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Abstract: To deal with the problems of non - response, one parametssedaof imputation techniques have been suggested and
their corresponding point estimators have been propodeel.pfoposed estimator is more efficient than several othenaers. A
design based approach is used to compare the proposedptrdtie existing strategies. Theoretical results have besified through
empirical studies handling real data set examples.
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1 Introduction:

Incomplete data or non - response in the form of missingreessoring or groupings are troubling issues for many data
sets. Statisticians have recognized for some time thatréib account for the stochastic nature of incompletenessro

- response can spoil the nature of data . There are sevetatddbat affect the non - response rate in any particular
inquiry. Hansen and Hurwitz (1946) were the first to deal wlith problem of incomplete samples in mail surveys. Mail
surveys or telephone surveys are commonly used by burdauardusiness organizations because of their low cost . In
respect of non - response, Rubin (1976) defined two key casicklissing at random (MAR) and Observed at random
(OAR).

1.1 Missing at random (MAR):

The data are MAR if the probability of observed missingnestsegpn given the observed and unobserved data does not
depend on the values of the unobserved data. It will, thezefoclude cases where the enumerator is not able to contact
the respondents only by chance and had he been able to gahtadata would have been collected. For example when
the information is kept on punched cards, the non - respomséadthe accidental loss of one or more cards is of the first
category. Although this illusion is rather outdated in therld of modern computing but still there is a chance that some
data files may get damaged due to virus attacks. This typerof nesponce is called random non - response.

1.2 Observed at random (OAR):

The data are OAR, if for every possible value of the missinididne probability of the observed missingness pattern,
given the observed and unobserved data, does not depend waltles of the observed data.The combination of MAR
and OAR is called MCAR. In other words, the MCAR can be defined @&|D)=f(A) for all D, where D is the data
matrix and A is the missing data indicator matfggj = 1 if d;j is reporteda;; = O otherwise). Heitjan and Basu (1996)
have also considered the problem of distinguishing bet@&R and MCAR. Note that the concept of OAR is vestige
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of Rubin (1976). Now a days people jump right from MAR to MCARich is a logical step and quite easy to follow .
Among other methods to deal with the problem of non - respomise of the popular method is to impute the non -
response units by suitably selected respondent units gidpelation.

LetY be the mean of the finite population U of size N. A simple randample without replacement (SRSWOR),
s, of sizen is drawn from U to estimat¥. Let r be the number of responding units out of sampled n ubésthe set
of responding units be denoted by A and that of non - respanaiiits is denoted by®. For every unii € A, the value
y; is observed. However for the units A, they; values are missing and hence for them imputed values areederi
We assume that imputation is carried out with the aid of ariliaux variable X such thak;, the value of X for unit i, is
known and positive for everiye s= AU AC. In other words, the data : i € sare known.

2 Notations:

LetU =Uq,Uy,---Uy be the finite population of size of N and the character undetysbe denoted by Y. It is assumed
that information on an auxiliary variate X (with the knowngadation mean) is available at the beginning of the survey.
A simple random sample (without replacemey n units is drawn from the population. Let the number of resgpogd
units out of sampled n units be denoted by r, the set of respgnahits by A, and the non responding unit Ay. For
every uniti € A the valuey; observed, but for the uniis= A, they; values are missing and for them imputed values are
derived. The imputation is carried out with the aid of a qitative auxiliary variate X, such tha;, the value of X for
unit i, is known for each € s.

_ The following notations are used hereafter:

X, Y:The population mean of the variates X and Y respectively.
Xn: The sample mean of X for the sample of size n.

yr: The mean of the variable Y for the set A.

pyx: The correlation coefficient between the variates Y and X.
S%, S2: The population mean squares of X and Y respectively.
Cx, Cy: The coefficient of variation of X and Y respectively.

