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1 Introduction

The inequalities of Hardy and Sobolev have a pivotal role in analysis and continue to be
topics of intensive study. In its familiar basic form in Lp(Rn), the Hardy inequality takes
the form

∫

Rn

|∇f |pdx ≥ CH(n, p)
∫

Rn

|f(x)|p
|x|p dx, f ∈ C∞0 (Rn \ {0}), (1.1)

with best possible constant CH(n, p) = {(n− p)/p}p; while the Sobolev inequality is, for
1 ≤ p < n and p∗ := np/(n− p),

‖f‖Lp∗ (Rn) ≤ CS(n, p)‖∇f‖Lp(Rn), f ∈ C∞0 (Rn), (1.2)

with best possible constant

CS(n, p) = π−1/2n−1/p

(
p− 1
n− p

)(p−1)/p {
Γ(1 + n/2)Γ(n)

Γ(n/p)Γ(1 + n− n/p)

}1/n

,

for 1 < p < n, and
CS(n, 1) = π−1/2n−1 (Γ(1 + n/2))1/n

.

In the case p = 2, both inequalities are especially important in the spectral analysis of
differential operators.
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The two inequalities combine to give the following inequality: for 0 < δ <

CH(n, p), 1 ≤ p < n,

‖∇f‖p
Lp(Rn) − δ‖f/| · |‖p

Lp(Rn) ≥ {1− δ/CH(n, p)}‖∇f‖p
Lp(Rn)

≥ [{1− δ/CH(n, p)}/Cp
S(n, p)] ‖f‖p

Lp∗ (Rn)
,

and so
‖f‖p

Lp∗(Rn) ≤ C
{
‖∇f‖p

Lp(Rn) − δ‖f/| · |‖p
Lp(Rn)

}
, (1.3)

where C ≤ Cp
S(n, p){1 − δ/CH(n, p)}−1. In the case p = 2, Stubbe [32] shows that the

optimal value of the constant C is

C2
S(n, 2)[1− δ/CH(n, 2)]−(n−1)/n.

Similar inequalities, based on an affine invariant form of the Hardy inequality in which
∇f is replaced by x · ∇f , and a generalisation of Sobolev’s inequality obtained by Ledoux
in [26], were established in [4], and form the basis of the discussion in section 2. The
aforementioned inequality of Ledoux is that, for every 1 ≤ p < q < ∞ and every function
f in the Sobolev space W 1,p(Rn),

‖f‖Lq(Rn) ≤ C‖∇f‖θ
Lp(Rn)‖f‖1−θ

B
θ/(θ−1)
∞,∞

, (1.4)

where θ = p/q, C is a positive constant which depends only on p, q and n, and Bα
∞,∞ is

the homogenous Besov space of indices (α,∞,∞); see [33]. The latter is the space of
tempered distributions for which the norm

‖f‖Bα∞,∞ := sup
t>0

{t−α/2‖Ptf‖L∞(Rn)}

is finite, where Pt = et∆, t ≥ 0, is the heat semigroup on Rn : recall that {Pt}t≥0 is
defined by P0f = f and

Ptf(x) =
1

(4πt)n/2

∫

Rn

f(y)e−|x−y|2/4tdy

for t > 0,x ∈ Rn. Cases of (1.4) were earlier established in [9–11]. The inequality
(1.4) is easily seen to include the classical Sobolev inequality (1.2). Ledoux’s technique
requires specific information on the heat semi-group et∆ in L2(Rn). For the application
in [4] discussed in section 2, there is a need to determine the operator semi-group e−tL∗L,

where L = x · ∇.

In recent years there has been much interest in analogues of (1.1) on bounded domains,
in particular the following for a bounded domain Ω :

∫

Ω

|∇f(x)|pdx ≥ C

∫

Ω

|f(x)|p
δ(x)p

dx, f ∈ C∞0 (Ω), (1.5)
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where the positive constant C depends on p, n and Ω, and δ(x) = dist(x, ∂Ω) denotes the
distance from x to the boundary ∂Ω of Ω. It is well-known that (1.5) requires some restric-
tions on Ω. For a convex Ω it is valid, with best constant cp := [(p − 1)/p]p, although the
convexity is not necessary for this result (see [13]). The sharp constant in (1.5) for general
non-convex domains is unknown, although, for an arbitrary simply-connected domain Ω in
R2 and p = 2, A. Ancona [1] proved the inequality (1.5) with C = 1/16. His proof was
based on the Koebe one-quarter Theorem. In [24] a stronger version of the Koebe Theorem
for some class of planar domains has been established. This yields better estimates for the
constant appearing in the Hardy inequality (1.5).

