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Abstract: The aim of this paper is to build recursive and integral equations for ruin probabilities of generalized risk processes under
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1 Introduction

In classical risk model, the claim number process was assumed to be a Poisson process and the individual claim amounts
were described as independent and identically distributedrandom variables. In recent years, the classical risk process
has been extended to more practical and real situations. Formost of the investigations treated in risk theory, it is very
significant to deal with the risks that rise from monetary inflation in the insurance and finance market, and also to consider
the operation uncertainties in administration of financialcapital. Teugels and Sundt [9], [10] studied the effects of constant
rate on the ruin probability under the compound Poisson riskmodel. Yang [12] established both exponential and non-
exponential upper bounds for ruin probabilities in a risk model with constant interest force and independent premiums and
claims. Xu and Wang [11] given upper bounds for ruin probabilities in a risk model with interest force with independent
premiums and claims, Markov chain interest rates. Cai [1], [2] investigated the ruin probabilities in two risk models
with independent premiums and claims, the author used a first-order autoregressive process to model the rates of in
interest. Cai and Dickson [3] obtained Lundberg inequalities for ruin probabilities intwo discrete-time risk process with a
Markov chain interest model, independent premiums and claims. Fenglong Guo and Dingcheng Wang [4] built Lundberg
inequalities for ruin probabilities in two discrete-time risk process with the premiums, claims and rates of interest have
autoregressive oving average (ARMA) dependent structuressimultaneously. P. D. Quang [5] used recursive technique to
build upper bounds for ruin probabilities in a risk model with interest force and independent interest rates and claims,
Markov chain premiums. P. D. Quang [6] used martingale approach to build upper bounds for ruin probabilities in a
risk model with interest force and independent interest rates and premiums, Markov chain claims. P. D. Quang [7] used
martingale approach to build upper bounds for ruin probabilities in a risk model with interest force and independent
interest rates, Markov chain claims and Markov chain premiums. P. D. Quang [8] also used martingale approach to build
upper bounds for ruin probabilities in a risk model with interest force and independent premiums, Markov chain claims
and Markov chain interests.

In this paper, we study the models considered by Cai and Dickson [3] to the case homogenous markov chain claims
and homogenous markov chain premiums, while the interest rates follow a first-order autoregressive processe. Recursive
and integral equations for the finite-time and ultimate ruinprobabilities are established by using recursive technique.
Generalized Lundberg inequalities for ruin probabilitiesare derived.
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We let X = {Xn}n≥0 be premiums,Y = {Yn}n≥0 be claims andI = {In}n≥0 be interests. Suppose that the premiums
are collected at the end of each period, then the surplus process{Un}n≥0 with initial u can be written as

Un = (Un−1+Xn)(1+ In)−Yn, (1)

which is quivalent to

Un = u.
n

∏
k=1

(1+ Ik)+
n

∑
k=1

[Xk(1+ Ik)−Yk]
n

∏
j=k+1

(1+ I j). (2)

where throughout this paper, we denote
b

∏
t=a

xt = 1 and
b

∑
t=a

xt = 0 if a > b.

We assume that:
Assumption 1. U0 = u > 0.
Assumption 2. X = {Xn}n≥0 is a homogeneous Markov chain such that for anyn,Xn takes values in a set of non-negative
numbersEX = {x1, x2, ..., xm, ...} with Xo = xi ∈ EX and

pi j = P
[

Xm+1 = x j
∣

∣Xm = xi
]

,(m ∈ N); xi,x j ∈ EX where 0≤ pi j ≤ 1,
+∞

∑
j=1

pi j = 1.

Assumption 3. Y = {Yn}n≥0 is a homogeneous Markov chain such that for anyn,Yn takes values in a set of non-negative
numbersEY = {y1, y2, ..., yn, ...} with Yo = yr ∈ EY and

qrs = P [Ym+1 = ys|Ym = yr] ,(m ∈ N); yr,ys ∈ EY where 0≤ qrs ≤ 1,
+∞

∑
j=1

qrs = 1.

