (cdf) ofX is giveb by

P(X ≤ x) = 1−P(X1 > x,X2 > x, ...,Xb > x)

= 1− [P(X1 > x)]b = 1−{1−P(X1 ≤ x}b

= 1−{1−P(X11≤ x,X12 ≤ x, . . . ,X1a ≤ x}b

= 1−{1−P [X11 ≤ x]a}b = 1−{1−Ga(x)}b .

So, it follows that theK −G distribution given by (5) and (6) is precisely the time to failure distribution of the entire
system.

The rest of the article is organized as follows. In Section 2,we define the cumulative, density and hazard functions of the
KLE distribution and some special cases. Quantile function , median, moments, moment generating function discussed in
Section 3. Section 4 included the order statistics . Finally, maximum likelihood estimation is performed and the observed
information matrix is determined in Section 6. Section 7 provides applications to real data sets. Section 8 ends with some
conclusions.

2 Kumaraswamy Linear Exponential Distribution

In this section,we propose the Kumaraswamy Linear Exponential (KLE) distribution and provide a comprehensive
description of some of its mathematical properties with thehope that it will attract wider applications in reliability,
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engineering and in other areas of research.The linear exponential distribution represents only a special case of the
Kumaraswamy linear exponential distribution. By taking the cdf

G(x,λ ,θ ) = 1− e−(λ x+ θ
2 x2), x > 0,λ ,θ > 0,

of linear exponential, the cdf and pdf of the (KLE) distribution are obtained from Eqs.(5) and (6) as

FKLE(x,a,b,λ ,θ ) = 1−
[

1−
(

1− e−(λ x+ θ
2 x2)

)a]b
, (7)

and

fKLE(x,a,b,λ ,θ ) =
{

ab(λ +θx)e−(λ x+ θ
2 x2)

(

1− e−(λ x+ θ
2 x2)

)a−1

×
[

1−
(

1− e−(λ x+ θ
2 x2)

)a]b−1
}

. (8)

Figures1 and2 illustrates some of the possible shapes of the pdf and cdf of the KLE distribution for selected values of
the parametersa,b,λ andθ , respectively.

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

λ=0.5   and θ=0.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

λ=1.5   and θ=1.8

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

λ=2.5   and θ=2

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
1

2
3

4
5

6

λ=5   and θ=8

Fig. 1: The pdf’s of various KLE distributions.
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Fig. 2: The cdf’s of various KLE distributions.

The associated hazard (failure) rate function (hrf) is

hKLE(x,a,b,λ ,θ ) =
fKLE (x,a,b,λ ,θ )

1−FKLE(x,a,b,λ ,θ )

=
ab(λ +θx)e−(λ x+ θ

2 x2)
(

1− e−(λ x+ θ
2 x2)

)a−1

1−
(

1− e−(λ x+ θ
2 x2)

)a . (9)

Figure3 illustrates some of the possible shapes of the hazard function of the KLE distribution for selected values of the
parametersa,b,λ andθ , respectively.
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Fig. 3: The hazard function’s of various KLE distributions.

The following are special cases of theKLE (a,b,λ ,θ ) :

1.If b = 1 we get the generalized linear failure rate cumulative distribution ( see Sarhan, A., Kundu, D. [26]).
2.If a = b = 1 we get the linear exponential (failure rate) cumulative distribution.
3.If θ = 0 we get the Kumaraswamy exponential cumulative distribution.
4.If λ = 0 we get the Kumaraswamy generalized Rayleigh cumulative distribution.
5.If b = 1 andλ = 0 we get the Kumaraswamy Rayleigh cumulative distribution.

From the above, we see that the Kumaraswamy linear exponential distribution generalizes all the distributions mentioned
above.

3 Statistical properties

This section is devoted to studying statistical propertiesfor the kumaraswamy linear exponential, specifically Quantile
function ,median, moments, moment generating function.