For a general domain Ω in Rn, what can be said is that there is such an inequality when
δ is replaced by the mean distance δM introduced by Davies (see [16]) and defined by

1
δ2
M (x)

:=
∫

Sn−1

1
δ2
ν(x)

dω(ν), (1.6)

where dω(ν) is the normalised measure on the unit sphere Sn−1 in Rn and δν(x) is the
distance from x to ∂Ω in the direction ν. A fairly comprehensive treatment of (1.5) in a
general setting may be found in [17]. The inequality (1.5) and its various extensions are
the subject of section 3. We shall be particularly concerned with the cases when Ω is either
convex or the complement of a convex set.

When n = 2 in (1.1), the inequality is trivial. In [25], Laptev and Weidl showed, inter
alia, that

∫

R2
|∇af(x)|2dx,≥

(
dist(Ψ̃,Z)

)2
∫

R2

|f(x)|2
|x|2 dx, f ∈ C∞0 (Rn \ {0}) (1.7)

where ∇a := ∇ − ia is the magnetic gradient associated with the magnetic potential a
which, in polar co-ordinates, is of the form

a(r, θ) =
Ψ(θ)

r
(− sin θ, cos θ) , Ψ ∈ L∞(0, 2π), (1.8)

with magnetic flux Ψ̃ = (1/2π)
∫ 2π

0
Ψ(θ)dθ /∈ Z. In (1.8), the magnetic field curla = 0

in R2 \ {0} and is of so-called Aharonov-Bohm type. If Ψ̃ ∈ Z, the problem is equiva-
lent to that with no magnetic field (by a gauge transformation) when there is no non-trivial
inequality. Analogous inequalities for Aharonov-Bohm magnetic fields with multiple sin-
gularities are obtained in [2], and for general magnetic fields in [6]. These results are the
subject of section 4.

2 Hardy and Hardy-Sobolev-Type Inequalities in Rn

The Hardy inequality (1.1) and the Sobolev inequality (1.2 ) are both invariant under
orthogonal transformations and scaling. But they are not invariant under general linear
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transformations. In [29] a new remarkable sharp affine Lp Sobolev inequality for functions
on Euclidean n-space was established. This new inequality is significantly stronger than
(and directly implies) the classical sharp Lp Sobolev inequality, even though it uses only
the vector space structure and standard Lebesgue measure on Rn. For this inequality, no
inner product, norm, or conformal structure is needed; the inequality is invariant under all
affine transformations of Rn. Such affine invariant inequalities are important in many areas
of image processing [3].

The next theorem is an affine invariant version of the Hardy inequality and is also
stronger than the classical inequality (1.1).

Theorem 2.1. Let n ≥ 1 and 1 ≤ p < ∞. Then for all f ∈ C∞0 (Rn)
∫

Rn

|(x · ∇)f |pdx ≥
(

n

p

)p ∫

Rn

|f |pdx. (2.1)

Proof. For any differentiable function V : Rn → Rn we have
∫

Rn

divV |f |pdx = −p Re

∫

Rn

(V · ∇f)|f |p−2fdx

≤ p

(∫

Rn

|V · ∇f |pdx
)1/p (∫

Rn

|f |pdx
)(p−1)/p

≤ εp

∫

Rn

|V · ∇f |pdx + (p− 1)ε−p/(p−1)

∫

Rn

|f |pdx (2.2)

for any ε > 0. Now choose V (x) = x to get
∫

Rn

|(x · ∇)f |pdx ≥ K(n, ε)
∫

Rn

|f |pdx,

where
K(n, ε) = ε−p{n− (p− 1)ε−p/(p−1)}.

This takes its maximum value (n/p)p when εp/(p−1) = p/n. This proves the theorem.

Remark 2.1. The inequality (2.1) implies (1.1) for 1 ≤ p ≤ n. For we have from

∇(|x|f) =
x
|x|f + |x|∇f

that

‖∇(|x|f)‖Lp(Rn) ≥ ‖|x||∇f |‖Lp(Rn) − ‖f‖Lp(Rn)

≥ ‖(x · ∇)f‖Lp(Rn) − ‖f‖Lp(Rn)

≥
(

n− p

p

)
‖f‖Lp(Rn)

whence (1.1) on replacing f(x) by f(x)/|x|.
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Ledoux’s inequality (1.5) is applied in [4] to an inequality involving L = x · ∇, after
first analysing the operator semi-group e−L∗L in L2(Rn). The operator L is readily seen to
satisfy

L = iA− n

2
,

where A is the self-adjoint generator of the group of dilations {U(t) : t ∈ R} in L2(Rn),
namely

U(t)ψ(x) := etn/2ψ(etx),

and this gives

L∗L = (−iA− n

2
)(iA− n

2
) = A2 +

n2

4
.

