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Wave Propagation in Cylindrical Poroelastic Dry Bones
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The wave propagation modeling in cylindrical human long dry bones with cavity is
studied. The dynamic behavior of a dry long bones that has been modeled as a piezo-
electric hollow cylinder of crystal class 6 is investigated. An analytic solutions for this
mechanical wave propagation in a long dry bones have been obtained for the flexural
vibrations. The frequency equation for poroelastic bones is obtained when the medium
is subjected to certain boundary conditions. The dimensionless frequencies are calcu-
lated for poroelastic dry bones for various values for non-dimensional wave length. The
generated electro-magnetic fields as a function of cylindrical coordinates are obtained
and then the components of the magnetic field, which is due to the wave propagation in
bones. The numerical results obtained have been illustrated graphically.

Keywords: Elastic, bones, poroelastic, transversely isotropic, mechanical wave, fre-
quency equations.

1 Introduction
The Study of wave propagation over a continuous media is of practical importance in

the field of engineering, medicine and in bi- engineering. Application of the poroelastic
materials in medicinal fields such as orthopedics, dental and cardiovascular is well known
[1]. In orthopedics wave propagation over bone is used in monitoring the rate of fracture
heating, there are two types of osseous tissue such as cancellous or trabecular and compact
or cortical bone, which are of different materials, with respect to their mechanical behavior.
In macroscopic terms the percentage of porosity in the cortical bone is 3-5 , where as in the
trabecular or cancellous the percentage of porosity is up to 90, [2]. The dynamic behavior
method such as wave propagation and vibration of bone is necessary in measuring in vivo
properties of bone by the above non- invasive method [3], papathanasopoulou, et al. [4]
investigated. A theoretical analysis of the internal bone remodeling process induced by a
medullar pin is presented, Fotiadis, et al. [5] studied wave propagation in human long dry
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bones of arbitrary cross-section. Fotiadis et al. [6] presented wave propagation modeling
in human long dry bones. Sebaa et al. [7] considered application of fractional calculus to
ultrasonic wave propagation in human cancellous bone. Padilla, et al. [8] studied numerical
of wave propagation in cancellous bone. Haiat et al. [9] investigated numerical simulation
of the dependence of quantitative ultrasonic parameters on trabecular bone micro archi-
tecture and elastic constants. Pithious [10] presented, an alternative ultrasonic method for
measuring the elastic properties of cortical bone. Kaczmarek et al. [11] investigated short
ultrasonic waves in cancellous bone. Levitsky, et al. [12] studied wave propagation in
cylindrical viscous layer between two elastic shells. Tadeu et al. [13] studied 3D elastic
wave propagation modeling in the presence of 2D fluid-filled thin inclusions Dry bones
are heterogeneous and an isotropic in nature. The bending waves which propagate along
the cylinder causes an electrical field and hence a magnetic field. In the present paper, the
three-dimensional equations of elastodynamics for transversely isotropic media are solved
in terms of three displacement potentials, each satisfying a partial differential equation of
the second order. For the hollow circular cylinder, subjected to certain boundary condi-
tions (fixed and mixed boundary conditions), result in a characteristic frequency equation
in determinantal form of the sixth order. Several special cases of the general frequency
equation are discussed, including axially symmetric wave motion, the limiting modes of
infinite wavelength, and longitudinal waves in a long thin solid cylinder. The analytical
solution for the electro-mechanical wave propagation in a long bone has been obtained for
the flexural vibration. The analysis presented here parallels the work of Fotiadis et al. [6]
who studied the corresponding problem for hollow transversely isotropic circular cylinders.
The numerical results obtained have been illustrated graphically.

2 Formulation of the Problem
Let us consider a transversely isotropic hollow cylinder, which is a geometric approx-

imation to a long bone , it is defined in cylindrical coordinates r, θ, z. The long axis of
the cylinder is assumed as the z axis and the inner and outer radii are termed as a and b.
The linear theory of transverse isotropy elasticity, which is valid for small strains, gives the
following stress displacements relations [6].

τrr = C11u
′
r,r + C12r

−1(úθ,θ + ur′) + C13u
′
z,z + e13V

′
,z

τθθ = C12
∂u
∂r + C11r

−1
(
u + ∂v

∂θ

)
+ C13

∂w
∂z ,

τzz = C13

[
∂u
∂r + r−1

(
u + ∂v

∂θ

)]
+ C33

∂w
∂z ,

τrz = C44[u′θ,z + u′z,r] +, e15V
′
,z′ − e14 r−1 V ′

,θ

τzθ = C44

[
∂v
∂z + r−1 ∂w

∂θ

]
,

τrθ = C66[u′θ,r + r−1úr,θ − r−1uθ′],

(2.1)
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where T ′rr, T
′
rθ and T ′rz are components of the stress tensor which satisfy the constitutive

relations.

