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Abstract: The aim of this paper is to build recursive and integral eignatfor ruin probabilities of generalized risk processedar
rates of interest with homogenous markov chain claims antbgenous markov chain premiums, while the interest ratesfa first-
order autoregressive processe. Generalized Lundbergatiges for ruin probabilities of this processe are detiby using recursive
technique.
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1 Introduction

In classical risk model, the claim number process was assutonige a Poisson process and the individual claim amounts
were described as independent and identically distribtaedom variables. In recent years, the classical risk pce
has been extended to more practical and real situationambst of the investigations treated in risk theory, it is very
significant to deal with the risks that rise from monetaryatifin in the insurance and finance market, and also to canside
the operation uncertainties in administration of financégital. Teugels and Sund[ [10] studied the effects of constant
rate on the ruin probability under the compound Poissonmisklel. Yang 12] established both exponential and non-
exponential upper bounds for ruin probabilities in a riskd®lovith constant interest force and independent premiunds a
claims. Xu and Wang1[1] given upper bounds for ruin probabilities in a risk modeltwinterest force with independent
premiums and claims, Markov chain interest rates. @hi[R] investigated the ruin probabilities in two risk models
with independent premiums and claims, the author used aofidglr autoregressive process to model the rates of in
interest. Cai and Dicksor3] obtained Lundberg inequalities for ruin probabilitieswo discrete-time risk process with a
Markov chain interest model, independent premiums andnslaiFenglong Guo and Dingcheng Wadguilt Lundberg
inequalities for ruin probabilities in two discrete-timiek process with the premiums, claims and rates of interag h
autoregressive oving average (ARMA) dependent structinesltaneously. P. D. Quan§][used recursive technique to
build upper bounds for ruin probabilities in a risk modeltwihterest force and independent interest rates and claims,
Markov chain premiums. P. D. Quang] [used martingale approach to build upper bounds for ruirbabdities in a
risk model with interest force and independent interegsraind premiums, Markov chain claims. P. D. Quaraiged
martingale approach to build upper bounds for ruin prolitslin a risk model with interest force and independent
interest rates, Markov chain claims and Markov chain prensiuP. D. Quangd] also used martingale approach to build
upper bounds for ruin probabilities in a risk model with ie&t force and independent premiums, Markov chain claims
and Markov chain interests.

In this paper, we study the models considered by Cai and Ditf3 to the case homogenous markov chain claims
and homogenous markov chain premiums, while the interéss fallow a first-order autoregressive processe. Reairsiv
and integral equations for the finite-time and ultimate rpinbabilities are established by using recursive tecteiqu
Generalized Lundberg inequalities for ruin probabilites derived.
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We letX = {Xn} >0 be premiumsY = {Yn},.o be claims and = {In},.o be interests. Suppose that the premiums
are collected at the end of each period, then the surplu®psfloy },,-.o with initial u can be written as

Un= (Un—1+xn)(1+|n)_Yn, (1)
which is quivalent to
Up=u [T+ )+ D XKe(1+1) =Y (1+15). )
1 k=1 j=k+1

S

b
where throughout this paper, we denptp;, =1 and$ x =0ifa>h.

We assume that:

Assumption 1. Ug=u > 0.

Assumption 2. X = {Xn}n>0 is @ homogeneous Markov chain such that for ayi, takes values in a set of non-negative
numbersEy = {x1, X2, ..., Xm, ...} With X5 = X; € Ex and

400
pij = P[Xm1=Xj| Xm=x],(me N); x;,X; € Ex where 0< pjj <1, Z pij = 1.
=1

Assumption 3. Y = {Ys}n>0 is @ homogeneous Markov chain such that for an, takes values in a set of non-negative
numbersEy = {y1, ¥z, ..., Yn, ...} With Yo = y; € Ey and

+o00
Ors=P[Ymi1 =VYs|Ym=¥r],(MEN); yr,¥s € Ey where 0< qgrs <1, ZQrS: 1
J:

Assumption 4. | = {In}n>0 is a first-order autoregressive process,
Ih=alp-1+Zn,n=1,2, ..., (3)

where,lp = ip > 0 and 0< a < 1 are two constants and = {Zn}nZl is a sequence of independent and identically
distributed non-negative random variables with the distibn functionF (z) = P(Z; < z).

