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Abstract: In this paper, our purpose is to give a new generalizationairan’s type and Chatterjea’s type fixed point theorems in
metric spaces. We have two main ideas. Our first idea is agpiyie logic of Choudhuryg] to the Kannan type contraction mappings,
the second is applying the logic of Dutta and Choudh#éiytdg the Kannan type contraction mappings and Chatterjea ¢gmtraction
mappings.
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1 Introduction and Preliminaries where ac [0,3) and xy € X. Then, T has a unique fixed
point. The mappings satisfying)(are called Kannan type
Fixed point theory is one of the most important topic in mappings.
development of nonlinear analysis. Also, fixed point A similar contractive condition has been introduced by
theory has been used effectively in many other branch ofhatterjea3] as follows:
science, such as chemistry, biology, economics, computer If T : X — X where(X,d) is a complete metric space,
science, engineering et,. It is a long time many satisfies the inequality
mathematicians have studied on fixed point theory. The
authors developed very useful results in this area. Now, d(TxTy) <b[d(x,Ty)+d(y, TX)] 3)
we briefly recall some of those results. 1 , ,
A mapping T: X — X where(X,d) is a metric space, where be [0,3) and xy € X. Then, T has a unique fixed
is said to be a contraction if there existgK0, 1) suchthat ~ POint. The mappings satisfying)(are called Chatterjea
forallx,y € X, type mapping o _ o
Another generalization of the contraction principle

d(TxTy) < kd(x,y). (1)  Was suggested by Rhoadd} s following:

Definition 1. [4] (weakly contractive mapping). A
mapping T: X — X, where(X,d) is a metric space, is
said to be weakly contractive if

If the metric spacgX,d) is complete then the
mapping satisfying ¥) has a unique fixed point.
Inequality (1) implies continuity ofT. A natural question

is that whether we can find contractive conditions which

< _
will imply existence of fixed point in a complete metric d(TxTy) <d(xy) - w(dxy) @
space but will not imply continuity. where xy € X andy : [0,») — [0, ) is a continuous and

Kannan P] established the following result in which nondecreasing function such thgt(t) = 0 if and only if
the above question has been answered in the affirmative.t — o

If a mapping T: X — X where(X,d) is a complete

metric space, satisfies the inequality Rhoades 4] showed that a weakly contractive mapping
have a unique fixed point in complete metric spa¥ed).
d(TxTy) <a[d(x,Tx) +d(y,Ty)] (2)  Also, it is clear that taken ify (t) = kt wherek € [0,1)
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then, @) reduces to 1). For this reason, the concept of wherey : [0,) x [0,00) — [0, ) is a continuous function
Rhoades4] is more general than the concept of Banachsuch thaty (x,y) = 0if and only if x=y=0. Then, T has
[1]. a unique fixed pointin X

Choudhury §] introduced a generalization of

Chatterjea type contraction as follows: Proof. Let € X and foralln> 1, xn11 = Tx.

Definition 2. [5] A self-mapping T: X — X, on a metric
space(X,d), is said to be a weakly €contractive (or

d (%, %n+1) = d(TX0-1, T %)
weak Chatterjea type contraction ) if for allxe X, 1

IN

5 [d (%n-1,%0) +d (X0, Xn+1)]

2
d(TXTY) < 5 X TY)+d 0T - YA TY).d1TX) - Y@l dba)
(5) < > [d (Xn—1,%n) + d (Xn, Xn+1)] - (8)
wherey : [0,) x [0,0) — [0, ) is a continuous function
such thaty (x,y) = 0if and only if x=y =0. From (8), we have
Choudhury 5] showed that a mapping satisfying the d (X, Xnt1) < d(Xn—1,%n) -

inequality 6) has unique fixed point in complete metric . .
space and proved that there is no requirement ofl NUS{d (X Xn.1)} is @ monotone decreasing sequence of
continuity of the C—contraction. Also, taken if non-negative real numbers. Hence, there existsR such