The system under consideration consists of a hollow piezoelectric circular cylinder of
crystal class 6 with inner radius a and the outer one b The cylindrical polar system (r, φ, z)
is introduced and the z-axis of the cylinder is assumed to be perpendicular to the isotropic
plane of the medium. For a piezoelectric material of crystal class 6 the equations of motion
and the equation of Gauss in cylindrical coordinates are given as

C11(ur,rr + r−1ur,r − r−2ur) + C66r
−2ur,θθ + C44ur,z′z′

+ (C66 + C12)r−1uθ,rθ − (C66 + C11)r−2uθ,θ + (C44 + C13)uz,rź

+ (e15 + e31)V´
z,rź − e14r

−1V´
,θź = Qs

∂2uθ́

∂tr2
(2.2)

(C66 + C12)r−1ur,rθ + (C66 + C11)r−2ur,θ + C66(uθ,rr + r−1uθ,r − r−2uθ́ )

+ C11r
−2uθ,θθ + C44uθ,źź + (C44 + C13)r−1uz,θz′ + e14V

′
,rz′

+ (e15 + e31)r−1V ′
,θz′ = Qs

∂2uθ′

∂t′2
, (2.3)

(C44 + C13)(ur,rz′ + r−1ur,z′ + r−1uθ,θz′) + C44(uz,rr + r−1uz,θθ)

+ C33uz,z′z′ + e15V
′
,rr + r−1V ′

,r + r−2V ′
θ,θ) + e33V

′
,z′z′ = Qs

∂2uz′

∂t′2
, (2.4)

∈11 V ′
,rr+r−1V ′

,r+r−2V ′
,θθ)+∈33 V ′

,z′z′ − (e15+e31)(ur,rz′+r−1ur,z′+r−1uθ,θz′)

+ e14(r−1ur,θz′−uθ,rz′−r−1uθ,z′)−e15(uz,rr+r−1uz,r+r−1uz,θθ)−e33uz,z′z′ = 0,

(2.5)

where ur′ , uθ and uz′ are the elastic displacement components, V ′ is the electrostatic po-
tential, cij are the elastic constants, eij are the piezoelectric constants, ∈ij are the dielectric
permittivities, Qs is the mass density and uij = ∂ui/∂xj . The boundary conditions are

τrr = τrz = τrθ = V ′ = 0, at r = a, b (2.6)

where τrr, τrθ and τrz are components of the stress tensor which satisfy the constitutive
relations

τrr = C11ur,r + C12r
−1(uθ,θ + ur) + C13uz,z + e13V

′
,z

τrθ = C66[uθ,r + r−1ur,θ − r−1uθ] (2.7)

τrz = C44[uθ,z + uz,r] + e15V
′
,z′ − e14 r−1 V ′

,θ.

The boundary conditions (2.6) correspond to the solution where the inner and the outer
surface of the cylinder are Fixed of traction and coated with electrodes which are shorted.
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3 Solution of the Problem

We introduce the following dimensionless variables:

χ =
r

R
, Z =

Z

R
, uχ =

1
R

u′r, uθ =
1
R

u′θ, uz =
1
R

u′z,

V =
e33

Rc44
V ′, Čij =

cij

c44
, êij =

eij

e33
, ε2i3 =

e2
33

c44 εii
, t =

1
R

√
c44

Qs
t′,

where R = r1 − r0. To study the propagation of harmonic waves in the z′ direction , we
assume a solution of the form

uχ =
(

G,χ +
1
χ

ψ,θ

)
ei(λz−Ωt),

uθ =
(

1
χ

G,θ −ψ,χ

)
ei(λz−Ωt), (3.1)

uz = iwei(λz−Ωt),

V = iφei(λz−Ωt),

where G,ψ, ω and φ are functions of χ and θ, Ω2 = (Rω)2Qs/c44, ω is the angular fre-
quency, λ = Rγ, and γ is the wave number. Using (9) the system (1)-(4) can be simplified
as

D




G

ψ

ω

φ


 ≡




Č11∇2+ Ω2−λ2 0 −λ(1+Č13) −λ(1+ě15+ě31)

0 Č66∇2+ Ω2−λ2 0 λě14

λ(1+Č13)∇2 0 ∇2+ Ω2 − Č33λ
2 ě15∇2−λ2

−λ(ě15+ě31)∇2 λě14∇2 −(ě15∇2 − λ2) ε−2
13∇2−ε−2

33 λ2







G

ψ

ω

φ




= 0, (3.2)

where

∇2 ≡ ∂2

∂χ2
+

1
χ

∂

∂χ
+

1
χ2

∂2

∂θ2
.