3.1 Quantile and Median

Starting with the well known definition of the 100q− th quantile, which is simply the solution of the following equation,
with respect toxq, 0< q < 1,

q = P(X ≤ xq) = F(xq) = 1−
[

1−
(

1− e−(λ xq+
θ
2 x2

q)
)a]b

(1− q)
1
b = 1−

(

1− e−(λ xq+
θ
2 x2)

)a

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


6 F. Merovci, I. Elbatal: A New Generalization of Linear Exponential Distribution:...

1−
{

1− (1− q)
1
b

} 1
a
= e−(λ xq+

θ
2 x2

q)

−λ xq −
θ
2

x2
q = ln

{

1−
[

1− (1− q)
1
b

]} 1
a
,

which finally produces the following equation

θ
2

x2
q +λ xq +

1
a

ln
{

1−
[

1− (1− q)
1
b

]}

= 0. (10)

Solving equation (10) with respect toxq, we get

xq =

−λ ±

√

λ 2− 2θ
a ln

{

1−
[

1− (1− q)
1
b

]}

θ

Sincexq is positive, then

xq =

−λ +

√

λ 2− 2θ
a ln

{

1−
[

1− (1− q)
1
b

]}

θ
, (11)

which completes the proof.
The median can be derived from (11) be settingq = 1

2 . That is, the median is given by the following relation

M(X) =

−λ +

√

λ 2− 2θ
a ln

{

1−
[

1− (1
2)

1
b

]}

θ

3.2 The moments

In this subsection, we derive therth moments and moment generating function(MX (t)) of the KLE(ϕ) where
ϕ = (a,b,λ ,θ ).

Lemma 1: If X hasKLE (ϕ), then therth moment ofX , r = 1,2, ... has the following form:

µ ′
r =

{

∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k
(

b−1
j

)(

a( j+1)−1
k

)

×

[

λΓ (2i+ r+1)

[λ (k+1)]2i+r+1 +
θΓ (2i+ r+2)

[λ (k+1)]2i+r+2

]}

.

Proof:
We start with the well known definition of therth moment of the random variableX with pdf f (x) given by

µ ′
r = E(X r) =

∞
∫

0

xr fKLE(x,ϕ)dx

= ab







∞
∫

0

xr(λ +θx)e−(λ x+ θ
2 x2)

(

1− e−(λ x+ θ
2 x2)

)a−1[

1−
(

1− e−(λ x+ θ
2 x2)

)a]b−1







Since 0< e−(λ x+ θ
2 x2) < 1 for x > 0, then by using the binomial series expansion of

[

1−
(

1− e−(λ x+ θ
2 x2)

)a]b−1
given by

[

1−
(

1− e−(λ x+ θ
2 x2)

)a]b−1
=

∞

∑
j=0

(−1) j
(

b−1
j

)

(

1− e−(λ x+ θ
2 x2)

) ja
, (12)
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we get

µ ′
r = ab

∞

∑
j=0

(−1) j
(

b−1
j

)







∞
∫

0

xr(λ +θx)e−(λ x+ θ
2 x2)

×
(

1− e−(λ x+ θ
2 x2)

)a−1(

1− e−(λ x+ θ
2 x2)

) ja
}

dx

= A

∞
∫

0

xr(λ +θx)e−(λ x+ θ
2 x2)

(

1− e−(λ x+ θ
2 x2)

)a( j+1)−1
dx, (13)

where

A = ab
b−1

∑
j=0

(−1) j
(

b−1
j

)

, (14)

Also
(

1− e−(λ x+ θ
2 x2)

)a( j+1)−1
=

∞

∑
k=0

(−1)k
(

a( j+1)−1
k

)

e−(λ x+ θ
2 x2)k, (15)

and the series expansion ofe−
θ
2 (k+1)x2) is

e−
θ
2 (k+1)x2) =

∞

∑
i=0

[θ
2 (k+1)x2

]i

i!
(16)

Substituting (15) and (16) into (13), we get

µ ′
r = A∗

∞
∫

0

(λ +θx)x2i+re−λ (k+1)xdx

= A∗



λ
∞
∫

0

x2i+re−λ (k+1)xdx+θ
∞
∫

0

x2i+r+1e−λ (k+1)xdx





= A∗

[

λΓ (2i+ r+1)

[λ (k+1)]2i+r+1 +
θΓ (2i+ r+2)

[λ (k+1)]2i+r+2

]

where

A∗ =
∞

∑
i=0

∞

∑
j=0

∞

∑
k=0

(−1)i+ j+k
(

b−1
j

)(

a( j+1)−1
k

)

which completes the proof .

