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Abstract: In this paper, the numerical solution of two dimensional Fredholm and tvaliategral equations will be investigated.
For this order, two dimensional collocation method is applied to solve systéwoalimensional linear and nonlinear Fredholm and
\olterra integral equations. Using the Jacobi polynomials, two dimenisitiegral equations reduce to a system of algebraic equations.
The main aim is the developing the Jacobi operational matrices of integeatibproduct for the solving system of two dimensional
Fredholm and \olterra integral equations. These matrices together wittolloeation method are applied to reduce the solution of
these problems to the solution of a system of algebraic equations. Theicalnegamples illustrate the efficiency and accuracy of this
method.

Keywords: collocation method, shifted Jacobi polynomials, two dimensional FredaokinVolterra integral equations, operational
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1 Introduction In this study, first two dimensional Jacobi operational
matrices of integration and product are obtained. Next, the
collocation method is developed for solving the systems of

Two dimensional integral equations provide an important™e dimensional integral equations. _ _
tool for modeling a numerous problems in engineering_ 1€ remainder of this paper is organized as follows:
and mechanicsl{2]. There are many different numerical 11€ Jacobi polynomials and some their properties and

methods for solving one dimensional integral equations "€ dimensional matrices of integration and product are
such as 3,4,5,6,7,8,9]. Some of these methods can be introduced in Section 2. Afterwards, these matrices will

used for solving two dimensional integral equations. be extended to two dimensional case. In Section 3, the
Computational complexity of mathematical operations isconvergence of the method is studied. Section 4 is

the most important obstacle for solving integral equationsd€voted to applying two dimensional Jacobi operational
in higher dimensions. matrices for solving systems of two dimensional integral

Maleknejad and et al in1f] have applied the equations. In Section 5, the proposed method is applied to

. . . solve several examples. A conclusion is presented in
Adomian decomposition method to solve the nonl'nearSection 6.
mixed Volterra-Fredholm integral equations. Guogiang,
[11], has used the Nydim method for a nonlinear
Volterra-Fredholm integral equations. Babolian and et al . : : :
have used the Homgotopyq perturbation method and2 ‘]a(,:Ob' polynomials and Jacobi operational
differential transform method for two dimensional linear Matrices
and nonlinear \olterra integral equations12]. i i i .
Hatamzadeh and et all3, applied the block-pulse The Jacobi polynomials, associated with the real
functions to solve two dimensional linear integral Parameterga,B > —1) are a sequence of polynomials

equations. P “’ﬁ)(t)(i =0,1,2,...), each of degreé are orthogonal
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i %)
ro+%

with Jacobi weighted functiony(t) = (1 —t)%(1+1)8 Tsi(x) = (x),

overl =[-1,1], and
! () — pl00 o (DI (5) 34
/ lP,S"’m(t) PP (t)yw(t)dt = hndm, Psi(x) =R (x), Usi(x) = WF{ (x).
The analytic form of the shifted Jacobi polynomials,

wheredm, is Kroneker function and Pi(o”B)(x), is given by

0B+ (nfa+ )M (n+B+1)
@n+a+B+Inir(n+a+p+1) A8 () i (—1) W (i + B+ 1) (i +k+a + B+ L)X
These polynomials can be generated with the following o Tk+B+DM(I+a+B+1D)([-KKk
recurrence formula:

h =

Some properties of the shifted Jacobi polynomials are
(a+B+2i—1) as follows:

2(a+B+i)a+p+2i—2) _
WRPo = ().

@R =1 ("HF).

P_(U’-,B)(t) _

{a? = B2 +t(a+B+2i)(a+B+2—2) P %P )

(@+i-D)(B+i—-1(a+B+2)_(ap)
—— : PP (), .
i(a+B+i)(a+p+2-2) 3) d paB) [ (nta-+B+i+1) pla+if+)
NP ()dxun ()*qu (X).
whereP{"?)(t) = 1 andP{*P(t) = (a + B+ 2)t/2+ The orthogonality condition of shifted Jacobi
(a—B)/2. polynomials is:
In order to use these polynomials on the intef@al], )
shifted Jacobi polynomials are defined by introducing the = o(a@,B) (a,B) (a,B) s
change of variablé = 2x — 1. In what following, the ,/0 P (IR (W (¥)dx = 8BS,

shifted Jacobi ponnomiaIE(a’m(Zx—l) are denoted by where w(?F)(x), shifted weighted function, is as
(”'B)(x), for convenience. Then the shifted Jacobi ¢y ws: ' '

polynom|alsP< )( X) can be generated from following

formula: WB) (%) = xB(1—x)°,
P8 (x) = (a+p+2—1) and, 8 = h/20 B+,
Ala+prifatpra-2) Lemma 2.1.The shifted Jacobi polynomiﬁﬁ“’p)(x) can

be obtained in the form of:

{02 — B2+ (x—1)(a+B+2)(a+B+2—2)}R %P (% )
(@t i@ BrA) pap) P00 =3 A",
i(a+B+i)(a+p+2—-2) =2 V7 =
xeD=[0,1], i=23,..., wherep(” are
whereP, ") (x) = 1, and _ :
0 pi<n>:(_1)n.<n+a?r,8+|><nntrix)

PP (x) = (a +B+2)(2x—1)/2+ (a —B)/2.
n .
Remark. Of this polynomials, the most commonly used Proof. Thep ) can be obtained as,
are the shifted Gegenbauer polynomiag;(x), the o _ 1 d op)
shifted Chebyshev polynomials of the first kin;(x), P =g — PP () o -
the shifted Legendre polynomial$X;(x), the shifted . . )
Chebyshev polynomials of the second kinds;(x). Now, using properties (1) and (3) in above relation, the

These orthogonal polynomials are related to the shiftedemma can be proved]

Jacobi polynomials by the following relations. Lemma 2.2.Form> 0, one has
ir(a+3) @3-} b mp(a.B) L)
a(x)= ——— 2/ plaaP=2)(yy / xR )W P) (x)dx = 5 DB(m+1+B+1,a+1),
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whereB(s,t) is the Beta function and is defined as Proof. One has

1 r1
(a,ﬁ) (a7B) (G,B)
B(s,t>=/1vs—1(1_v>t,1deM, /o/o i OYIRAT Doy WE G y)cecy
JO !
= [P 00RL ) ow ™) (ax
0

1
< [ R R ) wrP)y) dy

L mpl@f) Lo 8 61 61, K1),
/o P oow Z) /XX (12" dx :{O, ((mn))yé((k,l))ormyékorn;éI.D

1 A function u(x,y) defined overD? may be expanded
p|( )/ (1—x)IxMH+R) gy by the two variables Jacobi polynomials as:
0

Proof. Using Lemma 2.1 and(®#) = (1—x)? x® one has

M-

- uxy) =y chmn RO (xy),  (xy) e D? (1)
= Eop.“ B(m+1+B+1,a+1).0 o

where the Jacobi coefficientsy,, are obtained as:
A functionu(x) € L2(D) can be expanded as the below

formula: Cm = 5 / /Rn‘fnﬁ (%, Y)u(x, y)W(@B) (x y)dxdy.
mvn

_ pla.B) e L . .
u(x) = XOCJ P (x), If the infinite series in equatioril) is truncated up to
1= their (N + 1)—terms then it can be written as:

where the coefficients; are given by N N

1 u(xy) = un(x,y) = Z)cmann (xy) = @' (xy)C,
o= / PP )W ™) (x)dx, | =0,1,2,.... o=
: whereC and®(x,y) are Jacobi coefficients and Jacobi
By noting in practice only the firsfN + 1)—terms  polynomials vectors, respectively:
shifted polynomials are considered, then one has
C = [C00, C0Ls -+ CON, -+, CNI, ---- CNN] 5

N
U9 = (9 = 3 ¢ PP (x) = @7 (x)C, D(X,Y) = [Poo(X,Y), s PON(KY), - PrO(X,Y) - Prn (%, )]T
J:
WhEreCZ[CO,C]_,...,CN}T,and :[ (adﬁ)(x/y)aa (aNB)(Xay)ﬂ (Cj(y)ﬁ)(x’y)’7 (aN‘B)(X7y2]2T)
Similarly, a function of four variableg(x,y,t,s), on
_ pla.B) (a.B) (a.B) (1T )
(%) =Ry (), P (%), Py (X)] D* may be approximated with respect to Jacobi

I I h
Now, two variables Jacobi polynomials can be definedpo ynormia's such as
by means of one variable Jacobi polynomials as follows: k(X y,t,5) ~ ®T (x,y) K ®(t,s),

Definition 2.3. Let {Pr(,“’m(x) m_o be the sequence of one
variable shifted Jacobi polynomials db = [0,1]. Two
variables Jacobi polynomials{Rigi (x,y)}%_o, are
defined orD? = [0,1] x [0,1] as:

where @(x,y) is two variables Jacobi vector and is a
(N+1)% x (N + 1)2 known matrix.