Hence, L∗L ≥ n2/4, in accordance with Theorem 2.1.
Consider the co-ordinate change determined by the map Φ : L2(Rn) → L2(R×Sn−1)

defined by
(Φψ)(s, ω) := esn/2ψ(esω) (2.3)

for ω ∈ Sn−1 and s ∈ R. Note that we equip R × Sn−1 with the usual one dimensional
Lebesgue measure on R and the usual surface measure on Sn−1. Thus Φ preserves the L2

norm. The inverse of Φ satisfies Φ−1 : L2(R× Sn−1) → L2(Rn) and is given by

(Φ−1ϕ)(x) = r−n/2ϕ
(
ln r, ω

)
.

Let Pt denote e−tA2
. Then, from [4, Theorem],

ΦPtΦ−1ϕ(r, ω) =
1√
4πt

∫

R
exp{− 1

4t
(r − s)2}ϕ(sω)ds. (2.4)

The fact that Φe−tA2
Φ−1 in (2.4) is essentially radial means that the analogue of (1.4) de-

rived by Ledoux’s technique is a consequence of the one-dimensional case of (1.4). Defin-
ing Bα to be the space of all tempered distributions g on R× Sn−1 for which the norm

‖g‖Bα := sup
t>0

{t−α/2‖Φe−tA2
Φ−1g|‖L∞(R×Sn−1)} < ∞, (2.5)

one obtains from the n = 1 case of (1.4), that for any ω ∈ Sn−1,
∫

R
|g(r, ω)|qdr ≤ Cq

∫

R

∣∣∣∣
∂g(r, ω)

∂r

∣∣∣∣
p

dr

×
(

sup
t>0,r∈R

tθ/2(1−θ)
∣∣∣ 1√

4πt

∫

R
e−(r−s)2/4tg(s, ω)ds

∣∣∣
)q(1−θ)

= Cq

∫

R

∣∣∣∣
∂g(r, ω)

∂r

∣∣∣∣
p

dr

(
sup

t>0,r∈R
tθ/2(1−θ)

∣∣∣Φe−tA2
Φ−1g(r, ω)

∣∣∣
)q(1−θ)

≤ Cq

∫

R

∣∣∣∣
∂g(r, ω)

∂r

∣∣∣∣
p

dr

(
sup
t>0

tθ/2(1−θ)
∥∥∥Φe−tA2

Φ−1g
∥∥∥

L∞(R×Sn−1)

)q(1−θ)

≤ Cq

∫

R

∣∣∣∣
∂g(r, ω)

∂r

∣∣∣∣
p

dr‖g‖q(1−θ)

Bθ/(θ−1) .
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Integrating with respect to ω over Sn−1 yields

Theorem 2.2. Let 1 ≤ p < q < ∞ and suppose that g is such that ΦAΦ−1g ≡
−i(∂/∂r)g ∈ Lp(R × Sn−1) and g ∈ Bθ/(θ−1), θ = p/q. Then there exists a positive
constant C, depending on p and q, such that

‖g‖Lq(R×Sn−1) ≤ C‖(∂/∂r)g‖θ
Lp(R×Sn−1)‖g‖1−θ

Bθ/(θ−1) . (2.6)

The following corollary is obtained in [4, Corollary 2].

Corollary 2.1. (i) Let p∗ := np/(n − p), 1 ≤ p ≤ n − 1, and suppose (∂/∂r)g ∈
Lp(R× Sn−1) and supω∈Sn−1 ‖g(·, ω)‖Lp(R) < ∞. Then

‖g‖Lp∗ (R×Sn−1) ≤ C‖(∂/∂r)g‖1/n
Lp(R×Sn−1) sup

ω∈Sn−1
‖g(·, ω)‖(n−1)/n

Lp(R) . (2.7)

(ii) If G = M(g) denotes the integral mean of g, namely,

G(r) = M(g)(r) :=
1

|Sn−1|
∫

Sn−1
g(r, ω)dω,

then if g, (∂/∂r)g ∈ Lp(R× Sn−1),

‖G‖Lp∗ (R) ≤ C‖(∂/∂r)g‖1/n
Lp(R×Sn−1)‖g‖

(n−1)/n
Lp(R×Sn−1). (2.8)

If g is supported in [−Λ, Λ]× Sn−1, then

‖g‖Lp∗ (R×Sn−1) ≤ CΛ(n−1)/n2‖(∂/∂r)g‖1/n
Lp(R×Sn−1) sup

ω∈Sn−1
‖g(·, ω)‖(n−1)/n

Lp∗ (R)
; (2.9)

also
‖G‖Lp∗ (R) ≤ CΛ(n−1)/n‖(∂/∂r)g‖Lp(R×Sn−1). (2.10)

The case p = 2 of Corollary 2.1 is of special interest and gives analogues of Stubbe’s
Hardy-Sobolev inequality (1.3).