Lemma 2: If X hasKLE (ϕ), then the moment generating functionMX (t) has the following form

MX(t) = A∗

[

λΓ (2i+1)

[λ (k+1)− t]2i+1 +
θΓ (2i+2)

[λ (k+1)− t]2i+2

]

Proof.

We start with the well known definition of the moment generating function given by

MX(t) = E(etx) =

∞
∫

0

etx fKLE(x,Φ)dx

= ab







∞
∫

0

etx(λ +θx)e−(λ x+ θ
2 x2)

×
(

1− e−(λ x+ θ
2 x2)

)a−1[

1−
(

1− e−(λ x+ θ
2 x2)

)a]b−1
}

(17)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


8 F. Merovci, I. Elbatal: A New Generalization of Linear Exponential Distribution:...

Substituting (14) , (15) and (16) into (17)), we get

MX (t) = A∗



λ
∞
∫

0

x2ie−(λ (k+1)−t)xdx+θ
∞
∫

0

x2i+1e−(λ (k+1)−t)xdx





= A∗

[

λΓ (2i+1)

[λ (k+1)− t]2i+1 +
θΓ (2i+2)

[λ (k+1)− t]2i+2

]

.

which completes the proof.

4 Order statistics

Moments of order statistics play an important role in quality control testing and reliability,where a practitioner needs to
predict the failure of future items based on the times of a fewearly failures. These predictors are often based on moments
of order statistics. We now derive an explicit expression for the density function of therth order statisticXr:n, say fr:n(x),
in a random sample of sizen from theKLE distribution. To prove therth order statisticXr:n we need the following Lemma.

Lemma 3:
The probability density function ofXr:n, r = 1,2, ...,n of Kw-LE distributio is

fr:n(x) =
n−r

∑
j=0

d j(n,r) fKLE (x,ar+ j,br+ j,λ ,θ ) (18)

where

ai = ai andd j(n,r) =
n(−1) j

(n−1
r−1

)(n−r
j

)

r+ j
. (19)

Proof:
The pdf ofXr:n, r = 1,2, ...,n is given by, David (1981)

fr:n(x) =
1

β (r,n− r+1)
[F(x,ϕ)]r−1 [1−F(x,Φ)]n−r f (x,Φ)

whereF(x,ϕ) and f (x,ϕ) are CDF and pdf given by (7) and (8), respectively. since 0< F(x,Φ) < 1 for x > 0, by using
the binomial series expansion of[1−F(x,ϕ)]n−r, given by

[1−F(x,ϕ)]n−r =
n−r

∑
j=0

(−1) j
(

n− r
j

)

[F(x,ϕ ] j

we have

fr:n(x) =
1

β (r,n− r+1)

n−r

∑
j=0

(−1) j
(

n− r
j

)

[F(x)]r+ j−1 f (x) (20)

Substituting (7) and (8) into (20), we get

fr:n(x) =
n−r

∑
j=0

d j(n,r) fKLE (x,ar+ j,br+ j,λ ,θ ). (21)

The coefficientsd j(n,r), j = 1,2, ...,n −r do not depend ona,b,λ ,θ . Thus fr:n(x) is the weighted average of theKLE
distribution with different shape parameters.

Theorem (4.1):
Thekth moment of order statisticXr:n is

µ (k)
r:n =

∞

∑
i=0

∞

∑
l=0

∞

∑
k=0

n−r

∑
j=0

d j(n,r)(−1)i+ j+k
(

br+ j −1
l

)(

ar+ j(l +1)−1
k

)

×

[

λΓ (2i+ k+1)

[λ ( j+1)]2i+k+1 +
θΓ (2i+ k+2)

[λ (k+1)]2i+k+2

]

. (22)
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Proof: The general definition of thekth moment of order statisticXr:n is

µ (k)
r:n =

∞
∫

0

xk fr:n(x,a,b,λ ,θ )dx. (23)

Substituting from (21) into (23), one gets

µ (k)
r:n =

n−r

∑
j=0

d j(n,r)

∞
∫

0

xk f (x,ar+ j ,br+ j,λ ,θ )dx. (24)

Since the integral in (24) is thekth moment ofKw-LE(λ ,θ ,ar+ j,br+ j), then from (24) with the Lemma (3) we get (22)
which completes the proof.