W (xy) = k(x+y) wherek € (0,3], then ) reduces to  that d(a.Xni1) =1, as N— co.
(3). For this reason, result of Choudhury is more generald (x,,x.1) = d (T X,_1, T%n)
than the result of Chatterje8][

1
Dutta and Choudhury 6] introduced a new Sz[d(Xn—l,Xn)+d(Xn,Xn+1)]
generalization of the Banach contraction mapping
principle. This new generalization is more general than ~P(d (x-1,%0),d (%0 Xn+1)) - ©)

the concept of Rhoades id][ The result of Dutta and Letting n— o in (9), we obtain that
Choudhury is following:

Let (X,d) be a complete metric space and let X — r<r—g(nr). (10)
X be a sel-mapping satisfying the inequality The equation10) implies that r= 0. Thus, we have
Yd(TxTy) <yg(dxy)—edXxy), (6) i d (1, %41) = 0. (11)

where . .
1) ,¢: [0,0) — [0,) are both continuous and Now, we show thafx,} is a Cauchy sequence. If pqs&ble,
monotone non(’jecreasin7g functions let {xn} be not a Cauchy sequence. Then, there exist§
2) () = 0= @(t) if and only if t— 0. for which we can find subsequendesy ) } and {Xq }
Then, T has a unique fixed point. of {Xn} with n(k) > m(k) > k such that
Other than the above, very recently, various >
generalizations of contraction mappings have been d (X Xni0) = &- (12)

studied extensively by Karapinar][9],[10[11]. ~ Fyrther, corresponding to ifk) , we can choose (k) in
~ Inpresent study, we have two main ideas. Our firstideag,c 5 way that it is the smallest integer witfkin > m(K)
is applying the logic of Choudhury] to the Kannantype g4 satisfying11). Then,

contraction mappings, the second is applying the logic of

Dutta and Choudhuryg] to the Kannan type contraction d (xm(k>,xn<k),1) <E. (13)
mappings and Chatterjea type contraction mappings. For ] .
this reason our results more general than the some resultshen, by puttingX1) in (12), we have
Now, we give our main results.
< d (Xm(ky ¥n—1) 9 (Xno—1,Xn(k))
. < e+d (Xn(k)—laxn(k)) . (14)
2 Main Results Letting k— o and using 14),

Theorem 1.Let(X,d) be a complete metric space and T d (Xm(k)axn(k)) —¢. (15)
X — X be a self-mapping satisfying the inequality
Also, we have
1
d(TXTy) <S[dTH+dyTy)]-¢(d(Tx,d (y,(';))/)) A (oo Xo0) < 0 (g X2 + 0 (i1 Xmi) -+ (Xm(k)fl,xa%))
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and Y (t)=0ifand only ift=0.
2) ¢ : [0,00)? — [0,) is continuous and monotone

d (a9 -1 Xt -1) < A (X9 -1:Xn19) + (X Xmig ) +d (Xemiig - Xmio-1) - nondecreasing function such that

) ) 17 @(x,y) =0ifand only if x=y=0.
Letting k— e in (16) and (17), Then, T has a unique fixed point.

Ilim d (Xn(k)— 1, Xm(k)—1) = €. Proof. Let % € X and for all n> 1, Xp11 = T X.
—»00
. , (A (X0, Xnt1)) = Y(d(Tx0-1,T%))
Also, by using14), we obtain that - 7d (% 1,%) +d(xn7xn+1)}
£ < d (Xm(kys Xn(k)) i 2
— d (TXTTI(k>717TXﬂ(k>71) _(e[d (Xn—LXn) 7d(xn7xn+1)] (23)
1 < d(xn—LXn) +d(Xn7Xn+l):|
<y
< 5 [d (-1, Xmiig) +d (a1, (i) I 2
[d (Xn_1,%n) +d (Xn—_1,%n) +d (Xn, X