Assumption 4. I = {In}n≥0 is a first-order autoregressive process,

In = aIn−1+Zn, n = 1, 2, ..., (3)

where,Io = io ≥ 0 and 0≤ a < 1 are two constants andZ = {Zn}n≥1 is a sequence of independent and identically
distributed non-negative random variables with the distribution functionF(z) = P(Z1 ≤ z).
Assumption 5. X , Y andI are assumed to be independent.
We define the finite time and ultimate ruin probabilities in model (1) with assumption 1 to assumption 5, respectively, by

ψn(u,xi,yr, io) = P

(

n
⋃

k=1

(Uk < 0)

∣

∣

∣

∣

∣

Uo = u, Xo = xi,Yo = yr, Io = io

)

, (4)

ψ(u,xi,yr, io) = P

(

∞
⋃

k=1

(Uk < 0)

∣

∣

∣

∣

∣

Uo = u, Xo = xi,Yo = yr, Io = io

)

. (5)

It is clear that
lim
n→∞

ψn(u,xi,yr, io) = ψ(u,xi,yr, io).

In this paper, we derive probability inequalities forψn(u,xi,yr, io) andψ(u,xi,yr, io).

2 Recursive and integral equations for ruin probabilities

We first give the recursive equation forψn(u,xi,yr, io) and the integral equation forψ(u,xi,yr, io).

Theorem 2.1. Let model (1) satisfies assumption 1 to assumption 5 then forn = 1,2,3, . . .

ψn+1(u,xi,yr, io) =

+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















F

(

ys − (u+ x j)(1+ aio)

u+ x j

)

+

+∞
∫

ys−(u+x j)(1+aio)
u+x j

ψn ((u+ x j)(1+ aio+ z)− ys,x j ,ys, i)dF(z)



















,
(6)
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and

ψ(u,xi,yr, io) =

+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















F

(

ys − (u+ x j)(1+ aio)
u+ x j

)

+

+∞
∫

ys−(u+x j )(1+aio)
u+x j

ψ ((u+ x j)(1+ aio + z)− ys,x j,ys, i)dF(z)



















.
(7)

with i = ai0+ z.

Proof.
GiveX1 = x j,Y1 = ys. From (1), we haveU1 = (u+X1)(1+ I1)−Y1 = (u+ x j)(1+ aio +Z1)− ys.

Let

B = {Uo = u,Xo = xi;Yo = yr, Io = io} , A js =
{

X1 = x j,Y1 = ys
}

,

A1 =

{

Z1 ≥
Y1− (u+X1)(1+ aio)

u+ x j

}

, A2 =

{

Z1 <
Y1− (u+X1)(1+ aio)

u+ x j

}

.

Thus, we have
P(U1 < 0|A1∩A js ∩B) = 0, (8)

and

P(U1 < 0|A2∩A js ∩B) = 1⇒ P

(

n+1
⋃

k=1

(Uk < 0)

∣

∣

∣

∣

∣

A2∩A js ∩B

)

= 1. (9)

Let
{

X̃n
}

n≥0 ,
{

Ỹn
}

n≥0 ,
{

Z̃n
}

n≥1 be independent copies of{Xn}n≥0 , {Yn}n≥0 , {Zn}n≥1 with X̃o = X1 = x j, Ỹo = Y1 = ys.

GivenZ1 = z, consider a process
{

Ĩn
}

n≥0 defines as

Ĩn = aĨn−1+ Z̃n,

whereĨo = ai0+ z = i. Trivially,
{

Ĩn
}

n≥0 has a similar structure to that ofI = {In}n≥0 but with different initial values.
Thus, (8) implies

P

(

n+1
⋃

k=1

(Uk < 0)

∣

∣

∣

∣

∣

A1∩A js ∩B

)

= P

(

n+1
⋃

k=2

(Uk < 0)

∣

∣

∣

∣

∣

A1∩A js ∩B

)

= P

(

n+1
⋃

k=2

(

[(u+ x j)(1+ aio+Z1)− ys]
k

∏
m=2

(1+ Im)+
k

∑
m=2

(Xm(1+ Im)−Ym)
k

∏
p=m+1

(1+ Ip)< 0

)∣

∣

∣

∣

∣

A1∩A js ∩B

)

