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Abstract: The paper proposes a constrained feedback control that guaranteeweak and strong stabilizability for distributed semilinear
systems of the form :

dy(t)
dt

= Ay(t)+ p(t)Ny(t),

whereA is the infinitesimal generator of a linearC0−semigroup of contractions on a Hilbert spaceH andN is a (nonlinear) operator
from H into its self. A decay rate of the state is estimated. Also the robustness of the considered control is discussed. Applications and
simulations are provided.
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1 Introduction

Semilinear systems can be used to represent a wide range
of physical, chemical, biological and social systems as
well as manufacturing processes. Semilinear structures
are derived in a natural manner to approximate the
description of nuclear fission and heat transfer. The
semilinear nature of nuclear fission follows from the fact
that the state (neutron level or power) is multiplied by the
control function (reactivity or neutron). A multiplication
of coolant flow rate (a control variable) and temperature
(a state variable) is produced in heat transfer between a
solid wall, such as a reactor core, and moving coolant
fluid. Even the generation of poison products in nuclear
reactors may be described by a bilinear model with
thermal neutron flux (the control) multiplying xenon
concentration (see [1,2,3]). Here we consider
infinite-dimensional semilinear systems of the form

dy(t)
dt

= Ay(t)+ p(t)Ny(t), y(0) = y0, (1)

on a Hilbert spaceH with inner product 〈·, ·〉 and
corresponding norm‖.‖, whereA generates a semigroup
of contractionsS(t) on H and N is a nonlinear operator

from H to H such thatN(0) = 0. While the scalar valued
function p(.) is a control. The conventional control for
stabilization problem of (1) is given by

p(t) =−〈Ny(t),y(t)〉 (2)

(see [4,5,6,7]). The problem of stabilizing the system (1)
was considered in [4], whereN is sequentially continuous
from Hw (H endowed with the weak topology) toH. Then
it has been shown that under the condition :

〈NS(t)y,S(t)y〉= 0, ∀t ≥ 0=⇒ y = 0, (3)

the quadratic feedback (2) weakly stabilizes the system
(1).
Under the assumption

∫ T

0
|〈NS(t)y,S(t)y〉|dt ≥ δ‖y‖2

, ∀y ∈ H, (T,δ > 0), (4)

a strong stabilization result has been obtained using the
control (2) (see [5,7]). However, in this way the
convergence of the resulting closed loop state is not better

than‖y(t)‖= O(
1√
t
).
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Control systems are often subject to constraints on
their manipulated inputs. Input constraints arise as a
manifestation of the physical limitations inherent in the
capacity of control actuators. Stabilization question of
constrained bilinear and semilinear systems have been
considered in many works (see [8,6,9,10,11,12]). In this
paper, we study weak and strong stabilizability of the
system (1) using a control constraint of the form
(eventually, after re-escaling)|p(t)| ≤ 1. Among
saturating feedbacks, the following law

p(t) =







−< Ny(t),y(t)>
‖y(t)‖2 , y(t) 6= 0

0, y(t) = 0,
(5)

has been considered in [11,12]. In [13] the rational decay
rates are established i.e.,

‖y(t)‖= O(t
−1
2−r ),

using the following feedback control

pr(t) =−< Ny(t),y(t)>
‖y(t)‖r , r ∈ (−∞,2). (6)

Here, we consider the following continuous control

p(t) =− 〈Ny(t),y(t)〉
1+ |〈Ny(t),y(t)〉| · (7)

This type of feedback has been treated in [6], where it has
been shown that if the resolvent ofA is compact,N is a
bounded linear self-adjoint and monotone operator then
under the assumption (3), the feedback (7) strongly
stabilizes (1), but no estimate has been given. Here, we
will establish an explicit decay estimate of the stabilized
state for a large class of semilinear systems. The paper is
organized as follows : In the second section, we establish
an existence and uniqueness result for the mild solution
and we show that the feedback (7) guarantees the weak
and strong stability of (1) with a decay estimate. Also we
analyze the robustness of the stabilizing control. In the
third section, we give some applications.