_w( ( 17Xm(k)) 7d(xn(k)—1vxn(k)))~ (18) <y (Xn—1,%n) ( 21 n) ( n+1)}
Letting k— oo in (18), we obtaine < —/(0,0) and this < ¢(d(%n-1,%n))- (24)
implies thate < 0 but this case is a contradiction for ; . . .
€ > 0. Consequentiallywe obtain that{x,} is a Cauchy Sincey is nondecreasing, we obtain that
sequence and hence there existsexX such that d (%0, Xn1) < d (X1, %) - (25)

{Xn} — X"
Now, we will show that*xe X is the fixed point of T
Indeed, we have

d(X,TX) < d(X'Xns1) +d (Xnr1, TX)

1
< d(X' Xnr1) + 5 [d (X0, Xn 1) +d (X7, TX)]

Thus{d (xn,Xn+1)} is @ monotone decreasing sequence of
non-negative real numbers. Hence, there existsRr such
that d(Xp,Xn11) — I, @S N— .

Letting n— o in (23),

W) <w(r)- (26)

e(rr).

The inequality26) implies thatp (r,r) = 0 and this implies

1im d (Xy Xp1) = 0. (27)

— g (d (%, Xnr1) ,d (X, TX)). (19)
If we take n— « in (19), we obtain r = 0. Thus, we obtain that
%d(x*,w) < —@(0,d(x",TX)). (20)

The inequality 20) is conradiction for definition ofy,
unless dx*, Tx*) = 0. Hence X is the fixed point of T

Also, it is easy to see that fixed point of T is unique.

Assume that’xs an other fixed point of T.

d(x*,X) = d(Tx,TX)

1 *

5 [d0,TX) +d (X, TX)]

—@(d(x, TX)+d (X, TX)). (21)

Finally, we obtain from 21), x* = X. This completes the
proof.

<

Remark.In Theorem1l, if we take (t) = kt where
k € (0, 3] then we obtain well-known Kannan fixed point

Next, we prove thafx,} is a Cauchy sequence. If
possible, let{x,} be not a Cauchy sequence. Then, there
existse > 0 for which we can find subsequendes, }
and {Xn(k)} of

{xn} with n(k) > m(k) > k such that

d (Xm(k) Xn(k)) = &-

Also, corresponding to i), we can choose (k) in such
a way that it is the smallest integer with{k) > m(k) and
satisfying 7). Then,

d (X Xnky-1) < €.

Again, by taking 22) into account with 27), we have

theorem. £ < d (Xm(k) Xn(io)
. = d (T2, T 1)
Theorem 2.Let (X,d) be a complete metric space and let
T : X — X be a self-mapping satisfying the inequalty <y [d (X —1-Xmik) + 0 (Kngig—1: %k
- 2
Y(d(TxTy) <@ [3(d(xTY+d¥,Ty)] - @[d(xTx),d(y.Ty)
? (22) —@ [d (Xm(g—1: Xm0 ) »d (Xngio—1.Xn(0)) | - (28)
where, _ . Letting k— o, in (28)and using 27), we obtain that
1) ¢ : [0,0) — [0,%) is continuous and monotone
nondecreasing function such that W(e) < Y (0)—¢(0,0). (29)
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The inequality 29) implies thate < 0. But, this case is a
contradiction fore > 0. Thus, we obtaifx,} is a Cauchy

sequence and hence convergent in complete metric space

(X,d). Let{xn} — x*as n— o, thus, we have

d(xX*,TX") < d(X",Xpt1) +d (Xnt2, TX)

< d(X",Xn+1) +ll—’<[d (xn7xn+1);d(x*7T)<*)]>

d(x',TX)).

—@(d (X0, Xn+1) (30)

If we take n— oo, we obtain

d(xX", TX) <=y (0)—e0,d (X", TX)). (31)

The inequality 81) implies that dx*, Tx") = 0. Thus, we

have TxX = x*. It is easy to see that the fixed point is

unique. This completes the proof
Now, we give some results of the Theor@m

Remark.In Theorem2, if we choosey (t) =t then, we
obtain Theoreni.