= P

(

n
⋃

k=1

(

Ũo

k

∏
m=1

(1+ Ĩm)+
k

∑
m=1

(

X̃m(1+ Ĩm)− Ỹm
)

k

∏
p=m+1

(1+ Ĩp)< 0

)
∣

∣

∣

∣

∣

(

Ũo = (u+ x j)(1+ aio+Z1)− ys, X̃o = x j,Ỹo = ys, Ĩo = ai+Z1
)

∩A1∩B
)

(10)

That, (1) implies

ψn+1(u,xi,yr, io) = P

(

n+1
⋃

k=1

(Uk < 0)

∣

∣

∣

∣

∣

Uo = u, Xo = xi,Yo = yr, Io = io

)

= P

(

n+1
⋃

k=1

(

Uk < 0
)

|B

)

Thus, we have

ψn+1(u,xi,yr, io)

=
+∞

∑
j=1

+∞

∑
s=1

pi jqrsP

(

n+1
⋃

k=1

(Uk < 0)

∣

∣

∣

∣

∣

A js ∩B

)

=
+∞

∑
j=1

+∞

∑
s=1

pi jqrs

{

P

(

n+1
⋃

k=1

(Uk < 0)|A1∩A js∩B

)

.P(A1|A js ∩B)+P

(

n+1
⋃

k=1

(Uk < 0)|A2∩A js ∩B

)

.P(A2|A js ∩B)

}

.

(11)
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Thus, from (9), (10) and (11), we have

ψn+1(u,xi,yr, io)

=
+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















ys−(u+x j)(1+aio)
u+x j
∫

0

dF(z)+

+∞
∫

ys−(u+x j )(1+aio)
u+x j

ψn((u+ x j)(1+ aio+ z)− ys,x j,ys, i)dF(z)



















=
+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















F

(

ys − (u+ x j)(1+ aio)
u+ x j

)

+

+∞
∫

ys−(u+x j )(1+aio)
u+x j

ψn((u+ x j)(1+ aio+ z)− ys,x j,ys, i)dF(z)



















(12)

wherei = aio + z.
Whenn = 0, we have

ψ1(u,xi,yr, io) =
+∞

∑
j=1

+∞

∑
s=1

pi jqrsF

(

ys − (u+ x j)(1+ aio)
u+ x j

)

(13)

Thus, from the dominated convergence theorem, the integaral equation for ψ(u,xi,yr, io) in Theorem2.1 follows
immediately by lettingn → ∞ in (12).

Next, we establish probability inequalities for ruin probabilities of model (1).

3 Probability inequality for ruin probability

To establish probability inequalities for ruin probabilities of model (1), we first prove the following Lemma.

Lemma 3.1. Let model (1) satisfies assumption 1 to assumption 5,M = sup{xi ∈ EX}<+∞ andE(Ik
1)<+∞(k = 1,2).

Any xi ∈ EX andyr ∈ EY , if

E(Y1|Yo = yr)< E (X1(1+ I1)|Xo = xi) and P(Y1−X1(1+ I1)> 0|Xo = xi,Yo = yr)> 0, (14)

then, there exists a unique positive constantRir satisfying:

E
(

eRir[Y1−X1(1+I1)]
∣

∣

∣
Xo = xi,Yo = yr

)

= 1. (15)

Proof.
Define

fir(t) = E
{

et[Y1−X1(1+I1)]
∣

∣

∣
Xo = xi,Yo = yr

}

−1; t ∈ (0,+∞).

We have
fir(t) = E

{

etY1
∣

∣Yo = yr
}

.E
{

e−tX1(1+I1)
∣

∣

∣
Xo = xi

}

−1,

wheregr(t) = E
{

etY1
∣

∣Yo = yr
}

andhi(t) = E
{

e−tX1(1+I1)
∣

∣

∣
Xo = xi

}

.