Corollary 2.2. (i) Let f be such that Lf ∈ L2(Rn), L = x · ∇, and

sup
ω∈Sn−1

‖f(·, ω)‖L2(R+;dµ) < ∞.

Then, for n ≥ 3,

‖rf(rω)‖2L2∗ (Rn) ≤ C

{
‖Lf‖2L2(Rn) −

n2

4
‖f‖2L2(Rn)

}1/n

sup
ω∈Sn−1

‖f(·, ω)‖2(1−1/n)
L2(R+;dµ)),

(2.11)
where 2∗ = 2n/(n− 2) and dµ = rn−1dr.
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(ii) If f, Lf ∈ L2(Rn), then, with F := M(f),

‖rF (r)‖2L2∗ (R+;dµ) ≤ C

{
‖Lf‖2L2(Rn) −

n2

4
‖f‖2L2(Rn)

}1/n

‖f‖2(1−1/n)
L2(Rn) . (2.12)

For 0 ≤ δ < n2/4, we have

‖rF (r)‖2L2∗ (R+;dµ) ≤ C
(
n2/4− δ

)−(n−1)/n
{
‖Lf‖2L2(Rn) − δ‖f‖2L2(Rn)

}
. (2.13)

The following local Hardy-Sobolev type inequalities are also consequences.

Corollary 2.3. Let f be supported in the annulus AR := {x ∈ Rn : 1/R ≤ |x| ≤ R}.
Then

‖rF (r)‖2L2∗ (R+;dµ) ≤ C(lnR)2(n−1)/n
{
‖Lf‖2L2(Rn) − (n2/4)‖f‖2L2(Rn)

}
; (2.14)

‖F‖2L2∗ (R+;dµ) ≤ C(lnR)2(n−1)/n

{
‖∇f‖2L2(Rn) −

[n− 2
2

]2∥∥∥ f

| · |
∥∥∥

2

L2(Rn)

}
. (2.15)

The inequality (2.15) is reminiscent of the case s = 1 of (2.6) in [22, Section 6.4]; this
is also proved in [8]. To be specific, it is that if f ∈ C∞0 (Ω) and 2 ≤ q < 2∗,

‖f‖2Lq(Rn) ≤ C|Ω|2(1/q−1/2∗)
{
‖∇f‖2L2(Rn) −

[n− 2
2

]2∥∥∥ f

| · |
∥∥∥

2

L2(Rn)

}
, (2.16)

where |Ω| denotes the volume of Ω. It is noted in [22, Remark 2.4] that, in contrast to (2.15),
the q in (2.15) must be strictly less than the critical Sobolev exponent 2∗ = 2n/(n − 2) if
Ω includes the origin.

3 On Hardy-Type Inequalities on Open Subsets

It is known (see [30] and [31]) that if Ω is a convex domain in Rn, the best constant
in (1.5) is C = cp := [(p − 1)/p]p, but there are smooth domains for which C < cp.

Numerous extensions of this result have been proved in recent years. In [7], Brézis and
Markus proved that for any convex Ω, the largest possible constant λ(Ω) such that

∫

Ω

|∇f(x)|2dx ≥ (1/4)
∫

Ω

|f(x)|2
δ(x)2

dx + λ(Ω)
∫

Ω

|f(x)|2dx, f ∈ C∞0 (Ω), (3.1)

satisfies

λ(Ω) ≥ (4 diam(Ω)2)−1. (3.2)
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Various improvements of this result are discussed in [18]. Of particular interest is the
following analogue of the Hardy-Sobolev inequality (1.3) established in [21] in Lp(Ω),
when Ω is convex with finite internal diameter: for 1 < p < n and p ≤ q < p∗,

‖f‖p ≤ C(n, p, q)|Ω|p(1/q−1/p∗)
{
‖∇f‖p

Lp(Ω) − cp‖f/δ‖p
Lp(Ω)

}
. (3.3)

Our main concern will be with inequalities for an open set Ω which is either the com-
plement of a convex set or is convex.

