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1 Introduction and Preliminaries

Fixed point theory is one of the most important topic in
development of nonlinear analysis. Also, fixed point
theory has been used effectively in many other branch of
science, such as chemistry, biology, economics, computer
science, engineering et,. It is a long time many
mathematicians have studied on fixed point theory. The
authors developed very useful results in this area. Now,
we briefly recall some of those results.

A mapping T: X → X where(X,d) is a metric space,
is said to be a contraction if there exists k∈ [0,1) such that
for all x,y∈ X,

d (Tx,Ty)≤ kd(x,y) . (1)

If the metric space(X,d) is complete then the
mapping satisfying (1) has a unique fixed point.
Inequality (1) implies continuity ofT. A natural question
is that whether we can find contractive conditions which
will imply existence of fixed point in a complete metric
space but will not imply continuity.

Kannan [2] established the following result in which
the above question has been answered in the affirmative.

If a mapping T: X → X where(X,d) is a complete
metric space, satisfies the inequality

d (Tx,Ty)≤ a[d (x,Tx)+d (y,Ty)] (2)

where a∈
[

0, 1
2

)

and x,y∈ X. Then, T has a unique fixed
point. The mappings satisfying (2) are called Kannan type
mappings.

A similar contractive condition has been introduced by
Chatterjea [3] as follows:

If T : X → X where(X,d) is a complete metric space,
satisfies the inequality

d (Tx,Ty)≤ b[d (x,Ty)+d (y,Tx)] (3)

where b∈
[

0, 1
2

)

and x,y∈ X. Then, T has a unique fixed
point. The mappings satisfying (3) are called Chatterjea
type mapping.

Another generalization of the contraction principle
was suggested by Rhoades [4] as following:

Definition 1. [4] (weakly contractive mapping). A
mapping T: X → X, where(X,d) is a metric space, is
said to be weakly contractive if

d (Tx,Ty)≤ d (x,y)−ψ (d (x,y)) (4)

where x,y∈ X andψ : [0,∞)→ [0,∞) is a continuous and
nondecreasing function such thatψ (t) = 0 if and only if
t = 0.

Rhoades [4] showed that a weakly contractive mapping
have a unique fixed point in complete metric space(X,d).
Also, it is clear that taken ifψ (t) = kt wherek ∈ [0,1)
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then, (4) reduces to (1). For this reason, the concept of
Rhoades [4] is more general than the concept of Banach
[1].

Choudhury [5] introduced a generalization of
Chatterjea type contraction as follows:

Definition 2. [5] A self-mapping T: X → X, on a metric
space(X,d) , is said to be a weakly C−contractive (or
weak Chatterjea type contraction ) if for all x,y∈ X,

d (Tx,Ty)≤
1
2
[d (x,Ty)+d (y,Tx)]−ψ (d (x,Ty) ,d (y,Tx))

(5)
whereψ : [0,∞)× [0,∞)→ [0,∞) is a continuous function
such thatψ (x,y) = 0 if and only if x= y= 0.

Choudhury [5] showed that a mapping satisfying the
inequality (5) has unique fixed point in complete metric
space and proved that there is no requirement of
continuity of the C−contraction. Also, taken if
ψ (x,y) = k(x+ y) wherek ∈

(

0, 1
2

]

, then (5) reduces to
(3). For this reason, result of Choudhury is more general
than the result of Chatterjea [3].

Dutta and Choudhury [6] introduced a new
generalization of the Banach contraction mapping
principle. This new generalization is more general than
the concept of Rhoades in [4]. The result of Dutta and
Choudhury is following:

Let (X,d) be a complete metric space and let T: X →
X be a self-mapping satisfying the inequality

ψ(d (Tx,Ty))≤ ψ(d (x,y))−φ (d (x,y)) , (6)

where
1) ψ ,φ : [0,∞) → [0,∞) are both continuous and

monotone nondecreasing functions,
2) ψ (t) = 0= φ (t) if and only if t= 0.
Then, T has a unique fixed point.
Other than the above, very recently, various

generalizations of contraction mappings have been
studied extensively by Karapınar, [7],[9],[10],[11].