To get the final solutions of the equations (3.2), using the method described in [5,6], we
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obtain

uz =
4∑

j=1

2∑

l=1

{[
αj

m,1δj
p1 ∂

∂χ
ζ m,1(kjχ) + βj

m,1δj
p2 m

χ
ζ m,1(kjχ)

]
cos (mθ)

+
[
− αj

m,2δj
p1 m

χ
ζ m,1(kjχ) + βj

m,1δj
p1 ∂

∂χ
ζ m,1(kjχ)

]
sin(mθ)

}
ei(λz−Ωt),

uθ =
4∑

j=1

2∑

l=1

{[
− αj

m,1δj
p2 ∂

∂χ
ζ m,1(kjχ) + βj

m,1δj
p1 m

χ
ζ m,1(kjχ)

]
cos (mθ)

−
[
αj

m,1δj
p1 m

χ
ζ m,1(kjχ) + βj

m,1δj
p2 ∂

∂χ
ζ m,1(kjχ)

]
sin(mθ)

}
ei(λz−Ωt),

uz = i

4∑

j=1

2∑

l=1

{[
− αj

m,1δj
p3 ∂

∂χ
ζ m,1(kjχ)

]
cos(mθ)

+
[
βj

m,1δj
p3

ζm,1(kjχ)
]
sin(mθ)

}
ei(λz−Ωt),

V = i

4∑

j=1

2∑

l=1

{[
αj

m,1δj
p4

ζ m,1(kjχ)
]
cos(mθ)

+
[
βj

m,1δj
p4

ζm,1(kjχ)
]
sin(mθ)

}
ei(λz−Ωt), (3.3)

where

δj
pq = −dj

pq k6
j + d2

pq k4
j − d3

pq k2
j + d4

pq , p, q, j = 1, 2, 3, 4.

The stresses given by the constitutive equations (1) are expressed as:

Tχχ =
4∑

j=1

2∑

l=1

{[
αj

m,1pm,1
pj (kjχ) + βm,1

j Qm,1
pj (kjχ)

]
cos(mθ)

+
[
−αj

m,1Qm,1
pj (kjχ) + βm,1

j pm,1
pj (kjχ)

]
sin(mθ)

}
ei(λz−Ωt),

Tχθ
= Č66

4∑

j=1

2∑

l=1

{[
αj

m,1Rm,1
pj (kjχ) + βm,1

j Sm,1
pj (kjχ)

]
cos(mθ)

+
[
−αj

m,1Sm,1
pj (kjχ) + βm,1

j Rm,1
pj (kjχ)

]
sin(mθ)

}
,

TχZ = i

4∑

j=1

2∑

l=1

{[
αj

m,1Tm,1
pj (kjχ) + βm,1

j Um,1
pj (kjχ)

]
cos(mθ)

+
[
−αj

m,1Um,1
pj (kjχ) + βm,1

j Tm,1
pj (kjχ)

]
sin(mθ)

}
, (3.4)

where the quantities Pm,1
pj , Qm,1

pj , Rm,1
pj , Sm,1

pj , Tm,1
pj , and Um,1

pj are given in Appendix C of
[6]. Replacing the expressions (3.3) and (3.4) into the boundary conditions (2.5), we obtain
an algebraic system with 16 unknowns,which can be written as

Ax = 0. (3.5)
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In order for the system (3.5) to have a nontrivial solution, the determinant of matrix A must
vanish, that is,

det(Ars) = 0, r, s = 1, 2, . . . , 16. (3.6)

This condition provides the frequency equation, the roots of which are the frequency coeffi-
cients Ωm,p(λ), m = 1, 2, . . . , p = 1, 2, 3, 4 of the system under discussion. The elements
of the determinant (3.6) are given in [6].

4 Special Cases of the Mechanical Equations

4.1 The electrostatic potential is neglected

Let us assume the electrostatic potential V ′ is zero. Then the linear theory of transverse
isotropy elasticity, which is valid for small strains and gives the following stress displace-
ments relations [1].

τrr = C11
∂ur

∂r
+ C12r

−1

(
ur +

∂uθ

∂θ

)
+ C13

∂uz

∂z
,

τrθ = C66

[
∂uθ

∂r
+ r−1

(
∂ur

∂θ
− uθ

)]
, (4.1)

τrz = C44

[
∂uz

∂r
+

∂ur

∂z

]
,

where ur, uθ and uz are the components of the displacement in the radial, circumferen-
tial, and axial directions; C11, C12, C13, C33, C44 and C66 are the elasticconstants in the
transversely isotropic case. The elastic constant C66 can be written in the form

C66 =
1
2
(C11 − C12).