Theorem 3.1. Let Ω be an open subset of Rn whose complement Ωc is convex, and let
δ(x) := dist(x, Ωc). Then, for all f ∈ C∞0 (Ω),

∫

Ω

δ2(m−1)|∇δ2 · ∇f |pdx ≥
(

2(2m− 1)
p

)p ∫

Ω

δ2(m−1)|f |pdx. (3.4)

Proof. In (2.2), set V (x) = ∇δ2m(x). Then, in any compact subset of Ω,

divV =
n∑

i=1

∂i[∂iδ
2m]

= mδ2(m−1)∆δ2 + 4m(m− 1)δ2(m−1)|∇δ|2

= mδ2(m−1)∆δ2 + 4m(m− 1)δ2(m−1),

since |∇δ| = 1, a.e. in Ω. On substituting in (2.2) and using the Hölder and Young inequal-
ities, we get

∫

Ω

{
m∆δ2 + 4m(m− 1)

}
δ2(m−1)|f |pdx ≤ p

∫

Ω

|∇δ2m · ∇f ||f |p−1dx

≤ p

(∫

Ω

|∇δ2m · ∇f |pδ−2(p−1)(m−1)dx
)1/p (∫

Ω

δ2(m−1)|f |pdx
)1−1/p

≤ mpεp

∫

Ω

|∇δ2 · ∇f |pδ2(m−1)dx + (p− 1)ε−p/(p−1)

∫

Ω

δ2(m−1)|f |pdx. (3.5)

We claim that ∆δ2 ≥ 2. To see this, for any x ∈ Ω, rotate the co-ordinate system so that
x = (ξ1, ξ′), where ξ1 = δ(x) measured along the line L1 from x to its nearest point on
the boundary of Ω and ξ′ = (ξ2, . . . , ξn) lies in the (n − 1)-dimensional orthogonal com-
plement L(n−1) of L1 in Rn. Then, in view of the rotational invariance of the Laplacian,
we have that

∆δ2(x) = ∂2
1ξ2

1 + ∆′δ2(x),

where ∆′ denotes the Laplacian in L(n−1). Since Ωc is convex, ∆′δ2(x) ≥ 0 and so
∆δ2 ≥ 2, as asserted. It follows from (3.5) that

∫

Ω

|∇δ2 · ∇f |pδ2(m−1)dx ≥
∫

Ω

δ2(m−1)K(ε)|f |pdx, (3.6)
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where

K(ε) =
(

2(2m− 1)
m(p−1)

)
ε−p −

(
p− 1
mp

)
ε−p2/(p−1).

It is readily shown that K attains its maximum value of [2(2m−1)/p]p at ε = [p/2m(2m−
1)](p−1)/p. Hence, the theorem follows from (3.6),

Corollary 3.1. Let Ω be an open subset ofRn whose complement is convex, and let δ(x) :=
dist(x, Ωc). Then, for all g ∈ C∞0 (Ω) and γ > −1/p,

∫

Ω

δp(γ+1)|∇g|pdx ≥ (γ + 1/p)p

∫

Ω

δpγ |g|pdx. (3.7)

Proof. Put f = g/δα in (3.4). Then we have

|∇δ2 · ∇f | ≤ 2{δ−α+1|∇g|+ αδ−α|g|}

and ∥∥∥δ[2(m−1)/p−α+1]∇g
∥∥∥ ≥

[ (2m− 1)
p

− α
]∥∥∥δ[2(m−1)/p−α]g

∥∥∥

where ‖·‖ denotes the Lp norm. The inequality (3.7) follows on setting γ = 2(m−1)/p−α.

The technique used in the proof of Theorem 3.1 can be used to give the following
inequality for a convex Ω, which contains the Hardy inequality (1.5) with the optimal con-
stant.

Theorem 3.2. Let Ω be an open convex subset of Rn. Then, for all f ∈ C∞0 (Ω),

∫

Ω

|∇δ · ∇f |pdx ≥
(

p− 1
p

)p ∫

Ω

δ−p|f |pdx, (3.8)

and hence, ∫

Ω

|∇f |pdx ≥
(

p− 1
p

)p ∫

Ω

δ−p|f |pdx. (3.9)

Proof. In (2.2), we now choose V = ∇δ−2m, so that

div V = mδ−2(m−1)∆δ−2 + 4m(m− 1)δ−2(m+1)|∇δ|2. (3.10)

Since Ω is convex, we have in the notation used in the proof of Theorem 3.1, that ∆′δ−2 ≥
0, and

∆δ−2 ≥ ∂2
1ξ−2

1 = 6ξ−4
1 = 6δ−4.