2 Stabilization results

Let us recall the following definition concerning the
asymptotic behavior of the system (1).

Definition 2.1. The system (1) is weakly (resp. strongly)
stabilizable if there exists a feedback control
p(t) = f (y(t)), f : H → K := R, C such that the
corresponding mild solution satisfies the properties :

1. for eachy0 there exists a unique mild solutiony(t),
defined for allt ∈ R

+ of (1),
2. {0} is a an equilibrium of (1),
3. y(t) → 0, weakly (resp. strongly), ast → +∞ for all

y0 ∈ H.

In the sequel the following result will be needed for
our stabilization problem and constitutes an extension of
the one given in [9].

Lemma 2.1. Let u be a positive and increasing function
such thatu(0) = 0, and let v(x) = x − (I + u)−1(γx).
Consider a sequence(sk)k≥0 of positive numbers which
satisfies

sk+1+u(sk+1)≤ γsk, where∀k ≥ 0, (8)

for someγ > 0. Thensk ≤ X(k), whereX(t) is a solution
of the differential equation

dX(t)
dt

+ v(X(t)) = 0, X(0) = s0. (9)

Proof. The proof uses similar techniques as in [9]. It is
done by induction onk. Assume thatsk ≤ X(k) (this is the
induction hypothesis) and prove thatsk+1 ≤ X(k + 1).
Since (I + u)−1 is monotone increasing, then the
inequality (8) is equivalent to

sk+1 ≤ (I +u)−1(γsk) = sk − v(sk). (10)

Integrating the equation (9) from k to k+1; yields

X(k+1)−X(k)+
∫ k+1

k
v(X(τ))dτ = 0.

On the other hand, sincev is an increasing function, the
solutionX(t) of (9) is such that

X(t)≤ X(τ), ∀t ≥ τ ≥ 0. (11)

Using (11), the induction assumption and the fact that
v and(I +u)−1 are increasing, we obtain

X(k+1) ≥ (I +u)−1(γX(k))≥ (I +u)−1(γsk)
= sk − v(sk)≥ sk+1.

(12)

This yields the desired result

Remark. For γ = 1, we retrieve the result of [9].

2.1 Decay estimate

We begin with the following result concerning the
existence of the mild solution and giving a useful estimate
for our stabilization problem.

Theorem 2.1. Let A generate a semigroupS(t) of
contractions onH and letN be locally Lipschitz. Then the
system (1) controlled with (7) possesses a unique mild
solutiony(t) which verifies

(

∫ T

0
|〈NS(s)y(t),S(s)y(t)〉|ds

)2

=

O

(

∫ t+T

t

|〈Ny(s),y(s)〉|2
1+ |〈Ny(s),y(s)〉|ds

)

, ast →+∞.

(13)
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Proof. Let us consider the closed loop-system :

dy(t)
dt

= Ay(t)+ f (y(t)), y(0) = y0, (14)

where

f (y) =− 〈Ny,y〉
1+ |〈Ny,y〉|Ny, ∀y ∈ H.

To establish the existence and uniqueness of the solution
of (14), let us show that the functionf is locally Lipschitz.
For all y,z ∈ H, we have

‖ f (y)− f (z)‖ ≤ ‖〈Ny,y− z〉Ny
1+ |〈Ny,z〉| ‖

+‖ 〈Ny,z〉Ny
1+ |〈Ny,y〉| −

〈Nz,z〉Nz
1+ |〈Nz,z〉|‖

SinceN is locally Lipschitz, then for eachR > 0 there
exists a positive constantLR such that

‖Nz−Ny‖ ≤ LR‖z−y‖, ∀(z,y) ∈ H2 : ‖z‖ ≤ R, ‖y‖ ≤ R.
(15)