In present study, we have two main ideas. Our first idea
is applying the logic of Choudhury [5] to the Kannan type
contraction mappings, the second is applying the logic of
Dutta and Choudhury [6] to the Kannan type contraction
mappings and Chatterjea type contraction mappings. For
this reason our results more general than the some results
of [1],[2],[3],[4],[5],[6].

Now, we give our main results.

2 Main Results

Theorem 1.Let(X,d) be a complete metric space and T:
X → X be a self-mapping satisfying the inequality

d (Tx,Ty)≤
1
2
[d (x,Tx)+d (y,Ty)]−ψ (d (x,Tx) ,d (y,Ty))

(7)

whereψ : [0,∞)× [0,∞)→ [0,∞) is a continuous function
such thatψ (x,y) = 0 if and only if x= y= 0. Then, T has
a unique fixed point in X.

Proof. Let x0 ∈ X and for all n≥ 1, xn+1 = Txn.

d (xn,xn+1) = d (Txn−1,Txn)

≤
1
2
[d (xn−1,xn)+d (xn,xn+1)]

− ψ (d (xn−1,xn) ,d (xn,xn+1))

≤
1
2
[d (xn−1,xn)+d (xn,xn+1)] . (8)

From (8), we have

d (xn,xn+1)≤ d (xn−1,xn) .

Thus,{d (xn,xn+1)} is a monotone decreasing sequence of
non-negative real numbers. Hence, there exists r∈R such
that d(xn,xn+1)→ r, as n→ ∞.

d (xn,xn+1) = d (Txn−1,Txn)

≤
1
2
[d (xn−1,xn)+d (xn,xn+1)]

−ψ (d (xn−1,xn) ,d (xn,xn+1)) . (9)

Letting n→ ∞ in (9), we obtain that

r ≤ r −ψ (r, r) . (10)

The equation (10) implies that r= 0. Thus, we have

lim
n→∞

d (xn,xn+1) = 0. (11)

Now, we show that{xn} is a Cauchy sequence. If possible,
let {xn} be not a Cauchy sequence. Then, there existsε > 0
for which we can find subsequences

{

xm(k)

}

and
{

xn(k)

}

of {xn} with n(k)> m(k)> k such that

d
(

xm(k),xn(k)

)

≥ ε. (12)

Further, corresponding to m(k) , we can choose n(k) in
such a way that it is the smallest integer with n(k)> m(k)
and satisfying (11). Then,

d
(

xm(k),xn(k)−1
)

< ε. (13)

Then, by putting (11) in (12), we have

ε ≤ d
(

xm(k),xn(k)

)

≤ d
(

xm(k),xn(k)−1
)

+d
(

xn(k)−1,xn(k)

)

< ε +d
(

xn(k)−1,xn(k)

)

. (14)

Letting k→ ∞ and using (14),

d
(

xm(k),xn(k)

)

= ε. (15)

Also, we have

d
(

xm(k),xn(k)

)

≤ d
(

xn(k),xn(k)−1
)

+d
(

xn(k)−1,xm(k)

)

+d
(

xm(k)−1,xm(k)

)

(16)
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and

d
(

xn(k)−1,xm(k)−1
)

≤ d
(

xn(k)−1,xn(k)

)

+d
(

xn(k),xm(k)

)

+d
(

xm(k),xm(k)−1
)

.

(17)
Letting k→ ∞ in (16) and (17),

lim
k→∞

d
(

xn(k)−1,xm(k)−1
)

= ε.

Also, by using (14), we obtain that

ε ≤ d
(

xm(k),xn(k)

)

= d
(

Txm(k)−1,Txn(k)−1
)

≤
1
2

[

d
(

xm(k)−1,xm(k)

)

+d
(

xn(k)−1,xn(k)

)]

−ψ
(

d
(

xm(k)−1,xm(k)

)

,d
(

xn(k)−1,xn(k)

))

. (18)

Letting k→ ∞ in (18), we obtainε ≤ −ψ (0,0) and this
implies thatε ≤ 0 but this case is a contradiction for
ε > 0. Consequentially, we obtain that{xn} is a Cauchy
sequence and hence there exists x∗ ∈ X such that
{xn}→ x∗.