The mechanical field equations by using the three-dimensional stress equations of motion
are

∂σrr

∂r
+ r−1 ∂τrθ

∂θ
+

∂τrz

∂z
+ r−1 (σrr − σθθ) = ρ

∂2ur

∂t2
,

∂τrθ

∂r
+ r−1 ∂σθθ

∂θ
+

∂τθz

∂z
+ 2r−1τθr = ρ

∂2uθ

∂t2
, (4.2)

∂τrz

∂r
+ r−1 ∂τθz

∂θ
+

∂σzz

∂z
+ r−1τθr = ρ

∂2uz

∂t2
,

where ρ is the density and t is the time.

Substituting from equations (4.1) into the equation (4.2) leads to the following field
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equations in terms of displacements

C11

[∂2ur

∂r2
+ r−1 ∂ur

∂r
− r−2ur

]
+ r−2C66

∂2ur

∂θ2
+ C44

∂2ur

∂z2

+r−1 (C12 + C66)
∂2uθ

∂θ∂r
− r−2 (C11 + C66)

∂uθ

∂θ
+ (C13 + C44)

∂2uz

∂r∂z
= ρ

∂2ur

∂t2
,

r−1 (C12 + C66)
∂2ur

∂θ∂r
+ r−2 (C11 + C66)

∂ur

∂θ
+ C66

[∂2uθ

∂r2
+ r−1 ∂uθ

∂r
−r−2uθ

]

+r−2C66
∂2uθ

∂θ2
+ C44

∂2uθ

∂z2
+ r−1 (C13 + C44)

∂2uz

∂θ∂z
= ρ

∂2uθ

∂t2
,

(C13 + C44)
∂2ur

∂r∂z
+ r−1 (C13 + C44)

∂ur

∂z
+ r−1 (C13 + C44)

∂2uθ

∂θ∂z

+C44

[
∂2uz

∂r2
+ r−1 ∂uz

∂r
− r−2 ∂2uz

∂θ2

]
+ C33

∂2uz

∂z2
= ρ

∂2uz

∂t2
.

(4.3)

Harmonic wave in hollow cylinder of infinite extent can be obtained by using the following
solutions of the field equations

ur =
[∂Φ

∂r
+

1
r

∂Ψ
∂θ

]
cos (ωt + αz) ,

uθ =
[∂Φ

∂θ
− ∂Ψ

∂r

]
cos (ωt + αz) , (4.4)

uz = ζ sin(ωt + αz),

where ω is the angular frequency and α is the wave number. Φ,Ψ, and ζ are displacement
potentials which are introduced for facilitating the solution of the field equations (4.2).
Substituting from the eqs. (4.4) into the eqs. (4.3), after regrouping them, leads to the
following solution

Ψ = [A1Zn(β1r) + B1Wn(β1r)] sinnθ,

Φ =
2∑

j=1

[Aj+1Zn(γjr) + Bj+1Wn(γjr)] cos nθ, (4.5)

ζ =
2∑

j=1

[Aj+3Zn(γjr) + Bj+3Wn(γjr)] cos nθ.

The solutions of Φ and ζ are related to each other with the following relation

Φ = gj (r) cos nθ, ζ =
C11P

2 − (
ρω2 − C44α

2
)

η
Φ,

where η = α (C13 + C44) and α = 2π/λ, λ is the wave length.
Consider first solutions Ψ (r, θ) of the form Ψ(r, θ) = f(r) sin(nθ), where n =

0, 1, 2, 3, . . . are an integers indicating the numbers of circumferential waves, gj (r) =
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Aj+1Zn(γjr)+Bj+1Zn(γjr) and f (r) = A1Zn(β1r)+B1Wn(β1r), where Zn and Wn

are respectively the Bessel functions and modified Bessel functions of order n [1].

Frequency equation

We use the following boundary conditions with inner surface and outer surface fixed.

ur = uθ = uz = 0 at r = a,

ur = uθ = uz = 0 at r = b.
(4.6)

Substituting (3.2) and (3.1) into (4.6) and grouping the coefficients of A1, B1A2, B2,A3

and B3 lead to a determinant which is the characteristic frequency equation.