Therefore, in (3.10),

div V ≥ 2m(2m + 1)δ−2(m+1).
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On substituting this in (2.2) and applying the Hölder and Young inequalities, as in the proof
of Theorem 3.1, we have

∫

Ω

|∇δ−2 · ∇f |pδ4p−2(m+1)dx ≥
∫

Ω

J(ε)δ−2(m+1)dx,

where

J(ε) =
2(2m + 1)

mp−1
ε−p − p− 1

mp
ε−p2/(p−1) ≤

(
2(2m + 1)

p

)p

,

the maximum being attained. It follows that
∫

Ω

|∇δ−2 · ∇f |pδ4p−2(m+1)dx ≥
(

2(2m + 1)
p

)p ∫

Ω

J(ε)δ−2(m+1)dx.

The theorem follows on choosing m = (p/2)− 1.

4 Hardy-Type Inequalities with Magnetic Fields in 2 Dimensions

Consider the magnetic form

ha[u] =
∫
|(−ı∇− a)u|2 dx (4.1)

on u ∈ C1
0 (Rn), n ≥ 2, with an appropriate vector potential a ∈ L2(Rn). In view of the

diamagnetic inequality [28, p. 179],

ha[u] ≥
∫
|∇|u||2 dx , ∀u ∈ C1

0 (Rn),

the Hardy inequality implies the same bound for the magnetic form (4.1). In dimension
n = 2, however, the Hardy inequality (1.1) is trivial. Nevertheless the introduction of a
magnetic field can improve this situation. In the present paper we consider the magnetic
form (4.1) only in dimension n = 2.

For symmetric operators

L1 = −ı
∂

∂x
− a1(x, y) and L2 = −ı

∂

∂y
− a2(x, y)

with a = (a1(x, y), a2(x, y)), we have (L1 ± ıL2)(L1 ± ıL2)∗ ≥ 0. This implies that
L2

1 + L2
2 ≥ ±ı[L1, L2] = ±B, where B := curla is a magnetic field. The last inequality

is the standard lower bound for the magnetic form (4.1) in dimension d = 2, namely,

ha[u] ≥
∫
±B|u|2 dxdy , (4.2)

which holds with either of the signs ±.
If B is positive (or negative) and big enough, then (4.2) gives a very good lower bound

for (4.1). It is worth pointing out that very little is known about a lower bound for (4.1) in
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the case of a B with variable sign. In the case of B = 0 or in the case when the support of u

is located outside of the support of B, the inequality (4.2) is useless and another approach
is needed. In this section we explain in the case of regular B how to combine (4.2) and the
Hardy inequality for domains with Lipschitz boundaries to get a bound of the form

ha[u] ≥ c

∫
B̃|u|2 dxdy ,

with an effective magnetic field B̃, which coincides with ±B on its support and decays
outside the support as dist{x, supp B}−2 (see [6] for more details).

We also show how to get a Hardy type inequality in the case of Aharonov-Bohm mag-
netic potentials, i.e., when B = 0 on a punctured plane M = R2 \ {P1, . . . , Pn} (see [2]
for details).

It was shown in [5] that for Aharonov-Bohm magnetic potentials we have Sobolev
and Cwickel-Lieb-Rosenblum inequalities in dimension two. In [19] the authors show
that introducing a magnetic field also improves the Relich inequality in dimension 4 and
the results obtained were used in [20] to count eigenvalues of biharmonic operators with
magnetic fields.

Let P1 = (x1, y1), . . . , Pn = (xn, yn) be n different points in R2. We identify R2

with C and the points P1, . . . , Pn then correspond to the complex numbers z1 = x1 +
ıy1, . . . , zn = xn + ıyn. Consider a smooth vector potential a = (a1(x, y), a2(x, y)) in
the punctured plane M = R2 \ {P1, . . . , Pn} with magnetic field

B := curl a = 0 . (4.3)

Such a vector potential a is known as a magnetic vector potential of Aharonov-Bohm type.
Let us denote by ωa the differential 1-form a1(x, y) dx + a2(x, y) dy. Then (4.3) is

equivalent to dωa = 0, i.e. ωa is a closed differential form. The condition (4.3) implies
that in any simply connected open subset of M , there exists a gauge function f such that
a = ∇f .

For each point Pk (k = 1, . . . , n) let us define a circulation of a around Pk as

Φk =
1
2π

∫

γk

ωa , (4.4)

where γk is a small circle in M which winds once around Pk in an anticlockwise direction.
Condition (4.3) implies that (4.4) is invariant under continuous deformations of γk inside
M .