2.1 One dimensional Jacobi operational

m (xy) =P P ORI (y), (xy) € D2, matrices
The family { (x Y) Han— 0 |s orthogonal with  In performing arithmetic and other operations on the
weighted functlonVV orB SXAQ ( X) w(@:B) (y) 0 Jacobi basis, we fr.equently encounter the integration of
D2 and forms a basis fdr?(D?) the vector®(x) and it is necessary to evaluate the product

) _ of @(x) and®' (x), which is called the product matrix for
Theorem 2.4.The basis{Rmn '(X,y)} is orthogonal on the Jacobi polynomials basis. In this subsection, these
D2. operational matrices are derived.
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2.1.1 One dimensional Jacobi operational matrix of So, the entries of matriR is obtained as:
integration

In this subsection, Jacobi operational matrix of the 1 L

integration is derived. Let Ri=%g ng za B(m-n+p+2.a+1),

» B
/ o (t)dt ~ PO (x), 3) i,j=012 .N.O

where matrixP is called the Jacobi operational matrix of
integration. The entries of this matrix are obtained as?-1.2 One dimensional Jacobi operational matrix of
follows: product

Theorem 2.5.Let P be (N +1) x (N +1) operational  ne following property of the product of two Jacobi
matrix of integration. Then the elements of this matrix are¢ nction vector will be also be applied to solve the

obtained as: \olterra and Volterra - Fredholm integral equations.
1 i i 1 . . T R
Ri=g )3 m+1p§,'1)p§,”8(m+n+[3+2,a+l), D)@ (X)Y =Y D(x), 4)
i = 5 : .
m=on whereY is a(N+ 1) x (N + 1) product operational matrix
i,j=0,1,2,...,N. and its entries are determined in terms of the components

of the vector Y. Using equation 4 and by the

Proof. Using equation3) and orthogonality property of orthogonality property of Jacobi polynomials the entries

Jacobi polynomials one has: Y, j can be calculated as follows:
X
_ T -1 -
= ( o979 Y= 3 % B 000000
1E
where( [J @(t)dt, @7 (x)) andA 1 are two(N+1) x (N+ N .
1) matrices defined as follows: :é Yk/ Pi(“’B)(x)Pj("’B)(x)Pé""B)(x)W(“’ﬁ)(X)dX
i K
/qo t)dt, @7 (x /P"ﬁ (1)dt. PP )1, L N
= 5 Y hljka
g L 6 kZo
- 'ag{ﬁj}jd" where
Set 1
oy = ([ F*P )t RO ) k= R 0P p0R™ cwl ) (xja
= /0 { /o PP (t)dt} PL PP (x)dlx. 2.2 Two dimensional Jacobi operational
matrices
JXP@P gt and Pj<°"B>(x) by using Lemma 2.1 can
be obtained as: In this subsection, two dimensional operational matrices

are presented.

X i o Ml
LR md= 3 o,
0
m=0 2.2.1 Two dimensional Jacobi operational matrix of
integration forx variable

zop , 1,]=0,1
n= The operational matrix of integration ix—direction is
Therefore,p;j by using Lemma 2.2 can be obtained as defined as follows:
follows, Theorem 2.6. The operational matrix of integration in
x—direction is defined as follows.
_ mH-1yn B
= mZOnzom-l—l /X XL =X /CDtydtNPX (xy) = (PP

_ whereP is a (N + 1) x (N + 1)? operational matrix
- 2 m+1pm pi/B(m+n-+p+2,0+1) of integration, P is operational matrix of integration

m=0n=
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introduced in subsection 2.1.1 ahds (N +1) x
identity matrix.

Proof. SupposeR; be jth row of matrixP. One has

X
/0 PP (t) dt = RT &(x).