Using (15), we deduce that

‖ f (y)− f (z)‖ ≤C1‖y− z‖+
‖ 〈Ny,z〉Ny

1+ |〈Ny,y〉| −
〈Nz,z〉Nz

1+ |〈Nz,z〉| ‖, C1 = R2L2
R

≤C1‖y− z‖+‖ 〈Nz−Ny,z〉Nz
1+ |〈Nz,z〉| ‖+

‖ 〈Ny,z〉Nz
1+ |〈Nz,z〉| −

〈Ny,z〉Ny
1+ |〈Ny,y〉| ‖

≤C2‖y− z‖+
‖ 〈Ny,z〉Ny

1+ |〈Ny,y〉| −
〈Ny,z〉Nz

1+ |〈Nz,z〉| ‖, C2 = 2C1

≤C2‖y− z‖+‖ 〈Ny,z〉
(

Ny−Nz
)

1+ |〈Nz,z〉| ‖+

‖ 〈Ny,z〉Ny
1+ |〈Ny,y〉| −

〈Ny,z〉Ny
1+ |〈Nz,z〉| ‖

≤C3‖y− z‖+ ||〈Ny,z〉Ny‖
(1+ |〈Ny,y〉|)(1+ |〈Nz,z〉|)×

|〈Ny,y〉−〈Nz,z〉|, C3 = 3C1
≤C3‖y− z‖+
C4

(

|〈Ny,y− z〉|+ |〈Ny−Nz,z〉|
)

, C4 = RC1
≤C5‖y− z‖, C5 =C3+2RC4LR·

Henceg is locally Lipschitz. Then (see Theorem 1.2, p
184 in [15]), the system (14) admits a unique mild solution
defined on a maximal interval[0, tmax[, by the variation of
constant formula :

y(t) = S(t)y0+

∫ t

0
S(t − s)g(y(s))ds. (16)

Furthermore, using approximation techniques (see [14])
we get

‖y(t)‖2−‖y(s)‖2+2
∫ t

s

|〈Ny(τ),y(τ)〉|2
1+ |〈Ny(τ),y(τ)〉|dτ ≤ 0,∀t,s ≥ 0.

(17)
It follows from (17) that

‖y(t)‖ ≤ ‖y0‖, ∀t ∈ [0, tmax[, (18)

which holds by density, for ally0 ∈ H, and hencey(t) is
a global solution i.etmax = +∞. Now, let us establish the
estimate (13). From (16) and Schwartz’s inequality, we get

‖y(t)−S(t)y0‖ ≤ L‖y0‖‖y0‖
(

T
∫ t

0

|〈y(s),Ny(s)〉|2
1+ |〈y(s),Ny(s)〉|ds

)
1
2

∀t ∈ [0,T ].
(19)

Using (18) and the fact thatS(t) is a semigroup of
contractions, we deduce that

|〈NS(s)y0,S(s)y0〉| ≤ 2L‖y0‖‖y(s)−S(s)y0‖‖y0‖+
|〈Ny(s),y(s)〉|. (20)

Replacing y0 by y(t) in (19) and (20) and using the
semigroup property of the solutiony(t), we obtain

|〈NS(s)y(t),S(s)y(t)〉| ≤ 2L2
‖y0‖‖‖y0‖2×

(

T
∫ t+T

t

|〈y(s),Ny(s)〉|2
1+ |〈y(s),Ny(s)〉|ds

)
1
2

+|〈Ny(t + s),y(t + s)〉|, ∀t,s ≥ 0.

Integrating this last inequality over the interval[0,T ] and
using Schwartz’s inequality, it follows that
∫ T

0
|〈NS(s)y(t),S(s)y(t)〉|ds ≤

(

2L2
‖y0‖‖y0‖2T

3
2 +T

(

1+L‖y0‖‖y0‖2
)

)

×
(

∫ t+T

t

|〈y(s),Ny(s)〉|2
1+ |〈y(s),Ny(s)〉|ds

)
1
2

.

Which gives the estimate (13)
The following result concerns the strong stabilization
of (1) by the control (7).