3 Some imputation methods:

Some classical methods of imputation, which are availabtecammonly used, are as follows :

3.1 Mean method of imputation:
Under this method, the study variate after imputationsddke form,
 fyif ieA
y~'—{37rif icAc @
Under this method of imputation, the point estimator of tbpylation mearY is given by

_ 1 _
Ys= = Vi=Vr )

les

Y

Where
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3.2 Ratio method of imputation:

Y if 1€eA
y"_{bxi it i A ®)

Under this method of imputation, the point estimator of topydation meary is given by

_ _ X
YRAT = rX:r: (4)
Where
1 1
Xn=—HX, Xx=->X
n |ezs r ier
and
h— ZieAYI
ZieAXI

3.3 Compromised method of imputation:

Singh and Horn (2000) proposed the compromised imputatiocgalure, where the study variate after imputation takes
the form

n ~

a-yi+(1—a)bx if i€A

yi= ] Opyt @bt 5)
(1—o)bx; if ieA°

Wherea is a suitably chosen constant, such that the variance ofethdtant estimator is minimum. In this case

the information from the imputed values for the respondingsuis also used in addition to that from non - responding
units.Thus the point estimator of the population mean utiteeabove imputation method becomes,

_ _ _X
Ycomp = ayr + (1— G)er——n (6)

r

On similar lines, Ahmed et al. (2006) proposed several negwutiation techniques by introducing some unknown
parameters and hence proposed the corresponding estnf@testimating the finite population me¥n

4 Proposed methods of imputation:

Motivated with Bahl and Tuteja (1991), we here propose thieviogng exponential - type method of imputation

n_ _ X—%\ .. .
kFy.+(1 k)yr_exp(m> if ieA

) 7)
_ X —Xr . . c (
(1—k)yrexp<x+)?r> if icA

Yi=

Which may be termed as exponential - type compromised intipata

The point estimator of the population megminder the proposed method of imputation is

Fer =97+ (1- giep (3 ®
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4.1 Properties of the proposed estimator yer:

The bias B(.) and mean square error M(.) of the estimatprup to the first order of approximations is derived under the
following transformations:

Ve =Y(1+e),% =X(1+e)
and

Xn = X(1+e3)

such that
lal<1l V i=123

Hence we have

. V(Y V(X V (Xr
E@)=0 i=123; E@)= ) =" ge="10
Under the above transformations the estimator takes thafiolg form :
_ = — -1
Fer =K¥(1+ e+ (1- K+ evep{-F (1+F) ] ©
Now we have the following theorems,
4.2 Theorem
The bias of the proposed estimayer to the first order of approximations is given by
_ 1 1\-[3 1
B(Yer) = (1—K) (F - N) Y {§C>2< = EPYXCXCY] (10)
Proof: we have
— — Vi vi vi € e\ 1 va
B(Ver) = Eer — Y] = E [KY(1+e) + (1-KY¥(1+e)epq —= (1+3) - (12)

Writing the expression ofeT in terms of €s, expanding the right hand side of the above expressionngaki
expectations and collecting the terms up to the first ordespgfroximations, we get the expression for bias of the
estimator as given in (10)

4.3 Theorem
The mean square error of the proposed estimator up to thefitst of approximations is given by

2
M(YeT) = (% — %) Y? {C?( + %Cﬁ — (1—=K)pyxCxCy (12)

Proof:
By the definition of mean square error we have

M(Ver) = E [Jer — Y)

Now using the expression given in equation (9) yer, expanding the terms and taking expectations and retaining
the terms up to the first order of approximations we get exgiveador mean square error as given in equation (12)
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4.4 Minimum mean square error of yeT

The mean square error gt as givenin (12) is a function of unknown constant k. Therefaris natural to search for an
optimum value of k, such that the mean square error of thegsegbestimators becomes minimum . Hence differentiating
equation (12) with respect to k and equating to zero we gémh value ofk as

Cy

k=1— 2pr& (13)
4.5 Theorem
Putting the value of k as given in equation (13) in the equai®) the minimum mean square errongf is derived as
_ 1 1
M(YeT )min = (? —N>\?2 [CI(1-p%y)] (14)