Now, we will show that x∗ ∈ X is the fixed point of T.
Indeed, we have

d (x∗,Tx∗) ≤ d (x∗,xn+1)+d (xn+1,Tx∗)

≤ d (x∗,xn+1)+
1
2
[d (xn,xn+1)+d (x∗,Tx∗)]

−ψ (d (xn,xn+1) ,d (x
∗,Tx∗)) . (19)

If we take n→ ∞ in (19), we obtain

1
2

d (x∗,Tx∗)≤−ψ (0,d (x∗,Tx∗)) . (20)

The inequality (20) is conradiction for definition ofψ ,
unless d(x∗,Tx∗) = 0. Hence x∗ is the fixed point of T.
Also, it is easy to see that fixed point of T is unique.
Assume that x′ is an other fixed point of T .

d
(

x∗,x′
)

= d
(

Tx∗,Tx′
)

≤
1
2

[

d (x∗,Tx∗)+d
(

x′,Tx′
)]

−ψ
(

d (x∗,Tx∗)+d
(

x′,Tx′
))

. (21)

Finally, we obtain from (21), x∗ = x′. This completes the
proof.

Remark. In Theorem 1, if we take ψ (t) = kt where
k ∈

(

0, 1
2

]

then we obtain well-known Kannan fixed point
theorem.

Theorem 2.Let (X,d) be a complete metric space and let
T : X → X be a self-mapping satisfying the inequalty

ψ(d (Tx,Ty))≤ ψ
[

1
2(d (x,Tx)+d (y,Ty))

]

−φ [d (x,Tx) ,d (y,Ty)]
(22)

where,
1) ψ : [0,∞) → [0,∞) is continuous and monotone

nondecreasing function such that

ψ (t) = 0 if and only if t= 0.
2) φ : [0,∞)2 → [0,∞) is continuous and monotone

nondecreasing function such that
φ (x,y) = 0 if and only if x= y= 0.

Then, T has a unique fixed point.

Proof. Let x0 ∈ X and for all n≥ 1, xn+1 = Txn.

ψ(d(xn,xn+1)) = ψ(d(Txn−1,Txn))

≤ ψ
[

d(xn−1,xn)+d(xn,xn+1)

2

]

−φ [d(xn−1,xn) ,d(xn,xn+1)] (23)

≤ ψ
[

d(xn−1,xn)+d(xn,xn+1)

2

]

≤ ψ
[

d(xn−1,xn)+d(xn−1,xn)+d(xn,xn+1)

2

]

≤ ψ(d(xn−1,xn)). (24)

Sinceψ is nondecreasing, we obtain that

d (xn,xn+1)< d (xn−1,xn) . (25)

Thus,{d (xn,xn+1)} is a monotone decreasing sequence of
non-negative real numbers. Hence, there exists r∈R such
that d(xn,xn+1)→ r, as n→ ∞.

Letting n→ ∞ in (23),

ψ (r)≤ ψ (r)−φ (r, r) . (26)

The inequality (26) implies thatφ (r, r) =0 and this implies
r = 0. Thus, we obtain that

lim
n→∞

d (xn,xn+1) = 0. (27)

Next, we prove that{xn} is a Cauchy sequence. If
possible, let{xn} be not a Cauchy sequence. Then, there
existsε > 0 for which we can find subsequences

{

xm(k)

}

and
{

xn(k)

}

of
{xn} with n(k)> m(k)> k such that

d
(

xm(k),xn(k)

)

≥ ε.

Also, corresponding to m(k) , we can choose n(k) in such
a way that it is the smallest integer with n(k)> m(k) and
satisfying (27). Then,

d
(

xm(k),xn(k)−1
)

< ε.