Theorem 2.2. Let A generate a semigroupS(t) of
contractions onH and let N be locally Lipschitz such
that (4) holds. Then the feedback (7) strongly stabilizes
(1) with the following decay estimate

‖y(t)‖= O(
1√
t
), ast →+∞· (21)

Proof. Using (17), we obtain

‖y(kT )‖2−‖y((k+1)T )‖2 ≥ 2
∫ (k+1)T

kT

|〈Ny(t),y(t)〉|2
1+ |〈Ny(t),y(t)〉|dt

∀k ∈ N,

and using (4), we deduce that

‖y(kT )‖2−‖y((k+1)T )‖2 ≥ M1‖y(kT )‖4
, (22)

whereM1 =
δ 2

2

(

2L2
‖y0‖‖y0‖2T

3
2 +T

(

1+L‖y0‖‖y0‖2
)

)2 .

Since‖y(kT )‖ is a decreasing function, it follows that

‖y(kT )‖2−‖y((k+1)T )‖2 ≥ M1‖y((k+1)T )‖4
. (23)
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Settingsk = ‖y(kT )‖2 andu(s) = M1s2, we getu(sk+1)+
sk+1 ≤ sk. Applying Lemma2 with γ = 1, we deduce that
sk ≤ X(k), whereX(t) is the solution ofX ′(t)+ v(X(t)) =
0, X(0) = s0. Furthermore, it is easy to see thatv(s) =
M1s2+o(s2). It follows that

X ′(t)∼−M1X2(t)· (24)

Integrating (24)and using the fact thatsk ≤ X(k) we get
sk = O(k−1). Since‖y(t)‖ is decreasing in times, then the
last discrete estimate implies the continuous one (21)

Remark . Note that for all initial statesy0 ∈ H, we have
|p(t)| ≤ 1, for all t ≥ 0, and if the system (1) is subject to
the control constraint|p(t)| ≤ M, then one may consider
the pondered controlMp(t).

2.2 Robustness

In this part, we exhibit a class of allowed perturbations
under which, the stability of the closed loop (14) is
preserved. We consider the perturbed system

dy(t)
dt

= Ay(t)− 〈y(t),Ny(t)〉
1+ |〈y(t),Ny(t)〉|Ny(t)+ξ (y(t)), (25)

where ξ maps H to it self. A common question in
application is: how large can the perturbationξ be that
leaves the strong stability of the dynamics (25)? This
analysis is called the robustness analysis in control
systems literature [16,17,18]. In this context, we establish
the following result.

Theorem 2.3. Let assumptions of Theorem2.1 hold.
Then the estimate (21) is preserved under the perturbation
ξ provided thatξ is locally Lipschitz and

‖ξ (y)‖ ≤ |〈y,Ny〉|2
‖y‖

(

1+ |〈y,Ny〉|
) · (26)

Proof. First let us note that 0 remains an equilibrium of the

perturbed system (25), which can be written in the form

dy(t)
dt

= Ay(t)+g(y(t)), y(0) = y0, (27)

whereg = f +ξ and

f (y) =







− 〈y,Ny〉
1+ |〈y,Ny〉|Ny, y 6= 0

0, y = 0.

Since f andξ are locally Lipschitz, then so isg. Also g is
dissipative:〈g(y),y〉 ≤ 0, ∀y ∈ H· Then from the proof of
Theorem2.1the system (25) admits a unique mild solution
such that

y(t) = S(t)y0+
∫ t

0
S(t − s)g(y(s))ds, ∀t ≥ 0· (28)

Furthermore, we have

‖y(t)‖2−‖y(s)‖2+2
∫ t

s

|〈y(τ),Ny(τ)〉|2
1+ |〈y(τ),Ny(τ)〉|dτ −2×

∫ t

s
Re

(

〈ξ (y(τ)),y(τ)〉
)

dτ ≤ 0, ∀t,s ≥ 0.