Also, noting the definition of the vectap(x,y) one has

(N+1)

o(xy) = PP RSP (y), ..., B )R (y),

SR RSP (), R R )T ()

Integrating of equations) from O tox yields

/ (t,y)dt = [P / PLP) (),
PP ) [P e, RTO) / A" et

= [Ro.®(x) BY"P)(y), ..
o Ra.@(X) PP (y), oo, Ry @(x) B ()T
=R [R*P ) RP(y), ... AP () BEP ()],
Ry BP0 REP (), AT ) R ()T

Ro cb( x) PP (y),

Pool Poil ... Ponl
B Piol Ppal ... PNl P]Ea B)(x) (D(y)
F1\1.0I F1\1.1I |:NINI P(a B)(X) (D(Y)
= (PN (xy)

Where ® denotes the Kronecker product and is defined
for two arbitrary matrice#\ andB asA®Q B = (a;;B) and
Rj denoteq(i, j)th entry of the matrixP. [

2.2.2 Two dimensional Jacobi operational matrix of
integration fory variable

Theorem 2.7. The operational matrix of integration in
y—direction is defined as:

/(;y (x,9)ds~R®(x,y) = (I Q)P)®

whereR, is a (N + 1)2 x (N + 1) operational matrix of
integration.Proof. Again, integrating of equationq (53X

from O toy one has

B o0 s)ds=[R™P 0 R (g)ds,.... AP () R (s)ls]”
=R () Ro.0(y), .. R P (x) Ru.@(y),

PP () Ry DY), .o, PP (%) Ry. 0 (y)]T

Poo O ... 0 Py O 0 ..Py O ... 0 ) ]
O Po...0 O Py..0 ..0PRyN..O PoPoi..P)w O O ... 0 00..0...0 0..0
o . A PoPi..Py O O ... 0 00...0...0 O0..0O0
0 0 Po O O Por 0 (.).pON O S S P S A S P O 0
Po O 0 P1 O 0 Pn O . 0 PvoPvi..-ARn O O ... 0 00...0... O O 0
0 Pp 0 0 Py 0 0 Py . 0 0 0 .. 0 PgogPy1...PNOO...O... O O 0
o . . o 0 0..0 PoPy..PNyOO...O... 0 O 0
0 ‘_’ Po 00 . Pu 9 O PNl T 6 0 RePu.. PmO00. 0. 0 0. 0
Pgopg“ 8H81Pg 8 "H(“)NP'? 8 0 0..0 0 O0..000..0...RgPq..Pn

0 1 : N 0 0...0 O O0..000...0... Pg P11 ... Piy

L0 0 ...Pho 0 O ...FA1... 0 O ...FAn] |0 0.0 0 O..000..0...RoPu ... A

P 09 PP (y) R0 R )]
P} g;<x> R ;<y> Po"ﬁ (%) P@” V)
a a,
PP (x) RSP (y) PP (x) RSP (y
X X
PL) ) Py PL) 1) Ry
R0 R (y) R0 R (y)
LR 00 B (y) | AP 00 AP )
@© 2014 NSP
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PO...O Pé“’gi(X)CP(y) M0l NS
OP...O| | PYPlx) @ i,km=0,1,.., 0,
=. .. . ! (_) W _ (1Q)P) @(x,y). one gets
Pl : an _ WkmWjin
n — .
O00...P P[Ejaﬁ)(x) q_)(y) 6mbn
WhereOiis a(N + 1) x (N + 1) zero matrix] Substitutingam, into equation ) one has:
(a,B) ( mkmwjln
2.3 Two dimensional Jacobi operational matrix ! ' ocy Ombh
of product

If only the components ofP(x,y) are retained, then the

The following property of the product of two vectors matrixU in the equation@) is obtained as

T - ~
®(x,y) and®’ (x,y) will also be used. G =], i,j=01..N. (8)

- i
Py) @ (x YU =Ue(xy), ©) Inthe equationg), Gij, i,j=0,1,...,N,are(N+1) x (N+

whereU andU are a(N+1)2 x 1 vectorand N+ 1)2x 1) matrices given by
(N+1)2 product operational matrix, respectively. One has