Again, by taking (22) into account with (27), we have

ε ≤ d
(

xm(k),xn(k)

)

= d
(

Txm(k)−1,Txn(k)−1
)

≤ ψ

[

[

d
(

xm(k)−1,xm(k)

)

+d
(

xn(k)−1,xn(k)

)]

2

]

−φ
[

d
(

xm(k)−1,xm(k)

)

,d
(

xn(k)−1,xn(k)

)]

. (28)

Letting k→ ∞, in (28 )and using (27), we obtain that

ψ (ε)≤ ψ (0)−φ (0,0) . (29)
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The inequality (29) implies thatε ≤ 0. But, this case is a
contradiction forε > 0. Thus, we obtain{xn} is a Cauchy
sequence and hence convergent in complete metric space
(X,d) . Let {xn}→ x∗as n→ ∞, thus, we have

d(x∗,Tx∗) ≤ d(x∗,xn+1)+d(xn+1,Tx∗)

≤ d(x∗,xn+1)+ψ
(

[d(xn,xn+1)+d(x∗,Tx∗)]
2

)

−φ (d(xn,xn+1) ,d(x
∗,Tx∗)) . (30)

If we take n→ ∞, we obtain

d (x∗,Tx∗)≤−ψ (0)−φ (0,d (x∗,Tx∗)) . (31)

The inequality (31) implies that d(x∗,Tx∗) = 0. Thus, we
have Tx∗ = x∗. It is easy to see that the fixed point is
unique. This completes the proof.

Now, we give some results of the Theorem2.

Remark.In Theorem2, if we chooseψ (t) = t then, we
obtain Theorem1.

Remark.Also, if we chooseψ (t) = t and takeφ (x,y) =
k(x+ y)wherek∈

(

0, 1
2

]

,we obtain well known Kannan’s
fixed point theorem [2].

Theorem 3.Let(X,d) be a complete metric space.T: X →
X be a self-mapping satisfying

ψ(d (Tx,Ty))≤ ψ
[1

2(d (x,Ty)+d (y,Tx))
]

−φ [d (x,Ty) ,d (y,Tx)]
(32)

where
1) ψ : [0,∞) → [0,∞) is continuous and monotone

nondecreasing function such that
ψ (t) = 0 if and only if t= 0.

2) φ : [0,∞)2 → [0,∞) is continuous and monotone
nondecreasing function such that

φ (x,y) = 0 if and only if x= y= 0.
Then, T has a unique fixed point.

Proof. Let x0 ∈ X and for all n≥ 1, xn+1 = Txn.

ψ (d(xn,xn+1)) = ψ (d(Txn−1,Txn))

≤ ψ
(

d(xn−1,xn+1)+d(xn,xn)

2

)

− φ (d(xn−1,xn+1) ,d(xn,xn))

≤ ψ
(

d(xn−1,xn+1)

2

)

≤ ψ
(

d(xn−1,xn)+d(xn,xn+1)

2

)

≤ ψ (d(xn−1,xn)) . (33)

Sinceψ is nondecreasing, we obtain that

d (xn,xn+1)< d (xn−1,xn) . (34)

Thus,{d (xn,xn+1)} is a monotone decreasing sequence of
non-negative real numbers. Hence, there exists r∈ R such
that d(xn,xn+1)→ r, as n→ ∞.

Also, by using (32), we have

ψ (d(xn,xn+1)) = ψ (d(Txn−1,Txn))

≤ ψ
(

d(xn−1,xn+1)+d(xn,xn)

2

)

− φ (d(xn−1,xn+1) ,d(xn,xn))

≤ ψ
(

d(xn−1,xn+1)

2

)

−φ (d(xn−1,xn+1) ,0) (35)

≤ ψ
(

d(xn−1,xn+1)

2

)

(36)

≤ ψ
(

d(xn−1,xn)+d(xn,xn+1)

2

)

. (37)

Letting n→ ∞ , we see by (36) and (37)

ψ (r)≤ lim
n→∞

ψ
(

d (xn−1,xn+1)

2

)

≤ ψ (r) .

Sinceψ is nondecreasing, we obtain that

r ≤ lim
n→∞

d (xn−1,xn+1)

2
≤ r

and we obtain that

lim
n→∞

d (xn−1,xn+1) = 2r. (38)

Letting n→ ∞ in (35) and using (38) and continuity ofφ ,
we have

ψ (r)≤ ψ (r)−φ (2r,0) . (39)

The inequality (39) implies that r= 0. Thus, we obtain that

lim
n→∞

d (xn,xn+1) = 0. (40)

Now, we prove that{xn} is a Cauchy sequence. If
possible, let{xn} be not a Cauchy sequence. Then, there
existsε > 0 for which we can find subsequences

{

xm(k)
}

and
{

xn(k)