5 Estimation and Inference

In this section, we derive the maximum likelihood estimatesof the unknown parametersϕ = (a,b,λ ,θ ) of KLE
distribution based on a complete sample. Let us assume that we have a simple random sampleX1,X2, ...,Xn from
KLE(a,b,λ ,θ ). The likelihood function of this sample is

L =
n

∏
i=1

f (xi,a,b,λ ,θ ). (25)

Substituting from (8) into (25), we get

L =
n

∏
i=1

{

ab(λ +θxi)e
−(λ xi+

θ
2 x2

i )
(

1− e−(λ xi+
θ
2 x2

i )
)a−1

×
[

1−
(

1− e−(λ xi+
θ
2 x2

i )
)a]b−1

}

= (ab)n
n

∏
i=1

(λ +θxi)e
−

n
∑

i=1
(λ xi+

θ
2 x2

i )Π n
i=1

(

1− e−(λ xi+
θ
2 x2

i )
)a−1

×
n

∏
i=1

[

1−
(

1− e−(λ xi+
θ
2 x2

i )
)a]b−1

. (26)

The log-likelihood function for the vector of parametersϕ = (a,b,λ ,θ ) can be written as

ℓ= log L = n loga+ n logb+
n

∑
i=1

log(λ +θxi)+
n

∑
i=1

zi

+(a−1)
n

∑
i=1

log(1− ezi)

+ (b−1)
n

∑
i=1

log[1− (1− ezi)a] (27)

where

zi =−(λ xi +
θ
2

x2
i )

The log-likelihood can be maximized either directly or by solving the nonlinear likelihood equations obtained by
differentiating (27). The components of the score vectorW (Φ) are given by

ℓa =
∂ log L

∂a
=

n
a
+

n

∑
i=1

log(1− ezi)

− (b−1)
n

∑
i=1

(1− ezi)a log(1− ezi)

1− (1− ezi)a , (28)
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ℓb =
∂ log L

∂b
=

n
b
+

n

∑
i=1

log[1− (1− ezi)a] , (29)

ℓλ (Φ) =
∂ log L

∂λ
=

n

∑
i=1

1
(λ +θxi)

−
n

∑
i=1

xi +(a−1)
n

∑
i=1

xie−λ xi

1− ezi

+(b−1)
n

∑
i=1

axi(1− ezi)a−1

1− (1− ezi)a , (30)

and

ℓθ =
∂ log L

∂θ
=

n

∑
i=1

xi

(λ +θxi)
−

n

∑
i=1

x2
i

2

+(a−1)
n

∑
i=1

x2
i (1− ezi)a−1

2(1− ezi)
+

a(b−1)
2

n

∑
i=1

x2
i (1− ezi)a−1

1− (1− ezi)a . (31)

We can find the estimates of the unknown parameters by maximumlikelihood method by setting these above non-linear
equations (28)- (31) to zero and solve them simultaneously.

The Hessian matrix, second partial derivatives of the log-likelihood, is given by







ℓaa ℓab ℓaλ ℓaθ
ℓba ℓbb ℓbλ ℓbθ
ℓλ a ℓλ b ℓλ λ ℓλ θ
ℓθa ℓθb ℓθλ ℓθθ







ℓaa =−
n
a2 − (b−1)

n

∑
i=1

(

1−e−λ xi−1/2θ xi
2
)a(

ln
(

1−e−λ xi−1/2θ xi
2
))2

(

−1+
(

1−e−λ xi−1/2θ xi
2)a

)2

ℓab =−
n

∑
i=1

(

1−e−λ xi−1/2θ xi
2
)a

ln
(

1−e−λ xi−1/2θ xi
2
)