|aij | = 0, (i, j = 1, 2, . . . , 6) , (4.7)

a11 = na−1Zn (β1a) , a12 = na−1Wn (β1a) ,

a13 =
n

a
Zn (γ1a)− γ1δ1Zn+1 (γ1a) , a14 =

n

a
Wn (γ1a)− γ1Wn+1 (γ1a) ,

a15 =
n

a
Zn (γ2a)− γ2δ2Zn+1 (γ2a) , a16 =

n

a
Wn (γ1a)− γ2Wn+1 (γ2a) ,

a21 =
n

a
Zn (β1a)− β1δ2Zn+1 (β1a) , a22 =

n

a
Wn (β1a)− β1Wn+1 (β1a) ,

a23 = na−1Zn (γ1a) , a24 = na−1Wn (γ1a) ,

a25 = na−1Zn (γ2a) , a26 = na−1Wn (γ2a) ,

a31 = 0, a32 = 0,

a33 = y1Zn (γ1a) , a34 = y1Wn (γ1a) ,

a35 = y2Zn (γ2a) , a36 = y2Wn (γ2a) ,

a41 = nb−1Zn (β1b) , a42 = nb−1Wn (β1b) ,

a43 =
n

b
Zn (γ1b)− γ1δ1Zn+1 (γ1b) , a44 =

n

b
Wn (γ1b)− γ1Wn+1 (γ1b) ,

a45 =
n

b
Zn (γ2b)− γ2δ2Zn+1 (γ2b) , a46 =

n

b
Wn (γ1b)− γ2Wn+1 (γ2b) ,

a51 =
n

b
Zn (β1b)− β1δ2Zn+1 (β1b) , a52 =

n

b
Wn (β1b)− β1Wn+1 (β1b) ,

a53 = nb−1Zn (γ1b) , a54 = nb−1Wn (γ1b) ,

a55 = nb−1Zn (γ2b) , a56 = nb−1Wn (γ2b) ,

a61 = 0, a62 = 0,

a63 = y1Zn (γ1b) , a64 = y1Wn (γ1b) ,

a65 = y2Zn (γ2b) , a66 = y2Wn (γ2b) .

As preciously stated, Z denotes a J or I functions, and W denotes a Y or K functions.
The proper choice being given in Table 4.1 which shows bessel functions employed in
various frequency ranges.
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Table 4.1: Bessel functions employed in various frequency ranges.

Interval f g1 g2

0 < ρω2 < α2C44 < 1 In (β1r)Kn (β1r) In (γ1r) Kn (γ1r) In (γ2r)Kn (γ2r)
1 < ρω2/α2C44 < C33/C44 Jn (β1r)Yn (β1r) In (γ1r) Kn (γ1r) Jn (γ2r)Yn (γ2r)

ρω2/α2C44 > C33/C44 Jn (β1r)Yn (β1r) Jn (γ1r)Yn (γ1r) Jn (γ2r)Yn (γ2r)

Furthermore, the parameters δj assume the values ±1 as outlined below.

ρω2 < α2C44 : δ1 = −1 δ2 = −1,

α2C44 < ρω2 < α2C33 : δ1 = −1 δ2 = 1,

ρω2 > α2C33 : δ1 = 1 δ2 = 1.

Note that, the value of these parameters is 1 when the Bessel functions J and Y are
used and −1 when I and K are used. For known value of the elastic constants and given
dimensions of the cylinder the frequency $ may be computed as a function of wavelength
λ, (λ = 2π/α) from the characteristic eqs.(4.7) by an iteration procedure. Here in the
present analysis we consider only the special cases of eqs. (4.7 ). Here we are just going to
consider that lowest mode for n = 1, 2 which is the first flexural mode, this is an important
mode for the experimental results. The determinant (4.7) which gives the relation between
the wave length and the angular frequency is evaluated for different wave lengths.

4.2 Motion independent of z

As the wavenumber α −→ 0 (i.e., for infinite wavelength, λ = 2π/α), the following

simplifications result: γ1 −→
[

ρw2

C11

]1/2

, γ2 −→
[

ρw2

C11

]1/2

,

λ1α −→ −α2 (C44 + C13) / (C11 − C44)

λ2α −→ ρα2 (C44 − C13) / C44 (C11 + C44)

α/ (λ2 − α) −→ 0, (λ1 − α) / (λ2 − α) −→ 0, (4.2.1)

Hence α11 = 0 = α22 = α23 = α24 = α51 = α52 = α53 = α54,and the characteristic
eq. (4.1.7) fixed boundary conditions may be written as the product of two determinants

∆1∆2 = 0 (4.2.2)

∆1 =

∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14

a31 a31 a31 a31

a41 a41 a41 a41

a61 a61 a61 a61

∣∣∣∣∣∣∣∣∣
, ∆2 =

∣∣∣∣∣
a25 a26

a55 a56

∣∣∣∣∣
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The elements aij-in equation (4.2.2) are given by eq. (4.1.7) fixed boundary conditions
with α− > 0 (i.e., for infinite wavelength, λ = 2π/α) and the appropriate simplifications
outlined in Eq. (4.2.1). Furthermore, the Z and W are either J or Y functions, in accor-
dance to table (4.1), since ρ$2 > α2C33, when α− > 0. (i.e., for infinite wavelength,
λ = 2π/α).