FromY1 is a discrete random variable which takes values inEY = {y1,y2, ..., yn, ...} then

gr(t) = E
{

etY1
∣

∣Yo = yr
}

=
+∞

∑
s=1

qrse
tys

haven-th derivatived function on(0,+∞) (anyn ∈ N∗ = N\{0}).
FromX1 is a discrete random variable which takes values inEX = {x1,x2, ..., xm, ...} then

hi(t) = E
{

e−tX1(1+I1)
∣

∣

∣
Xo = xi

}

=
+∞

∑
j=1

pij

+∞
∫

0

e−tx j(1+z) f (z)dz

c© 2014 NSP
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with f (z) = F ′(z).
We have

hi(t) =
+∞

∑
j=1

pij

+∞
∫

0

e−tx j(1+z) f (z)dz ≤
+∞

∑
j=1

pij

+∞
∫

0

f (z)dz = 1,

+∞

∑
j=1

pij

+∞
∫

0

x j(1+ z)e−tx j(1+z) f (z)dz ≤
+∞

∑
j=1

pij x j

+∞
∫

0

(1+ z) f (z)dz ≤
+∞

∑
j=1

pij M [1+E(I1)] = M [1+E(I1)]

and

+∞

∑
j=1

pij

+∞
∫

0

[x j(1+ z)]2e−tx j(1+z) f (z)dz ≤
+∞

∑
j=1

pij x
2
j

+∞
∫

0

2(1+ z2) f (z)dz

≤ 2
+∞

∑
j=1

pij M
2 [1+E(I2

1)
]

= 2M2[1+E(I2
1)
]

Thus,hi(t) hasn-th derivative function on(0,+∞) with n = 1,2.
Therefore,fir(t) hasn-th derivative function on(0,+∞) with n = 1,2 and

f
′

ir(t) = E
{

[Y1−X1(1+ I1)]e
t[Y1−X1(1+I1)]

∣

∣

∣
Xo = xi,Yo = yr

}

f
′′

ir(t) = E
{

[Y1−X1(1+ I1)]
2et[Y1−X1(1+I1)]

∣

∣

∣
Xo = xi,Yo = yr

}

≥ 0.

Which implies that
fir(t) is a convex function withfir(0) = 0. (16)

and
f
′

ir(0) = E { [Y1−X1(1+ I1)]|Xo = xi,Yo = yr}= E (Y1|Yo = yr)−E(X1(1+ I1)|Xo = xi)< 0. (17)

By P(Y1−X1(1+ I1)> 0|Xo = xi,Yo = yr)> 0, we can find some constantδ > 0 such that

P(Y1−X1(1+ I1)> δ > 0|Xo = xi,Yo = yr)> 0

Then, we can get that

fir(t) = E
{

et[Y1−X1(1+I1)]
∣

∣

∣
Xo = xi,Yo = yr

}

−1

≥ E
({

et[Y1−X1(1+I1)]
∣

∣

∣
Xo = xi,Yo = yr

}

.1{Y1−X1(1+I1)>δ |Xo=xi,Yo=yr}

)

−1

≥ etδ
.P({Y1−X1(1+ I1)> δ |Xo = xi,Yo = yr}−1.

Imply
lim

t→+∞
fir(t) = +∞ (18)

From (16), (17) and (18) there exists a unique positive constantRir satisfying (14).

Let Ro = inf
{

Rir > 0 : E
(

eRir[Y1−X1(1+I1)]
∣

∣

∣
Xo = xi, Yo = yr

)

= 1(xi ∈ EX ,yr ∈ EY )
}

.

Remark 3.1. E
(

eRo[Y1−X1(1+I1)]
∣

∣X0 = xi,Y0 = yr

)

≤ 1,∀xi ∈ EX ,yr ∈ EY .

Use Lemma3.1and Theorem2.1, we now obtain a probability inequality forψ(u,xi,yr, io) by an inductive approach.

Theorem 3.1. Let model (1) satisfies assumption 1 to assumption 5. Under the conditions of Lemma3.1andRo > 0 then,
for anyxi ∈ EX andyr ∈ EY

ψ(u,xi,yr, io)≤ β E
[

eRoY1
∣

∣Yo = yr
]

E
[

e−Ro(u+X1)(1+I1)
∣

∣

∣
Xo = xi

]

, (19)

where

β−1 = inf
z>0

eRouz

z
∫

0

e−RoutdF(t)

F(z)
, β ≤ 1. (20)

c© 2014 NSP
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Proof.
Firstly, we have

β−1 = inf
z>0

z
∫

0

eRou(z−t)dF(t)

F(z)
≥ inf

z>0

z
∫

0

dF(t)

F(z)
= 1⇔

1
β

≥ 1⇔ β ≤ 1.