}

of {xn} with n(k)> m(k)> k such that

d
(

xm(k),xn(k)

)

≥ ε. (41)

Also, corresponding to m(k) , we can choose n(k) in such
a way that it is the smallest integer with n(k)> m(k) and
satisfying (40). Then,

d
(

xm(k),xn(k)−1
)

< ε. (42)

Again

ε ≤ d
(

xm(k),xn(k)

)

≤ d
(

xm(k),xn(k)−1
)

+d
(

xn(k)−1,xn(k)
)

≤ ε +d
(

xn(k)−1,xn(k)

)

. (43)

Letting k→ ∞ in (43), we obtain

lim
n→∞

d
(

xm(k),xn(k)

)

= ε and lim
k→∞

d
(

xm(k),xn(k)−1
)

= ε.

(44)
Also,

d
(

xm(k),xn(k)

)

≤ d
(

xm(k),xm(k)−1
)

+d
(

xm(k)−1,xn(k)

)

+d
(

xn(k),xn(k)−1
)

.

(45)
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and

d
(

xm(k)−1,xn(k)

)

≤ d
(

xm(k)−1,xm(k)

)

+d
(

xm(k),xn(k)

)

.
(46)

Making k→ ∞ in (45) and (46), we get

lim
k→∞

d
(

xm(k)−1,xn(k)

)

= ε. (47)

Also, by using (43), (44), (47), we obtain that

ψ (ε) ≤ ψ
(

d
(

xm(k),xn(k)
))

= ψ
(

d
(

Txm(k)−1,Txn(k)−1
))

≤ ψ

(

d
(

xm(k)−1,xn(k)

)

+d
(

xn(k)−1,xm(k)

)

2

)

−φ
(

d
(

xm(k)−1,xn(k)

)

,d
(

xn(k)−1,xm(k)

))

. (48)

Letting k→ ∞, in (48) and using (47),(44), we obtain that

ψ (ε)≤ ψ (ε)−φ (ε,ε) .
This implies that φ (ε,ε) ≤ 0 but this case is a
contradiction forε > 0. Thus, we obtain{xn} is a Cauchy
sequence and hence convergent in complete metric space
(X,d) . Let {xn}→ x∗ as n→ ∞. Thus, we have

d (x∗,Tx∗)≤ d (x∗,xn+1)+d (xn+1,Tx∗) . (49)

Sinceψ is nondecreasing, we have

ψ (d (x∗,Tx∗)) ≤ ψ (d (xn+1,Tx∗))

= ψ (d (Txn,Tx∗))

≤ ψ
(

d (xn,Tx∗)+d (x∗,Txn)

2

)

(50)

−φ (d (xn,Tx∗) ,d (x∗,Txn)) (51)

If we take n→ ∞ in (51) and by using continuity ofφ , we
obtain that

ψ (d (x∗,Tx∗))≤ψ (d (x∗,Tx∗))−φ (d (x∗,Tx∗) ,d (x∗,Tx∗)) .

This implies thatφ (d (x∗,Tx∗) ,d (x∗,Tx∗)) = 0. Thus,
d (x∗,Tx∗) = 0 and hence x∗ = Tx∗.

Now, we show that the fixed point is unique. Assume
that x′ is an other fixed point of T . Thus, Tx′ = x′ and we
have

ψ
(

d
(

x∗,x′
))

= ψ
(

d
(

Tx∗,Tx′
))

≤ ψ
(

d(x∗,Tx′)+d(x′,Tx∗)
2

)

− φ
(

d
(

x∗,Tx′
)

,d
(

x′,Tx∗
))

= ψ
(

d
(

x∗,x′
))

−φ
(

d
(

x∗,x′
)

,d
(

x′,x∗
))

. (52)

By the definition ofφ , we hold that d(x∗,x′) = 0 and hence
x∗ = x′. This completes the proof.

Now, we give some results of the Theorem3.

Remark.In Theorem3, if we chooseψ (t) = t, then we
obtain the result of Choudhury [5].

Remark. Also, if we choose ψ (t) = t and take
φ (x,y) = k(x+ y) where k ∈

(

0, 1
2

]

, we obtain
Chatterjea’s fixed point theorem [3].
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