Assumption 5. X, Y andl are assumed to be independent.
We define the finite time and ultimate ruin probabilities indab(1) with assumption 1 to assumption 5, respectively, by

(Uk < O)

s

=~
[l

1

wn(u,m,yr,io)=P<

U0:U7X0:Xi7Y0:)’r7|0:io>a 4)

s

LII(U,Xj,yr,io):P< (U< 0)

U0:U7Xo:Xi7YOZYr7|0:io>- %)

k=1

Itis clear that
Amq—’n(uaxia)’r,io) = W(Uaxia)’r,io)'

In this paper, we derive probability inequalities (U, X, Vr,i0) and(u,Xi, Yr,io).

2 Recursive and integral equations for ruin probabilities
We first give the recursive equation fgn(u, X, Yr,io) and the integral equation fay(u, X, yr,io).
Theorem 2.1. Let model () satisfies assumption 1 to assumption 5 themferl, 2, 3,...
Wni1(UXi,Yri0) =
Joo

Tt s— (U+X)(1+aig . .
j;;pijqrs F(y ( u+13<(1 ))+ / Wn (U4 %)) (1 + 8o+ 2) — Yo, X; Ve, ) AF (2) b,

(6)

ys—(u+><j )(1+aio)
u+><j
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and
‘I—’(UaxiaYr,io) =
400 400 s — (1 '0 s . . 7
S Pt F<y (“:i‘:ii +a')>+ / W((u+xj)(1+aio+2) — Vs, X},Ys, 1) dF (2) . @
j=1s=1

Ys—(utxj)(1+aio)
u+Xj

withi =aig+z

Proof.
Give X1 = Xj,Y1 =Ys. From (1), we haved; = (Uu+Xq)(1+11) = Y1 = (U+Xj) (1 +aio+ Z1) — ¥s.
Let

B={Uo=uUXo=X;Yo=V¥r,lo =10}, Ajs= {Xl:XjaYl:yS}7

Alz{zlel—(U—FXl)(l—Falo)}’ Azz{zl<Yl—(u+X1)(1+a|0)}.
u-+Xj U+ X;

Thus, we have

P(U1 < 0/A1NAjsNB) =0, (8)
and
n+1
P(Ui <0|A2NAjsNB) :1:>P<U (Uk<0) AzﬂAjsmB> =1 9)
k=1

Let {Xﬂ}nzov {\?n}nzo, {Zn}nZl be independent copies §Kn} =g, {Yntn=0, {Zn}tnsy With Xo = X1 =X}, Yo =Y1 = ys.
GivenZ; = z, consider a proces{sfn}n>O defines as
I~n = alNn—l"‘ va

wherel, = aig+z=i. Trivially, {rn}n>0 has a similar structure to that bf= {In}- but with different initial values.
Thus, @) implies N

n+1
P<U (Uk< O)

k=1

n+1
AlﬂAjSﬂB> = P<U (Uk < 0)

k=2

ALNA;sN B)

n+1
:P<O <[(U+Xj)(1+aio+zl)_YS] ﬁ (1+1m)+ % (Xm(1+1m) —Ym) ﬁ (1+|p) <0> AlﬂAjsﬂB>
k=2 m=2 m=2 p=m+1
—pP (Lnj (Uo ﬁ (1+1m) + % (Xn(L+ Tm) — Yim) ﬁ (1+1p) <o> ‘
k=1 m=1 m=1 p=m+1
(Uo = (u+X)(1+ aio+Z1) — Ys, %o = X}, Yo = ys, o = @i +Z1) NAL N B) (10)

That, (L) implies

n+1 n+1
Lﬂn+1(ua)(4,y“|o):P<U(Uk<0) UOZU,X0:X|,Y0:yr,|0:|0>:P<U (Uk<0)|B>
k=1 k=1