1−
(

1−e−λ xi−1/2θ xi
2)a

ℓaλ =
n

∑
i=1

xie−λ xi−1/2θ xi
2

1−e−λ xi−1/2θ xi
2 +(b−1)

n

∑
i=1

(Ai +Bi)

Ai =−

(

1−e−λ xi−1/2θ xi
2
)a

xie−λ xi−1/2θ xi
2
(

a ln
(

1−e−λ xi−1/2θ xi
2
)

+1
)

(

−1+e−λ xi−1/2θ xi
2)
(

−1+
(

1−e−λ xi−1/2θ xi
2)a

)

Bi =−

((

1−e−λ xi−1/2θ xi
2
)a)2

ln
(

1−e−λ xi−1/2θ xi
2
)

axie−λ xi−1/2θ xi
2

(

1−
(

1−e−λ xi−1/2θ xi
2)a

)2(
1−e−λ xi−1/2θ xi

2)
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ℓaθ =
n

∑
i=1

1/2
xi

2e−λ xi−1/2θ xi
2

1−e−λ xi−1/2θ xi
2 +(b−1)

n

∑
i=1

(Ci +Di)

Ci =−1/2

(

1−e−λ xi−1/2θ xi
2
)a

xi
2e−λ xi−1/2θ xi

2
(

a ln
(

1−e−λ xi−1/2θ xi
2
)

+1
)

(

−1+e−λ xi−1/2θ xi
2)
(

−1+
(

1−e−λ xi−1/2θ xi
2)a

)

Di =−1/2

((

1−e−λ xi−1/2θ xi
2
)a)2

ln
(

1−e−λ xi−1/2θ xi
2
)

axi
2e−λ xi−1/2θ xi

2

(

1−
(

1−e−λ xi−1/2θ xi
2)a

)2(
1−e−λ xi−1/2θ xi

2)

ℓbb =−
n
b2

ℓbλ =−
n

∑
i=1

(

1−e−λ xi−1/2θ xi
2
)a

axie−λ xi−1/2θ xi
2

(

1−e−λ xi−1/2θ xi
2)
(

1−
(

1−e−λ xi−1/2θ xi
2)a

)

ℓbθ =
n

∑
i=1

−1/2

(

1−e−λ xi−1/2θ xi
2
)a

axi
2e−λ xi−1/2θ xi

2

(

1−e−λ xi−1/2θ xi
2)
(

1−
(

1−e−λ xi−1/2θ xi
2)a

)

ℓλ λ =−
n

∑
i=1

(λ +θ xi)
−2− (a−1)

n

∑
i=1

xi
2e−λ xi−1/2θ xi

2

(

−1+e−λ xi−1/2θ xi
2)2

− (b−1)
n

∑
i=1

(

1−e−λ xi−1/2θ xi
2
)a

axi
2e−λ xi−1/2θ xi

2
(

ae−λ xi−1/2θ xi
2
−1+

(

1−e−λ xi−1/2θ xi
2
)a)

(

−1+e−λ xi−1/2θ xi
2)2

(

−1+
(

1−e−λ xi−1/2θ xi
2)a

)2

ℓλ θ =−
n

∑
i=1

xi

(λ +θ xi)
2 − (a−1)

n

∑
i=1

−1/2
xi

3e−λ xi−1/2θ xi
2

(

−1+e−λ xi−1/2θ xi
2)2

− (b−1)
n

∑
i=1

1/2

(

1−e−λ xi−1/2θ xi
2
)a

axi
3e−λ xi−1/2θ xi

2
(

ae−λ xi−1/2θ xi
2
−1+

(

1−e−λ xi−1/2θ xi
2
)a)

(

−1+e−λ xi−1/2θ xi
2)2

(

−1+
(

1−e−λ xi−1/2θ xi
2)a

)2

ℓθθ =−
n

∑
i=1

xi
2

(λ +θ xi)
2 − (a−1)

n

∑
i=1

1/4
xi

4e−λ xi−1/2θ xi
2

(

−1+e−λ xi−1/2θ xi
2)2

− (b−1)
n

∑
i=1

1/4

(

1−e−λ xi−1/2θ xi
2
)a

axi
4e−λ xi−1/2θ xi

2
(

ae−λ xi−1/2θ xi
2
−1+

(

1−e−λ xi−1/2θ xi
2
)a)