For n = 1 and P1 = (0, 0) Laptev and Weidl in [25] proved that

ha[u] ≥ min
n∈Z

|Φ1 − n|2
∫ |u|2
|x|2 dx , u ∈ C∞0 (R2 \ {0}) . (4.5)
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The proof of (4.5) is based on the observation that for a suitable choice of gauge, the angular
part of the quadratic form ha[u] is separated from zero if the flux Φ1 stays away from the
set of integers. Unfortunately when n ≥ 2 there is no natural decomposition of ha[u] into
radial and spherical parts and a new approach is needed.

We are looking for a lower bound for (4.1) by a Hardy-type expression

ha[u] ≥
∫

M

H(x, y)|u(x, y)|2 dxdy , u ∈ C∞0 (M) (4.6)

with a suitable non-negative function H(x, y) on M .
For any real number Ψ denote by p(Ψ) the distance from Ψ to the set of integers Z, i.e.

p(Ψ) = min
k∈Z

|k −Ψ| . (4.7)

We are interested in those functions H(x, y) which satisfy the following conditions.
1. H(x, y) depends on a only throughout the circulations Φ1, . . . , Φn and the coordi-

nates of Pj , j = 1, . . . , n.
2. H(x, y) behaves like

(p(Φj))2

(x− xj)2 + (y − yj)2

near each point Pj , j = 1, . . . , n, since around point Pj only circulation Φj is present.
Near infinity, H(x, y) behaves like

(p(Φ1 + . . . + Φn))2

x2 + y2
,

since Φ1 + . . . + Φn is the circulation around infinity.
For the reader’s convenience we finish this introduction by giving an example of

H(x, y) in the case of two points P1 = −1 and P2 = 1 in C with the circulations c1 ≡ Φ1

and c2 ≡ Φ2, respectively.

Example 4.1. Let P1 = (−1, 0), P2 = (1, 0) be two points in R2, M = R2 \ {P1, P2}
and a is a magnetic vector potential of Aharonov-Bohm type in M with the circulations cj

round Pj , j = 1, 2. Then the inequality (4.6) holds with

H(x, y) = C(x, y) ·
∣∣∣∣

2z

z2 − 1

∣∣∣∣
2

, z = x + iy,

where C(x, y) is the piecewise constant function on R2 shown in Figure 4.1.
In the figure, C is the curve (x2 − y2 − 1) + 4x2y2 = 1 which divides the plane R2

into three regions Ω1, Ω2 and Ω∞, where P1 ∈ Ω1 and P2 ∈ Ω2; C(x, y) equals (p(c1))2

in Ω1, (p(c2))2 in Ω2 and (p(c1 + c2))2/4 in Ω∞.
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Figure 4.1: Function C(x,y)

Our approach is based on the conformal invariance of magnetic Dirichlet forms with
Aharonov-Bohm potentials. The strategy is first to establish a Hardy-type inequality for
doubly connected domains in C using uniformization, and second to use an analytic func-
tion F to decompose C into doubly connected domains with explicit uniformizations.

Let us show that any analytic function F (z) on C with zero set {P1, . . . , Pn} and
F (∞) = ∞ generates a function H(x, y) with properties 1 and 2 above.

Denote by ordPj F the order of zero of F at Pj . Let {Q1, . . . , Ql} be a zero set of the
complex derivative F ′z of the function F , i.e. {Q1, . . . , Ql} = (F ′z)

−1(0), and denote by
CritF the following subset of R+ = {x ∈ R|x ≥ 0}:

CritF = {0, |F (Q1)|, . . . , |F (Ql)|} .

Under the map |F | : C→ R+ the pre-image of CritF is a zero measure set Fc.
Let us define a piecewise constant function CF onR2. For any (x, y) ∈ R2, x+ıy 6∈ Fc,

the set |F |−1(|F |(x+ıy)) is a disjoint union of smooth simple curves inC; let γ(x,y) denote
one of them that goes through the point (x, y). This γ(x,y) divides C into two domains, a
bounded domain Ωint(γ(x,y)) and an unbounded domain Ωext(γ(x,y)). Then

CF (x, y) :=

(
p

(∑
Pk∈Ωint(γ(x,y))

Φk

))2

(ordγ(x,y)F )2
, (4.8)

where Φk is a circulation of a round Pk and ordγ(x,y)F =
∑

Pk∈Ωint(γ(x,y))
ordPk

F .