(29)
Remarking that (26) implies that :

|〈ξ (y),y〉| ≤ |〈y,Ny〉|2
1+ |〈y,Ny〉| ,

it follows from similar techniques as in the proof of the
Theorem2.1that

∫ T

0
|〈NS(s)y(t),S(s)y(t)〉|ds ≤

C1

(

∫ t+T

t

|〈y(s),Ny(s)〉|2
1+ |〈y(t),Ny(t)〉|ds

)
1
2

, C1 =C1(‖y0‖)> 0,

and using (29), we deduce that

sk − sk+1 ≥ 2
∫ (k+1)T

kT

|〈y(τ),Ny(τ)〉|2
1+ |〈y(τ),y(τ)〉|dτ −2×

∫ (k+1)T

kT
Re(〈ξ (y(τ)),y(τ)〉)dτ ,

wheresk = ‖y(kT‖2, ∀k ≥ 0. Using (4), (13) and the fact
thatξ is locally Lipschitz we obtain

sk − sk+1 ≥C2
(

s2
k − sk

)

, C2 =C(‖y0‖).

Witch may be written as:

γsk ≥ u(sk+1)+ sk+1, k ≥ 0,

whereγ = 1+C2 > 0,u(t) =C2t2. Applying Lemma2 and
proceeding as in the proof of Theorem2.1, we obtain the
estimate of the perturbed system.

Remark .

1. The robustness of the control (7) to the perturbationξ
can be regarded as a robustness to the perturbation of
A by ξ .

2. The problem of robustness of the control (2) and (5)
has been studied in [19] and [11], respectively.

2.3 Weak stabilization

Our result concerning the weak stabilization is stated as
follow:

Theorem 2.1. Let A generate a semigroupS(t) of
contractions onH and let N be locally Lipschitz and
sequentially continuous fromHw to H, such that (3)
holds.
Then

c© 2014 NSP
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1. The feedback (7) weakly stabilizes (1).
2. The system (25) remains weakly stable under any

perturbationξ , which is sequentially continuous and

satisfies :− |〈y,Ny〉|2
1+ |〈y,Ny〉| ≤ 〈ξ (y),y〉 ≤ 0·

Proof. Let f and g be defined as in the proof of
Theorem2.1

1. From Theorem2.1, there is a unique mild solution
for the system (1). Since the functionN : Hw → H is
sequentially continuous, then so isf . Moreover we
have 〈 f (y),y〉 ≤ 0, ∀y ∈ H. Then the weak stability
of (1) follows from Theorem 2.4 of Ball [4].

2. Remarking that the assumption

− |〈y,Ny〉|2
1+ |〈y,Ny〉| ≤ 〈ξ (y),y〉 ≤ 0 together with (3)

guarantees the following implication

〈g(S(t)y),S(t)y〉= 0=⇒ y = 0,

the conclusion follows from the same arguments as in
the above point.

3 Applications

Example 3.1.In this example, we give an application of
Theorem2.1 to a finite dimensional bilinear system, and
concerns the stabilization of a single oscillatory motion by
means of suitable damping. Such motion is described by
two dimensional system of ordinary differential equations
of Lienard’s type like:

y′(t) =

(

0 −1
1 0

)

y(t)+ p(t)

(

0 0
0 1

)

y(t) (30)

In [20], the quadratic feedbackp(t) = −y2
2 where

y(t) = (y1(t),y2(t)) has been used to obtain the
estimate (21). However this feedback law is not bounded
with respect to initial states. Applying Theorem2.1, we

deduce that the bounded controlp(t) = − y2
2

1+ y2
2

strongly

stabilizes the system (30). Here p(t)Ny(t) models a
damping device of structure described by the matrix

N =

(

0 0
0 1

)

with gain p(t) = p(y1(t),y2(t)). The matrix

A admits the two eigenvaluesλ1 = −i and λ2 = λ1 (the
conjugate of λ1), associated with the eigenvectors
ϕ1 = (i) and ϕ1 respectively. Setting

y =

(

y1
y2

)

∈ H := R
2 we obtain

S(t)y = e−it〈y,ϕ1〉ϕ1+ eit〈y,ϕ1〉ϕ1·

Then

〈S(t)y,NS(t)y〉= e−2it(y1− iy2)
2−2(y2

1+y2
2)+e2it(y1+ iy2)

2
,

and hence
∫ π

0
|〈S(t)y,NS(t)y〉|dt = 2‖y‖2

, ∀t ≥ 0, so (4)

holds.