For anyz > 0, we have

F(z) =















eRouz.

z
∫

0

e−RoutdF(t)

F(z)















−1

.eRouz
.

z
∫

0

e−RoutdF(t)≤ β .eRouz
.

z
∫

0

e−RoutdF(t). (21)

Then, anyu > 0, io ≥ 0,xi ∈ EX andyr ∈ EY

ψ1(u,xi,yr, io) =
+∞

∑
j=1

+∞

∑
s=1

pi jqrsF

(

ys − (u+ x j)(1+ aio)

u+ x j

)

≤ β
+∞

∑
j=1

+∞

∑
s=1

pi jqrs

ys−(u+x j )(1+aio)
u+x j
∫

0

e
Rou

[

ys−(u+x j)(1+aio)
u+x j

−z

]

dF(z)

= β
+∞

∑
j=1

+∞

∑
s=1

pi jqrs

ys−(u+x j )(1+aio)
u+x j
∫

0

e
Rou

[

ys−(u+x j)(1+aio+z)
u+x j

]

dF(z)

≤ β
+∞

∑
j=1

+∞

∑
s=1

pi jqrs

ys−(u+x j )(1+aio)
u+x j
∫

0

eRo[ys−(u+x j)(1+aio+z)]dF(z)

≤ β
+∞

∑
j=1

+∞

∑
s=1

pi jqrs

+∞
∫

0

eRo[ys−(u+x j)(1+aio+z)]dF(z) = β E
[

eRoY1
∣

∣Yo = yr
]

.E
[

e−Ro(u+X1)(1+I1)
∣

∣

∣
Xo = xi

]

.

Hence
ψ1(u,xi,yr, io)≤ β E

[

eRoY1
∣

∣Yo = yr
]

.E
[

e−Ro(u+X1)(1+I1)
∣

∣

∣
Xo = xi

]

. (22)

Under an inductive hypothesis, we assume for

ψn(u,xi,yr, io)≤ β E
[

eRoY1
∣

∣Yo = yr
]

.E
[

e−Ro(u+X1)(1+I1)
∣

∣

∣
Xo = xi

]

. (23)

Then (22) implies (23) hold with n = 1.

For x j ∈ EX , ys ∈ EY , z ≥
ys − (u+ x j)(1+ aio)

u+ x j
andI1 ≥ 0, we have

ψn+1 ((u+ x j)(1+ aio + z)− ys,x j,ys, i)≤ β ∗E
[

eR∗
oY1

∣

∣

∣
Yo = ys

]

.E
[

e−R∗
o[(u+x j)(1+aio+z)−ys+X1](1+I1)

∣

∣

∣
Xo = x j

]

= β ∗E
[

eR∗
oY1

∣

∣

∣
Yo = ys

]

.E
[

e−R∗
o[(u+x j)(1+aio+z)−ys](1+I1)−R∗

oX1(1+I1)
∣

∣

∣
Xo = x j

]

≤ β ∗E
[

eR∗
oY1

∣

∣

∣
Yo = ys

]

.E
[

e−R∗
o[(u+x j)(1+aio+z)−ys]−R∗

oX1(1+I1)
∣

∣

∣
Xo = x j

]

= β ∗E
[

eR∗
oY1

∣

∣

∣
Yo = ys

]

.E
[

e−R∗
oX1(1+I1)

∣

∣

∣
Xo = x j

]

.e−R∗
o[(u+x j)(1+aio+z)−ys]

≤ β ∗
.e−R∗

o[(u+x j)(1+aio+z)−ys]. (24)
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where

β ∗−1 = inf
z>0

eR∗
ouz

z
∫

0

e−R∗
outdF(t)

F(z)
,E
(

eR∗
o(Y1−X1(1+I1))

∣

∣

∣
Xo = x j,Yo = ys

)

= 1 andR∗
o ≥ Ro > 0.