In order to compare the proposed estimator with the imputed estimatong, yrar andycomp, We give below the
expression of bias and mean square error of these estimai@fave

R N L (15)
B(Yrat) = (% - %) Y [CZ — pxvCrCx] (16)
M (Yrar ) = (%—%) S%+ (%—%) (S} + RPSk — 2RSky | (17)
B(5eowe) = (1- @) (7 - 1) VICk - iG] (19
M(Ycomp) = <% - %) Y2Ci + (% - %) Y2 [(1—a)*Cf —2(1— a)pxvCxCy] (19)
and 5

M(Ycomp)opt. = M(YraT) — (% - %) (1—PY>< %) Y2C3 (20)

Where G

Y

Qopt :1_pYX§

5 Comparison of mean square errors:

On the basis of expressions of mean square errors of the gedmstimatoyet with those of estimatorg, , yrar and
ycomp, We can observe the efficiency of the proposed estimator.

51
Comparing expressions (12) and (15), we observe that

M(YeT )min <V (¥r)

when

k>1—4pxyC—Y if k<1 (22)
Cx
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and

&
Cx
Further it can be seen thEt(yeT )min is always smaller than i)

k< 1—4pxy if k>1 (22)

5.2

Comparing expression (14) and (17), it is easy to see that

M(YeT )min < M(YRaT)

Y2 K% - %) (Cx — pvxCr)* + (% - %) PEXC\Z(] >0 (23)

Which is always true . Hence the estimaygt is always precised than the ratio method of imputation ungémality
condition (13)

5.3

Finally comparison of the proposed imputation stratagy bwgnade with the compromised imputation strategy proposed
by Singh and Horn (2000) . Using expression (14) and (20) veete that,

M(Seonr e ~MiFer o =2 (- ) P (24)

Which is always true .Thus it can be concluded that it is amagvisable to prefer exponential-type imputation stiateg
over compromised imputation strategy.

6 Empirical Study
For the empirical study of the proposed strategy with otléstieg imputation strategies we consider the followingeda

Population 1. (Source: Mukhopadhyaya (2000)) .The pojmratonsists of N=20 jute mills. The data show the
numbers of labourers X (in thousands) and quantity of raneneds required Y (in lakhs of bales).
Here we taken=7 andr=>5. Further for the data, we have;

X=44195, Y=415, $2=957368, S%=1021521, Cx=0.2286, Cy=0.2358, pxv=0.6521

Population 2. (Source: Giancarlo Diana and Pier Francesog) P The data are taken from the survey of Household
income and Wealth conducted by The Bank of Italy for the y@&0R). The survey covers 8,011. Italian households
composed of 22,148 individuals and 13,536 income-earherthe analysis, we assume the 8,011 households as the
target population on which the household net disposal ircOr) and the number of household income earners (X) are
investigated . The following values are obtained for thesidered variables.

N=8011,
we take n=400, r =250, Y=2822943, X=169, S,=2221656, Sx=0.78, pyx=0.46

The following tables depicts the bias and mean square ewbrdifferent imputation strategies for the two
populations.

In both the tables, MSEs g1 andycowp are minimum MSEs.
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Table 1: Bias and Mean square errors (for Population. 1)

Estimators | Bias MSE
vr 0 14.361

YraT | 0.0406| 12.586
yoomp | 0.1394| 12.034
YeT | 0.0169]| 8.2521

Table 2: Bias and Mean square errors (for Population.2)

M SE

Estimators | Bias
Vr 0 1912690.2

Vrat | 1.9449| 1767867.7
Ycomp | 2.499 | 1756029.1
yer | 3.1236| 1507964.7

7 Conclusions

The tables show that for both the populations, it is aduistblprefer the proposed estimator over other estimatorsrund
consideration. Further it is certainly better than theneator proposed by Singh and Horn (2000).
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