(a8 (a, Bn nn  1,j=0,1,...,N
Py OZJ OUIJRI ( V)Ro z)( y) i ]
JO(xy)@T (x,y)U = orlLouiR ( MRsi 06y . andB, are(N+1) x (N+ 1) matrices as

o R (@) 18
S0 moUiR | (R YIRVN (xY) Bl =g > tmim kI =0L...N.
m:O

One puts

(@) (v R(@H) S < 4 R
R (YR (XY) = ZO Zjarer,s’ (%,y)- (7) 3 Convergence analysis

r=0s=

The coefficientsys are obtained by the following manner. In this sgctio_n, the theorems on convergence ana_llysis and
Multiplying both equation 7 by error estimation of the proposed method are provided.
R (x,y), mn=0,1,2,...,N, and integrating of the Theorem 3.1.Supposeu(x,y) € cM[0,1] x CN[0,1] and
result from O to 1 yields: oY oG Pi(a’B)(x) Pj(”’ﬁ)(y) be an approximation for

u(x,y). Then for the coefficients;; one has:

RSy R iy R W) )y

1 @) oMy
|C|J| = 22 +]) A|J (X,y?gé| 0Xi dyj |a D* [O, 1] X [07 1]5
- gozjars [ / REP 0 y) R 06y W) () dxdy
where Afj’"ﬁ) are independent of the functioa(x,y).
= am Ombh. Proof. According to the assumption,
Therefore
GB a.B)
am= g [ [ Ry RSP ey R ) BILL V)
mvn
W(a,ﬁ)(x y)dxdy where the coefficients;j, i,j =0,1,...,N are obtained as
' follows:
1 (.8) () (@) (301 pLaB) () (@:B) 11
=y RO R P = o5 | [ uey R R (WS iy,
1 Uj JOo JO
1 9)
/0 PP ()PP (y) PP (y)wl@ P (y)dly. Consider Taylor expansion about points= 0 andy = 0.

For each, j =0,1,...,N one has:
Now suppose

1 i+j-1 m Xm—nyn dmu(0,0)
@i = [ AP RE R (ow B pgax, U= § S i gy
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i+]j Xi+j7nyn d”ju(éx, Ey)
= (i+j—n)n! oxi+i—ngyn’

(éx:&y) €[0,X x [0,Y].

(10)
Substituting equationlQ) in equation 9) leads to:

C__i{”i*lm ™00 1
66 > AXm-Ngyn (m—n)!n!

m=0 n=

1 r1
|| W ey oypl @) op(® ) )y
0 Jo

i+]

a,B) +j-n Ofﬁ
+2b +J—n|n'//W (X, y)X y'P

o(@8) ) 0 IU(E &)

10 i ngyn XV

1 'Hlmamu(OO) 1
BCEN 3 AXM-ngyn (m—n)!n!

m=0 n=

/1w(avﬁ) (X)
0

I+J

e

1
KRB g [l )y P (y)y

//Waﬁ (X, y)X xiti- nynpaﬁ(

an Inl

o+ u(éx, Ey)

(@B) ) 9"
B Gringyn

dxdy}
1 i+]

1 1 rl -
=N —— (a.B) i+j-n
6.6, > (i+j—n)!n!/() /o WHEE (o))

n=0
di+j U(EX7 Ey)

5Xi+j—n(9yn dxdy,

AP PP ()

then

1 4 1 ' tlu(x,y)

G <G 2 G j—nm oo gy

/O " W@B) ()

The last summation will be nonzero only for= j.
Therefore

| x

K+ POB) () e /O w8 (y)y" PP (y)dy.

1 1 dtiu(x,y)
< - = Z Ay C!B (a,B)
1S ga; i1 @ " xay ‘/ WP Gox R 0

1 .
x /O wl@B)(y)y PP (y)dy.

Thereupon
1

1611 < 27y e B
Frao+p+2+2)r(a+p+2j+2)
Fo+i+)r(a+j+LHr(B+i+)r(B+j+1)ilj!

X max |

giti
max 70)('0)/] |/ \WGB (x )xP"B (x)|dx

x /O WP (y)y PP ()| dy

1 (a:B) max |w

- Zz(iﬂ)Ai’j (xy)eD ~OXidyl :
where
(a.8) I_((J—I-B-‘rZi—i-Z)
AT = 2(a+B+1) i ;
2 Ma+i+LH)r(a+j+1)

r(a+pB+2j+2)
F(B+i+1)r(B+j+21)itj!