(

−1+e−λ xi−1/2θ xi
2)2

(

−1+
(

1−e−λ xi−1/2θ xi
2)a

)2

We can compute the maximized unrestricted and restricted log-likelihood functions to construct the likelihood ratio
(LR) test statistic for testing on some the KLE sub-models. For example, we can use the LR test statistic to check whether
the KLE distribution for a given data set is statisticallysuperior to the LE distribution. In any case, hypothesis tests of
the typeH0 : θ = θ0 versusH0 : θ 6= θ0 can be performed using a LR test. In this case, the LR test statistic for testing
H0 versusH1 is ω = 2(ℓ(θ̂ ;x)− ℓ(θ̂0;x)), whereθ̂ andθ̂0 are the MLEs underH1 andH0, respectively. The statisticω
is asymptotically (asn → ∞) distributed asχ2

k , wherek is the length of the parameter vectorθ of interest. The LR test
rejectsH0 if ω > χ2

k;γ , whereχ2
k;γ denotes the upper 100γ% quantile of theχ2

k distribution.

6 Aplication

In this section, we provide a data analysis to see how the new model works in practice. This data set is studied by
Abuammoh et al. [1], which represent the lifetime in days of 40 patients suffering from leukemia from one of the Ministry
of Health Hospitals in Saudi Arabia.
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Table 1: (Leukemia data) Lifetimes of 40 patients suffering from Leukemia
115 181 255 418 441 461 516 739 743 789
807 865 924 983 1024 1062 1063 1165 1191 1222
1222 1251 1277 1290 1357 1369 1408 1455 1478 1549
1578 1578 1599 1603 1605 1696 1735 1799 1815 1852

Table 2: The estimated parameters,AIC, AICC, BIC and K-S of the models based on data set
Model a b λ θ -LL AIC AICC BIC K-S
LE. - - 9.499·10−4 2·10−6 335.627 675.254 675.578 678.631 0.512
KLE 0.083 0.050 0.005 1.4·10−5 313.905 635.81 636.952 642.565 0.198

In order to compare the two distribution models, we considercriteria like−ℓ, AIC (Akaike information criterion),
AICC (corrected Akaike information criterion) and BIC (Bayesian information criterion) for the data set. The better
distribution corresponds to smaller−2ℓ, AIC,AICC and BIC values:‘

AIC = 2k−2ℓ ,AICC = AIC +
2k(k+1)
n− k−1

and,BIC = 2ℓ+ k ∗ log(n)

wherek is the number of parameters in the statistical model,n the sample size andℓ is the maximized value of the
log-likelihood function under the considered model.

The LR test statistic to test the hypothesesH0 : a = b = c = 1 versusH1 : a 6= 1∨b 6= 1∨c 6= 1 isω = 9.574> 7.815=
χ2

3;0.05, so we reject the null hypothesis.
Table2 shows parameter MLEs to each one of the three fitted distributions for data set and the values of−2log(L),

AIC and AICC values. The values in Table2, indicate that the KLE is a strong competitor to other distribution used here
for fitting data set.

A P-P plot compares the fitted cdf of the models with the empirical cdf of the observed data (Fig.5).

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ecdf of distances 

x

F
n(

x)

Empirical
KLE
LE
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Fig. 5: PP plots for fitted KLE and the LE distributions.

7 Conclusion

Here, we propose a new model, the so-called the Kumaraswamy linear exponential distribution distribution which extends
the linear exponential distribution in the analysis of datawith real support. An obvious reason for generalizing a standard
distribution is because the generalized form provides larger flexibility in modelling real data. We derive expansions for the
moments and for the moment generating function. The estimation of parameters is approached by the method of maximum
likelihood, also the information matrix is derived. We consider the likelihood ratio statistic to compare the model with
its baseline model. An application of the KLE distribution to real data show that the new distribution can be used quite
effectively to provide better fits than the LE distribution.
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