RemarkAlso, if we choosew( ) =t and takep(x,y) =
k(x-+y) wherek € (0, 3], we obtain well known Kannan’s
fixed point theoremzﬂ

Theorem 3.Let(X,d) be a complete metric space.X —
X be a self-mapping satisfying

Y(Ad(TxTy) <@ [3(dxTy) +d(y,TX)] —fp[d(X,TY),d(y,(T?’)g])
where
1) ¢ : [0,00) — [0,00) is continuous and monotone

nondecreasing function such that
Y (t)=0ifand only ift=0.
2) ¢:[0,0)% —
nondecreasing function such that
@(x,y) =0if and only if x=y=0.
Then, T has a unique fixed point.

Proof. Lety € X and forall n> 1, X, 11 =T X,.

Y(d (X0, Xn11) = Y (A(TX-1,TX))
< w(d(xn—bxnﬂ.z)“’d(xmxn))

— @(d(Xn—1,%n+1) ,d (Xn, Xn))
<y <d(xn71,xn+1))

2
< w<d(xn717xn);d(xn7xn+1)>
< Y(d(Xn-1.%))- (33)
Sincey is nondecreasing, we obtain that
d (%0, Xn11) < d (Xn-1,%n) . (34)

Thus{d (xn,Xn+1) } is @ monotone decreasing sequence of

non-negative real numbers. Hence, there existsR such
that d(xn,Xy+1) — I, @S n— oo.

[0,00) is continuous and monotone

Also, by using32), we have

Y (d (%, %n+1)) = P(d(Tx-1,T X))
d (X1, %11 de(xnaxn))

)
e
_ (P( (Xn 1 Xn+1) d(Xn Xn))

o (4 295)) 06, 10.0).0 9
( - )
2

)-
L ) (36)
d (Xn—1,%n) +d<xn-,xn+1)> )
2

<
<
<y d(Xn-1,%n¢1
<

@7

<

Letting n— o , we see by36) and 37)

Yr)< Ilmqj(M) <y(r).

Nn—co 2
Sincey is nondecreasing, we obtain that

. Xn—1,X
r S “m d( n—-1, n+1)
n—oo

<r

and we obtain that

lim d (%01, %1) = 2r. (38)

Letting n— <o in (35) and using 88) and continuity ofg,
we have

W) <yg(r)—o(2r0). (39)

The inequality 89) implies that r= 0. Thus, we obtain that
i d (X, Xns.1) = 0. (40)

Now, we prove thafx,} is a Cauchy sequence. If

possible, let{x,} be not a Cauchy sequence. Then, there

existse > 0 for which we can find subsequeneb%(k>}
and {Xn( } of {.} with n(k) > m(k) > k such that

d (Xm(k)axn(k)) > E. (41)
Also, corresponding to iik) , we can choose (k) in such
a way that it is the smallest integer with{k) > m(k) and

satisfying 40). Then,

d (Xm(k: Xn()—1) < €- (42)
Again
€ < d (X X )
< d (Xm(k)> Xn(k)—1) + A (Xngg—1: %))
< &4+d (Xagg—1:Xn(k)) - (43)
Letting k— 0 in (43), we obtain
lim d (X Xngtg) = € and im d (xmgq, X -1) = €
(44)

Also,

d (X X ) < A (X Xomii 1) 0 (X~ 1, X))+ (X X 1) -
(45)
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and
d (Xm(k)—1:Xn(k)) < d (Xm()—1,Xm(i) +d (Xm(k)axn(k)()A:G)
Making k— o in (45) and @6), we get
limd (Xm(g—1-Xn()) = € (47)
Also, by using43), (44), (47), we obtain that
W(e) < @ (d (Xmag: X))
= ¢ (d(TXmi-1: TXa-1))
<y (d (Xm(k)—1:Xn(k) ) ;d (Xn(k)—laxm(k))>
—@(d (Xm(g—1.%n()) »d (Xngo—1.Xm(i))) -~ (48)

Letting k— oo, in (48) and using 47),(44), we obtain that

Wie) <y(e)—o(ee).
This implies that ¢(g,6) < 0 but this case is a
contradiction fore > 0. Thus, we obtaifx,} is a Cauchy
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