The equation ∆1 = 0 corresponds to plane-strain vibrations and is equivalent to that
for the isotropic cylinder, with the shear constant C44 being replaced by C66. This is to
be expected since the z axis is perpendicular to the plane of isotropy. The equation ∆2

represents motion involving the axial displacement uz only, corresponding to longitudinal-
shear vibrations. This equation could have been obtained immediately from the displace-
ment equations of equilibrium (2.2) by setting, ur = 0 = uθ,

∂
∂z = 0 with the result

C44

[
∂2uz

∂r2 + 1
r

∂uz

∂r + 1
r2

∂2uz

∂θ2

]
= ρ∂2uz

∂t2 , subject to the boundary conditions ∂uz

∂r = 0 on
r = a, b. It may be noted that the plane-strain and longitudinal-shear vibrations are un-
coupled when a = 0 and become coupled for a nonzero wavenumber (i.e., for infinite
wavelength, λ = 2π/α). No further discussion of these frequency equations is necessary.

4.3 Motion independent of θ

For motion independent of θ (i.e., n = 0), the characteristic eqs. (4.1.7) may again be
represented as the product of two determinants ∆3, ∆4 where

∆3∆4 = 0 (4.3.1)

The elements aij-in equation (4.3.1) are given by eq. (4.1.7) fixed boundary conditions,
with n = 0

∆3 =

∣∣∣∣∣∣∣∣∣

a12 a14 a15 a16

a23 a24 a25 a26

a43 a44 a45 a46

a53 a54 a55 a56

∣∣∣∣∣∣∣∣∣
, ∆4 =

∣∣∣∣∣
a31 a32

a61 a62

∣∣∣∣∣

The frequency equation ∆3 represents the coupled radial and axial motions, which are
completely uncoupled from the pure torsional motions given by ∆4 = 0.These fre-
quency equations have been computed approximately, for orthotropic thick shells, which
includes transverse isotropy as a special case. The five elastic constants Cij appear in
Eq. (4.3.1) However, this equation reduces to that of the special case of isotropy. For
purely torsional modes,the frequency equation ∆4 = 0 reduces to J2 (β1a) Y2 (β1b) −
J2 (β1b)Y2 (β1a) = 0, for ρω2 < α2C44 where β1 =

∣∣∣∣
(ρω2−C44α2)

C66

∣∣∣∣
1/2

. The corre-

sponding frequency equation for e < ρω2/C44α
2 < 1 is given by I2 (β1a)K2 (β1b) −

I2 (β1b)K2 (β1a) = 0,which has no real roots except the trivial solution. Thus, the phase
velocity of torsional waves is always greater than or equal to (C44/ρ)1/2
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4.4 Solid circular cylinder

So far, we have considered the frequency equations for various types of motions of hol-
low circular cylinders. It is a trivial matter to deduce from this analysis the corresponding
frequency equations for a solid circular cylinder. In the latter case, the inner radius a −→ 0
and furthermore, the Bessel functions K and Y result in unbounded stresses and displace-
ment at the origin r = 0. Hence all the coefficients aij- involving a and the W functions
must vanish and the frequency equation for the solid circular cylinder reduces to

∆5 =

∣∣∣∣∣∣∣

a41 a43 a45

a51 a53 a55

a61 a63 a65

∣∣∣∣∣∣∣
= 0, ∆6 =

∣∣∣∣∣
a43 a45

a53 a55

∣∣∣∣∣ = 0 (4.4.1)

The elements aij-in ∆5 = 0 are given by eq. (4.1.7) fixed boundary conditions, with a = 0,
An interesting degenerate case of ∆5 (Eq. 4.4.1) is that of axially symmetric motions (i.e.,
n = 0). The frequency equation for this type of motion reduces to a43 = n

b Zn (γ1b) −
γ1δ1Zn+1 (γ1b) , a45 = n

b Zn (γ2b) − γ2δ2Zn+1 (γ2b) , a53 = nb−1Zn (γ1b) , a55 =
nb−1Zn (γ2b) . If we assume now that the cross-sectional dimensions of the cylinder are
small as compared to the length (i.e., γ1b << 1, γ2b << 1 ), an approximate value of
the frequency of longitudinal waves in a bar can be obtained. Representing the Bessel
functions in elements aij as power series in γib, a detailed analysis indicates that this type
of motion can occur only when the frequency $ lies in the interval α2C44 < ρ$2 <