Example 3.2.In this section,Ω ⊂ R
n denotes a bounded

open domain withC∞ boundary andQ = Ω×]0,+∞[. Let
us consider the following system






d2z(x, t)
∂ t2 = ∆z(x, t)+ p(t)z(x, t), in Q

z(ξ , t) = 0, on ∂Ω×]0,+∞[.
(31)

Here,A andH are defined as in the above example, while

N is defined byN =

(

0 0
I 0

)

. The operatorN is compact

(see [4]). Then the feedback given by

p(t) =−

∫

Ω
z(x, t)

∂ z(x, t)
∂ t

dx

1+ |
∫

Ω
z(x, t)

∂ z(x, t)
∂ t

dx|
,

ensures the weak stabilization of (31).

Remark .

1. In [4], a weak stabilization result of (31) has been
given using the quadratic control (2).

2. Note that in the above example, the operatorN is not
self-adjoint, so the results of [19,6] are not applicable
to obtain the feedback stabilization of (31).

Example 3.3. In this section,Ω ⊂ R
n denotes a bounded

open domain withC∞ boundary andQ = Ω×]0,+∞[. Let
us consider the system






∂ 2z(x, t)
∂ t2 = ∆z(x, t)+ p(t)a(x)

∂ z(x, t)
∂ t

, in Q

z(ξ , t) = 0, on ∂Ω×]0,+∞[.
(32)

where a ∈ L∞(Ω) is such thata(x) ≥ 0, a.e onΩ and
a(x) ≥ c > 0 on a non-empty open subsetω of Ω . This
system has the form (1) if we set

y =

(

z
ż

)

∈ H = H1
0(Ω)×L2(Ω), A =

(

0 I
∆ 0

)

with

D(A) = [H2(Ω)
⋂

H1
0(Ω)]×H1

0(Ω), N =

(

0 0
0 G

)

whereI is the identity operator∆ is the Laplacian operator
andG is defined for allu ∈ L2(Ω) by

Gu(x) = a(x)u(x) a.e onΩ .

With the inner product

〈(y1,z1),(y2,z2)〉= 〈(y1,y2)〉H1
0(Ω)+ 〈(z1,z2)〉L2(Ω)

c© 2014 NSP
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the operatorA generates a semigroup of contractions
(see [4]) and (4) holds (see [19]).
Applying Theorem 2.1, we obtain the strong
stabilizability of the system (32) by the control

p(t) =−

∫

Ω
a(x)(

∂ z(x, t)
∂ t

)2dx

1+ |
∫

Ω
a(x)(

∂ z(x, t)
∂ t

)2dx|
,

and we have the estimate
∫

Ω
(∇z(x, t))2dx+

∫

Ω
(

∂ z(x, t)
∂ t

)2dx = O(
1
t
), as t →+∞.

Let us now see the simulations of the above example

for Ω =(0,1), a(x)= x+1 andy0(x)= x−1,
∂y(x,0)

∂ t
= 3

in Ω . Then we obtain the results shown in Figures 1-6.

Fig. 1: First component of the free state

Fig. 2: First component of the stabilized state

4 Conclusion

Under observation-like assumptions, weak and strong
stabilization of constrained distributed semilinear systems
have been studied. A decay estimate for the stabilized
state is given. Also, the robustness of the constrained

Fig. 3: Second component of the free state

Fig. 4: Second component of the stabilized state

Fig. 5: The energy of the stabilized state

Fig. 6: The stabilized control

controller has been studied. The paper leaves the open
question of whether the established estimate (21) can be
improved.
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