Thus, we have
q"n+1(u7 XI ) Yr ) IO)

+00 400 n+1
= Z Z PijarsP < U (Uk<0)

j=1s=1 k=1

n+1 n+1

400 400
=55 pijQrs{P <U (U < 0)| AL NAjsN B) P(A1|AjsNB) +P <U (Ux < 0)| A2NAjsN B) P(Az|AjsN B)} :
=11 k=1 k=1

(11)
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Thus, from @), (10) and (L1), we have

Wny1(U, %, Yr,io)

ys—(u+xj)(1+aio)

400 oo " o
=y Zipijqrs / dF(2) + / Un((U+Xj)(1+aio+2) — Ys,Xj,Ys,1)dF (2)

I=1s= 0 Y5 (utx))(1+aio)

u+)<j

o e Yo— (U-+x;)(1+ aio) " . .
=3 3 puts(F , [ gt aer D —ye Xy NdF@ P (12)

j=1s= U+ ! i

¥s—(u+xj)(1+aio)
u+)<j

wherei = aig+ 2z
Whenn = 0, we have

Wi (U, %, Yr o i PijCrsF (ys_(u+xj)(1+aj°)) (13)

& U+ Xj

Thus, from the dominated convergence theorem, the integapuaation for ¢(u,x;,Vr,io) in Theorem2.1 follows
immediately by lettingh — o in (12).

Next, we establish probability inequalities for ruin proligies of model ().

3 Probability inequality for ruin probability
To establish probability inequalities for ruin probalidi of model ), we first prove the following Lemma.

Lemma 3.1. Let model () satisfies assumption 1 to assumptionb= sup{x € Ex} < +o andE(1¥) < +oo (k= 1,2).
Any x € Ex andy, € Ey, if

E(V2|Yo=V¥) < E(Xe(1411)[Xo=x) and P(Y; — Xa(1+11) > 0] Xo =X, Yo =¥;) > O, (14)

then, there exists a unique positive constpsatisfying:

E (eRir[Yl_Xl(l""Il)] Xo=Xi,Yo = yr) =1 (15)
Proof.
Define
fir(t) = E { @M Xu @)y — iy, = Yr} ~ 1t e (0, +oo).
We have

fll‘ E{etYl‘Yo—y} E{ —tX1(1+17) XO X|}

whereg; (t) = E{ €| Yo =y} andhi(t) = E { e X1+l | X = >q}
FromY; is a discrete random variable which takes value&yin= {y1,Y2, ..., ¥n, ...} then

D=E{e"|Yo=y}= +qursetys

haven-th derivatived function ori0, +) (anyn € N* = N\ {0}).

FromX; is a discrete random variable which takes valuelxn= {x1,X2, ..., Xm, ...} then

hi (t) —E { e—IX1(1+|1

_X|} Zp / e %12 f (2)dz

(@© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lettl, No. 3, 53-61 (2014) www.naturalspublishing.com/Journals.asp %N S\ 57

with f(z) = F/(2).
We have

+oo oo too too
S pi /xj(1+z)e*txi(l+z>f(2)d2§ > PiXi / (1+2f(z7dz< ) pyM[1+E(I1)] = M[1+E(ly)]
0 =0 =1

and
+00 +00

+
Zpu/x, (1+2))%e i+2)¢ SZ JZ/ 2(1+2)f

< ZZ piM* [1+E(1D)] =2M2 [1+E(1D)]
=1

o

Thus,hi(t) hasn-th derivative function orf0, +) with n= 1, 2.
Therefore fi; (t) hasn-th derivative function orf0, +c0) with n= 1,2 and

>(0:Xi7Y0:yr}
Xo=%Yo=Y1| >0

firt) =E { [Yp — Xg (14 1)) lrXa(l+1)]

"

fir(©) = E{ Yo = Xa(1+ 1) Pl a0+12)