α2C33 When first terms only are retained in the power series expansions, the frequency
$ is approximated by the expression ρ$2 = α2C33 −

[(
α2C2

13

)
/ (C11 − C66)

]
. Thus,

the velocity (C = $/α) with which these waves are propagated along the bar is C =[(
C11C33 − C66C

2
33

)
/ρ (C11 − C66)

]1/2. For the special case of the isotropic cylinder
C11 = C33, C12 = C13, C66 = C44 = (C11 − C12) /2 and the velocity C becomes
C = [C44 (2C11 − 4C44) /ρ (C11 − C44)]

1/2. In terms of the Lame constants λ, µ, this
expression reduces to C = [µ (3λ + 2µ) /ρ (λ + µ)]1/2 = (E/ρ)1/2where λ + 2µ =
C11, µ = C44 and E is Young’s modulus. This is the result in this investigations of
longitudinal vibrations of bars. If more-accurate values of the frequency $ are desired, it
would appear to be more efficient to go directly to the exact frequency equation ∆6 = 0
rather than perform the tedious analysis required in obtaining higher-order approximations
in the manner outlined above.

5 Effect of electrostatic potential on magnetic field

Let us consider the electromagnetic field equations in Gaussian units:

⇀

∇×
⇀

H = 1
C

∂
⇀
D

∂t + 4π
C

⇀

J ,
⇀

∇ ·
⇀

B = 0,
⇀

∇×
⇀

E = − 1
C

∂
⇀
B

∂t ,
⇀

∇ ·
⇀

D = 4πq,
⇀

B =
⇀

H + 4π
⇀

M
(5.1)
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where
⇀

H,
⇀

B,
⇀

M,
⇀

E,
⇀

D,
⇀

J , q and C are the magnetic field intensity, the magnetic flux den-
sity, the magnetization vector, the electric field,the electric displacement vector, the total
free current density, the total free charge density, and the velocity of light respectively.
The operator is defined in terms of the unit vectors of the cylindrical coordinates (r, θ, z) .
⇀

∇ = ∂
∂r

⇀
er + 1

r
∂
∂r

⇀
eθ + ∂

∂z

⇀
ez. In the case of dry bone [1] q = 0,

⇀

J =
⇀

M =
⇀
0 ..Thus

equations (5.1) become:

⇀

B =
⇀

H,
⇀

∇×
⇀

H =
1
C

∂
⇀

D

∂t
,

⇀

∇ ·
⇀

D = 0. (5.2)

6 The solution of the vacuum

The inner (i) and the outer (◦) regions are going to be obtained from the following set:

⇀

∇×
⇀

B =
⇀
0 ,

⇀

∇ ·
⇀

B = 0 (6.1)

Assuming a solution for
⇀

B of the following form:

Br = b1 (r) einθ sin (wt + αz) ,

Bθ = b2 (r) einθ sin (wt + αz) ,

Bz = b3 (r) einθ cos (wt + αz) .

(6.2)

and substituting in (6.1) yields the following set for the components of
⇀

B :

b1 = 1
α

[
db3(r)

dr

]
, b2 = 1

α
in
r b3,

d2b3
dr2 + r−1 db3

dr −
[
r−2n2 + α2

]
b3 = 0. (6.3)

Using the regularity conditions at r = 0 gives the solution for the inner of vacuum.

Bi
r = A9

[
In+1 (αr) + n

rαIn (αr)
]
einθ sin (wt + αz) ,

Bi
θ = A9

in
rαIn (αr) sin (wt + αz) ,

Bi
z = A9In (αr) cos (wt + αz) .

(6.4)

7 Numerical Results and Discussion

The numerical results for the frequency equation are computed for the bone. Since
the frequency equation is transcendental in nature, there are an infinite number of roots
for the frequency equation. The results of frequency versus wavelength are plotted in
Figs. (7.1)-(7.3) for bones (the transversely isotropic materials) for several values of n the
number of circumferential waves. Each of Fig (7.1) and Fig (7.2) contains the first three
modes obtained from the approximate theories. Note that, since the determinantal equa-
tions (4.1.2) is transcendental in nature, there are an infinite number of modes for each
value of n = 1, 2, 3. In most cases, the results of the approximate theory, indicated by the
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frequency which it decreasing with increasing wavelength. It is notes the first mode of the
frequency coincide with the second mode of the frequency in the range 35 ≤ λ ≤ 50.The
roots are obtained for the Flexural mode n = 1, 2 in the cases of fixed boundary condition
and mixed boundary condition are plotted and presented in Fig. (7.3).