Theorem 4.1. Let CF be defined in (4.8) for the analytic function F . For any u ∈ C∞0 (M)
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the following inequality holds

∫

M

|(−ı∇− a)u|2 dxdy ≥
∫

M

CF (x, y)
∣∣∣∣
F ′z(x + ıy)
F (x + ıy)

∣∣∣∣
2

|u(x, y)|2 dxdy . (4.9)

The function

CF (x, y)
∣∣∣∣
F ′z(x + ıy)
F (x + ıy)

∣∣∣∣
2

is a function H(x, y) with properties 1 and 2 above.
Let now a = (a1, a2) ∈ L2

loc(R2) be a real-valued vector function. Assume that the
magnetic field

B = curl a

exists in the sense of distribution and it is measurable on R2. As was explained at the
beginning of this section, we want to combine the estimate (4.2) in the domain Ω where
B is large and with the Hardy inequality for the domain Ω′ = R2 \ Ω. Since a function
u from the form-domain of ha[u] has to be regular, we can’t just restrict u to Ω and Ω′.
Some sort of partition of unity is required. Before stating the main results, let us introduce
an important constant depending on Ω.

Suppose that the boundary of Ω is Lipschitz. Let δ(x) be the distance from x ∈ R2 to Ω.
Then there exists a positive constant µ ≤ 1/4 such that for any u ∈ H1

0 (Ω′), Ω′ = R2 \Ω,
one has the following Hardy inequality (see [14, 15, 27]):

∫

Ω′

|∇u(x)|2 dx ≥ µ

∫

Ω′

|u(x)|2
δ(x)2

dx . (4.10)

If Ω′ is a union of convex connected components, one has µ = 1/4. In view of the diamag-
netic inequality we have

∫

Ω′

|(−ı∇− a)u(x)|2 dx ≥ µ

∫

Ω′

|u(x)|2
δ(x)2

dx , ∀u ∈ C1
0 (Ω′) . (4.11)

For other results connected with the inequality (4.10) and further references see e.g. [7,23].
We also need to introduce a positive continuous function ` which plays the role of a

slowly varying spatial scale reflecting variation of the magnetic field. We associate with
the function ` the open ball

K(x) = {y ∈ R2 : |x− y| < `(x)} .

The scale ` is assumed to satisfy the conditions

` ∈ C1(R2); |∇`(x)| ≤ 1, `(x) > 0, ∀x ∈ R2 . (4.12)
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To specify further conditions on B we need to divide R2 into sets relevant to the strength
of the field. For a (measurable) set C ⊂ R2 define

C↑ =
⋃

x∈C
K(x) .

With the field B we associate two open sets Ω, Λ ⊂ R2, such that Ω↑ ⊂ Λ and (R2 \
Λ)↑ ∩ Ω↑ = ∅. The case Λ = R2 is not excluded. Let λ0 > 0 be the lowest eigenvalue
of the Laplace operator −∆ on the unit disk with Dirichlet boundary conditions. If Ω
has Lipschitz boundary and R2 \ Λ 6= ∅, then there exists a convenient partition of unity
(see [6, Lemma 3.2]): ζ, η ∈ C1(R2) such that
(i) 0 ≤ ζ ≤ 1,
(ii) ξ(x) = 1 for x ∈ Ω, η(x) = 1 for x ∈ R2 \ Λ,
(iii) ζ2 + η2 = 1,
(iv) |∇ζ| ≤ A`−1, |∇η| ≤ A`−1 with any A > A0 = 5(2 + 4

√
λ0)

/√
2.

Assume that

|B(x)| `(x)2 ≥ 2A2
0 , a.a. x ∈ Λ . (4.13)

The physical meaning of the sets Ω, Λ, is that, on Ω, the field B is large, on R2 \Λ the field
B is negligibly small, and the set Λ \ Ω is a transition zone.

Since ζ2 + η2 = 1, we have for any u ∈ C1
0 (R2)

ha[u] =
∫
|ζ(−ı∇− a)u|2 dx +

∫
|η(−ı∇− a)u|2 dx

= h[ζu] + h[ηu]−
∫

(|∇ζ|2 + |∇η|2) |u|2 dx .

We can estimate h[ζu] using (4.2) and h[ηu] using (4.11) and |∇ζ|2 + |∇η|2 by property
(iv) of the partition of unity. We summarise all this in

Theorem 4.2. Let Ω ⊂ R2 be an open set with Lipschitz boundary. Let the function ` be
as specified in (4.12), and let the field B satisfy (4.13). Suppose also that the field B is
either non-negative or non-positive a.a. x ∈ R2. Then

ha[u] ≥ µ

2

∫ |u(x)|2
`(x)2 + δ(x)2

dx

for all u ∈ D[ha].
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