Which implies that
fir (t) is a convex function witH;j, (0) = 0. (16)

and
fi,(0)=E{[Y1 =X (14+11)]| X =%,Yo =¥} =E(Y1|Yo =Vyr) —E(X1(1+11)| Xo = %) < O. a7)
By P(Y1— X3 (1+11) > 0] X =X, Yo = ¥r) > 0, we can find some constadt> 0 such that

P(Y1—X1(1411) > 3> 0% =%,Yo=Yr) >0

Then, we can get that

f|r(t) — E{et[Yl Xl 1+|1

>E ({etm KA X, =%, Yo = yr} ~1{Y1—X1(1+I1)>6\X0=xi7Y0:yr}) -1
> P{Yi—X(1411) > 3| Xo=X,Yo=yi} — L.

Xo =X Yo—Yr}

Imply
Jimfie (€)= oo (18)

From (16), (17) and ({8) there exists a unique positive const&ytsatisfying (4).
Xo =X, Yo =yr) =1(x €Ex,%r € Ev)}.

Remark 3.1. E (e%[Yl—X1<1+I1>J X0 = %Yo = yr) < 1,¥x € Ex,Vr € Ey.
Use LemmaB.1and Theoren2.1, we now obtain a probability inequality fay(u,X;,yr,io) by an inductive approach.

LetR, = inf {qu ~0:E (eﬂrM—XﬂH'ﬂ]

Theorem 3.1. Let model () satisfies assumption 1 to assumption 5. Under the condiibhemma3.1andR, > 0 then,
for anyx; € Ex andy; € By

WU, X, Yr,i0) < BE [V =y ] E [e‘R“<“+X1><1+'1> Xo = Xi} : (19)
where
z
gz [ Roudr 1)
_1 . 0
= <1
p=inf F2) p=1 (20)
(@© 2014 NSP
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Proof.
Firstly, we have
z z
/eROu 2 gF (1) /dF(t)
1
1 0
= = = > <
B =g M Fg ~lopgzlop=t
For anyz > 0, we have
z -1
gz, [ e Rtdr(y)
z z
Fz) = o e o / e R () < B, / e ROt gF (t).
0 0

Then, anyu > 0,ip > 0,% € Ex andy; € Ey

Yi(U, X, Yr,io) = JFZJFZ ”quF( (U+Xj)(1+aio))
j=1s=1

U+X;j

Ys—(u+xj)(1+aio)
]

]
UFX; Rou{y57<u+xj)<l+aj())

+00 f-00 -

<BY ZpiJQrs / e o ]dF(Z)

j=1s= 0
¥s—(u+X;)(L+aio)

Lo too X u[ Y- raior2

-F ;1; Pijdrs 0/ ¢’ { o }dF(Z)
Ys—(u+x;)(L+aio)

oo o0 UHxj

<B3 3 pids [ brtinialge )

0

+o00 400 i
<B Z Zp”qrs/ [ys— U+XJ)(1+aJo+Z]dF( 7) = BE [eRoYl\Yo =y .E _efRo(u+xl>(1+|1>

Hence
Y1(u,%,¥r,lo) < BE [eROYl‘Yo = Yr] .E [eiRO(UJer)(lHl) Xo= Xi:| .

Under an inductive hypothesis, we assume for

Wn(U, X, Yr,io) < BE [eROYl‘Yo — Yr] E {efRo(u+X1>(1+I1> Xo = X‘} ]

Then @2) implies 23) hold withn=1
Ys— (U+Xj)(1+aio)

Forx; € Ex,ysc€Ey,z> andly > 0, we have

U+ X;
Uni1 ((U+X))(1+aio+2) —Ys,Xj,Ys,1) < B'E [eRoYl Yo _ys} ' [ —RS[(u+x)) (1-+aio+2)—ys+Xg | (1+11)
= BE [0 Yo =] E [ Rl taora Gt Rt [ — x|
<BE [eRovl Y, = } E [e—Rz[<u+xJ-><1+au'o+z>—ys]—sz1<1+ll> Xo = Xj]
=B'E [eRoYl o= ys} E [e*Réxl(Hll) Xo = Xj} e Ro[(utx)) (1+aio+2) —ys]