Figure 7.1: Frequency versus wavelength for n = 1.

Figure 7.2: Frequency versus wavelength for n = 2.

The deviation of dispersion curves for the flexural modes are quite small at larger non-
dimensional wavelength, but they almost coincide in the range 1 ≤ λ ≤ 33. (in the fixed
boundary condition). In mixed boundary condition the deviation of dispersion curves for
the flexural modes are small at larger non-dimensional wavelength, but the deviation of
dispersion curves for the flexural modes are large at smaller non-dimensional wavelength
in the range 1 ≤ λ ≤ 23.

Figs. (7.4)−(7.9) show the components of the external magnetic induction Br, Bθ and
Bz with respect to the radius r, for different values of wavelengths, respectively. It is notice
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Figure 7.3: The dispersion curves of the poroelastic material for various n.

Figure 7.4: The variations of components of the external magnetic induction Br, Bθ and Bz with
respect to the radial r, for wavelengths (λ = 8).

Figure 7.5: The variations of components of the external magnetic induction Br, Bθ and Bz with
respect to the radial r, for wavelengths (λ = 10).
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Figure 7.6: The variations of components of the external magnetic induction Br, Bθ and Bz with
respect to the radial r, for wavelengths (λ = 14).

Figure 7.7: The variations of components of the external magnetic induction Br, Bθ and Bz with
respect to the radial r, for wavelengths (λ = 18).

Figure 7.8: The variations of components of the external magnetic induction Br, Bθ and Bz with
respect to the radial r, for wavelengths (λ = 25).
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Figure 7.9: The variations of components of the external magnetic induction Br, Bθ and Bz with
respect to the radial r, for wavelengths (λ = 8, 10, 14, 18, 25).

that the components of the external magnetic induction decrease with increasing of the
radial r.

Table 7.1: Summary of the approximate geometry of the femur and the material constants in Gaussian
units which are used in the computations, where, h is thickness of the cylinder h = b− a where a is
the inner radius, b is the outer radius and b/a is the ratio.

Elasticcoefficients [1] Piezoelectriccoefficients [2] Dielectriccoefficients [2]
c11 = 2.12× 1010 e31 = 1.50765× 10−3 ε11 = 88.54× 10−12

c12 = 0.95× 1010 e33 = 1.87209× 10−3 ε33 = 106.248× 10−12

c13 = 1.02× 1010 e14 = 17.88215× 10−3

c44 = 0.75× 10 e15 = 3.57643× 10−3

Table 7.2: Frequency spectra for crystal class 6 hollow bones as a function of the ratio a/b.

No. a = 0 a/b = 0.21 a/b = 0.43 a/b = 0.57 a/b = 0.71 a/b = 0.86
1 0.5736 0.4907 0.4130 0.3502 0.2760 .1021
2 0.9790 0.7912 0.6026 0.4771 0.3514 0.2257
3 1.3208 1.0598 0.7983 0.6237 0.4490 0.2746
4 1.4645 1.1810 0.8796 0.6897 0.5890 0.2955
5 1.4751 1.2892 0.9867 0.7651 0.4931 0.3216
6 1.6507 1 .4557 1.2168 1.7376 0.5437 0.3678
7 2.0530 1 .9534 1.9449 0.6588 0.3792
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8 Conclusion

A characteristic frequency equation for the most general type of harmonic waves in a
hollow circular cylinder of transversely isotropic material has been derived. This frequency
equation must be separated into three frequency ranges because of the changing nature of
the Bessel functions involved. As the wavelengths approaches infinity, the plane-strain
vibrations become uncoupled from the longitudinal shear vibrations. These two types of
motion become coupled for a non-infinity wavelengths. For flexural motions (n = 1, 2),
the coupled radial and axial motions are completely uncoupled from the pure torsional mo-
tions. When both the wavelength is infinity and n = 1, 2 the three displacement potential
functions f, g1 and g2 generate three uncoupled families of modes that may be identified
as plane-strain extensional, plane-strain shear, and longitudinal shear, respectively. The
characteristic frequency equations (4.1.2) for the hollow cylinder can readily be reduced
to that for the solid cylinder on taking the limit a → 0. Finally, the results for approximate
frequency of longitudinal vibrations of a long solid bar obtained are generalized to the case
of a transversely isotropic solid cylinder. The wave propagation in transversely isotropic
cylinders, numerical results of the characteristic equation derived here are presented. In-
cluded in this presentation is a discussion of the variation of the frequency spectrum with
the physical parameters. The dispersion curve for flexural mode n = 1, 2 deviate. The
numerical results are given illustrated graphically for the magnetic field, which is due to
the wave propagation in bones.
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