For anyz > 0

eRouz

z
∫

0

e−RoutdF(t)

F(z)
=

z
∫

0

eRou(z−t)dF(t)

F(z)
≤

z
∫

0

eR∗
ou(z−t)dF(t)

F(z)
=

eR∗
ouz

z
∫

0

e−R∗
outdF(t)

F(z)

then

β−1 = inf
z>0

eRouz

z
∫

0

e−RoutdF(t)

F(z)
≤ β ∗−1 = inf

z>0

eR∗
ouz

z
∫

0

e−R∗
outdF(t)

F(z)
⇔

1
β

≤
1

β ∗
⇔ β ∗ ≤ β .

We getR∗
o [(u+ x j)(1+ aio + z)− ys]≥ Ro [(u+ x j)(1+ aio + z)− ys]> 0 then (24) becomes

ψn ((u+ x j)(1+ aio+ z)− ys,x j,ys, i)≤ β .e−Ro[(u+x j)(1+aio+z)−ys] (25)

Therefore, by Lemma3.1, (6) and (25), we get

ψn+1(u,xi,yr, io)

=
+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















F

(

ys − (u+ x j)(1+ aio)
u+ x j

)

+

+∞
∫

ys−(u+x j)(1+aio)
u+x j

ψn ((u+ x j)(1+ aio+ z)− ys,x j,ys, i)dF(z)



















≤
+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















β

ys−(u+x j )(1+aio)
u+x j
∫

0

e
Rou

[

ys−(u+x j )(1+aio)
u+x j

−z

]

dF(z)+β
+∞
∫

ys−(u+x j)(1+aio)
u+x j

e−Ro[(u+x j)(1+aio+z)−ys]dF(z)



















=
+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















β

ys−(u+x j )(1+aio)
u+x j
∫

0

e
Rou

[

ys−(u+x j )(1+aio+z)
u+x j

]

dF(z)+β
+∞
∫

ys−(u+x j )(1+aio)
u+x j

e−Ro[(u+x j)(1+aio+z)−ys]dF(z)



















≤
+∞

∑
j=1

+∞

∑
s=1

pi jqrs



















β

ys−(u+x j )(1+aio)
u+x j
∫

0

eRo[ys−(u+x j)(1+aio+z)]dF(z)+β
+∞
∫

ys−(u+x j)(1+aio)
u+x j

e−Ro[(u+x j)(1+aio+z)−ys]dF(z)



















= β
+∞

∑
j=1

+∞

∑
s=1

pi jqrs

+∞
∫

0

eRo[ys−(u+x j)(1+aio+z)]dF(z)

= β E
[

eRoY1
∣

∣Yo = yr
]

.E
[

e−Ro(u+X1)(1+I1)
∣

∣

∣
Xo = xi

]

.

Hence

ψn+1(u,xi,yr, io)≤ β E
[

eRoY1
∣

∣Yo = yr
]

.E
[

e−Ro(u+X1)(1+I1)
∣

∣

∣
Xo = xi

]

Hence, for anyn = 1,2, . . . , (23). Therefore, (19) follows by lettingn → ∞ in (23).
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Remark 3.2.
Let A(u,xi,yr, io) = β E

[

eRoY1
∣

∣Yo = yr
]

.E
[

e−Ro(u+X1)(1+I1)
∣

∣

∣
Xo = xi

]

.

FromI1 ≥ 0,X1 ≥ 0 andβ ≤ 1, we have

A(u,xi,yr, io)≤ β E
[

eRoY1
∣

∣Yo = yr
]

E
[

e−Rou(1+I1)−RoX1(1+I1)
∣

∣

∣
Xo = xi

]

≤ β E
[

eRoY1
∣

∣Yo = yr
]

E
[

e−Rou−RoX1(1+I1)
∣

∣

∣
Xo = xi

]

= β E
[

eRoY1
∣

∣Yo = yr
]

E
[

e−RoX1(1+I1)
∣

∣

∣
Xo = xi

]

.e−Rou ≤ β e−Rou ≤ e−Rou
.

Hence, upper bound for ruin probability in (19) is better thane−Rou.

4 Conclusion

Our main results in this paper, Theorem2.1 give the recursive equation forψn(u,xi,yr, io) and the integral equation for
ψ(u,xi,yr, io), Theorem3.1built the probability inequality forψ(u,xi,yr, io) by an inductive approach.
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