< B*.e—R:;[(u-&-xj)(1+aio+z)—ys].

xc,:xi}.

onxj}

(21)

(22)

(23)

(24)
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where
z
o [ e Rar ()
*—1 — i 0 *(Y17X1(1+I1)) — _ _ .
B ;g]:) F(2) E (eRo Xo =Xj, Yo ys) 1 andR; > R, > 0.
Foranyz>0
z z z ,
eROUZ/e*RoutdF(t) /eROu(Z*t)dF(t) /eRéu(H>dF(t) eR‘*’UZ/emedF(t)
0 _ 0 < 0 _ 0
F@ F(2) - F(2) F2
then
z V4
uz/efRoutdF(t) eRguz/engutdF(t)
-1 . 0 x—1 . 0 1 1 .
= < = ot g
B — g =F g o p P =F

We getRj[(u+xj)(1+aio+2) —Ys| > Ro[(U+Xj)(1+aio+2) —ys| > 0 then @4) becomes

Un ((U+Xj)(L+aio+2) — Vs, Xj,Ys, i) < B.€” Ro[(u+x;)(1-+aio+2) —ys] (25)
Therefore, by Lemma.1, (6) and @5), we get

Wny1(U, %, Yr,io)

5 mpijqrs ,;(ys—(ujoJ-)(1+aio)>Jr / L[Jn((u+xj)(1+ao+z)yS,xJ,yS,)dF(z)}

+
+

U+ Xj

T
f

¥s—(u+xj)(1+aio)

U‘H(J‘
ys—(u+x;)(1+aio)
UHXj ys—(u+x})(1+aio) +o0

Dijrs B / eROU{g [R5 - :|dF(Z)+B / efRo[(quXj)(lJrajoJrZ)fys]dF (Z)

IN
M3
y
+
Iy

0 Ys—(utx;)(1+aio)
UHX]

+
8

||
st

I
TMg

— 0 ys— (X)) (1+aio)
T
Ys—(u+X; ) (1+aio)
g oo
oo o0 , _
< lelpijQrs B / eRolys—(utx) (I+aio 2] g (7)1 B / e Rl (U (Ltaot2) v g (2)
J=is= 0 ys—(u+x))(L+aio)
]

Ys—(u+xj)(1+aio)
U Ys—(u+x))(1+aio+2) +o0
Rou| 20T ) )
s B | e S }dF<z>+ﬁ / e%[wﬂﬂﬂﬁ“omysldF<z>}

+00 00

=83 3 pias / be-turso2lge

:BE[eRoY1|y0:yr]E[ —Ro(U+Xg) (1)

Xo=%].

Hence
Wni1(U, %, Vi, i0) < BE [eRoYl‘YO _ Yr] E {e—Ro(U+X1)(1+|1)

Xo= Xi}
Hence, foranyn=1,2,..., (23). Therefore, {9) follows by lettingn — o in (23).
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Remark 3.2.
Let A(U, X, Yr,i0) = BE [€"|Yo =y ] .E [e*Ro(U+X1><1+I1>
Froml; > 0,X; > 0andB < 1, we have

xc,:xi]

AUX,Yr,i0) < BE [F%| Yo = yi] E | @Rt -Roka(doty

Xo=%]
Xo=%]

Xo = xi} e ol < Rl < g Rou,

< BE [eR°Y1|Y0 _ Yr] |:e*R0U*ROX1(l+|1)

E
=BE [P Yo =y ] E

[e—Roxl(H'l)

Hence, upper bound for ruin probability ihg) is better thare—Ro!.

4 Conclusion

Our main results in this paper, Theorénl give the recursive equation fa,(u, X, yr,io) and the integral equation for
Y(u,%,Yr, o), TheorenB.1built the probability inequality fory(u,x;, yr,io) by an inductive approach.
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