1 ) 1 .
< [P 00x R pofax [ w ) (y)y IR (y)ay.
g

The last inequality shows that the coefficients decrease
wheni, j (in fact N) increase. Therefore, functian(x,y)
can be approximated using the finite numbers of the Jacobi
polynomials.
Theorem 3.2.Supposei(x,y) € CN[0,1] x CN[0,1]. Then
the bound of the error for the approximate solution resulted
is as follows:

- 22N
<
Juxy) = @ (xY)CI < M,
whereM = max{Mg, My, ...,May } and
aZN ( ) ]
M = max I ATy I, i=0,1,....2N.
Proof. Noting the least square property, consider

polynomial Sy(x,y), of degree at mos with respect to
both variables< andy, which interpolatesu(x,y) in the
domainD. Therefore

./01 /Olw(aﬁ> (X, y)(U(X,y) _ (DT (X,y)C)dedy <

11
/ / W(@E) (x y) (u(x,y) — Su(x,y))?dxdy
0 Jo

Now, consider the Taylor expansion of functioix,y)
about point(0,0) in D. The bound of the error is obtained
as follows:

N y2N—iyi gNy(E &
ux,y) —Sn(xy) = Z)(g);\] ))/IIH dXz'\E '6);'/)

where(&y, &y) € [0,x] x
||U(X7y) - SN(X,Y) || S

2N 1

[0,y]. Therefore

02NU(EX7EY)
i; (2N —i)tit <éx,sy>g][3§x[o.,y1” oxN=igy I
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But
1 < max 1 e =
(E0&)el0xx[0y] | OXN-gyi 11 = eD Ox2N=igyi o
Therefore
luCx,y) = SNy < Z} 2N IR
Let setM = max{Mo, My, ...,Mon }. Hence
N M 22N
) ~Su 0y <M 5 et = o> (3
M 22N
TN
Therefore
- 22N

4 Solution of the systems of two dimensional
integral equations

Substituting above approximations into systelt) (eads
to the following algebraic system:
)=0,

T (x,y)Ci+ ®T(xy) > {KijAGij} — fi(xy (12)
j=1

whereAis a(N+1)? x (N + 1)? matrix as follows:

A:/Ol/:CD(t,s)CDT(t,s)dsdt.

The algebraic system1®) has n(N + 1) unknown
coefficients cj,. So, n(N + 1)? collocating points are
needed for collocating the algebraic system resulted. For
this purpose, thegN + 1) roots of Jacobi polynomials

PP (x) and B (y) are considered in the— and
y—directions. The domain of two dimensional is

represented by a tensor product point}N, and
i, which are roots o P )(x). andR P (y). Each
the equations of the systeni?) is collocated in the
resulted tensor point$(xi,yj)}i’f‘j:0. Finally, collocating
the equations 12) gives n(N + 1)? linear or nonlinear

equations which nonlinear equations can be solved using
the well-known Newton’s iterative method.

In this section, the presented operational matrices are
applied to solve the systems of linear and nonlinear4.2 System of two dimensional \olterra integral

Fredholm, Wolterra and \olterra-Fredholm
equations.

4.1 System of two dimensional Fredholm
integral equations

integral equations

A system of two dimensional Volterra integral equations
can be presented as follows:

i (xy) +z iyt 98 (nty), ..ty

In this paper, a system of Fredholm integral equations is

considered as follows:

bk y) + ,i [ [ iyt 9gi(n(t ..t s)

xdsdt = fi(x,y), (x,y)€D,i=1,..,n (11)

wherekij(x,y,t,s) € L2(D?), fi(x,y) are known functions,
andgij(x,y,t,s) are linear or nonlinear functions in terms
of unknown functionsui(x,y),...,un(X,y). To solve the

system 11), the functions ui(xy), kij(x,y;t,s) and
gij(x,y,t,s) can be approximated as follows:
Ui(x.y) = @' (xy)Ci,
li (vaatas) = (DT(va)Kij (D(tﬂs)v
gj(xy) ~ ®@"(xy)Gij, i=1,..,n j=1..m

where Gj; and K;j; are known vectors and matrices,
respectively. Also

i i i i T
C| - [COO’COI’""CON7""CNO""7CNN] 5 | = l,...7n.

My
£ 3 [t (U (9). . Un(x.9)ds = i(xY),
=1
(13)
(x,y)eD, i=1..n,
wherekij(x,y;t,s) and hi(x,y,t,s) € L2(D?), fi(x,y) are

known functions, andj j(x,y) andl;k(x,y) are linear or
nonlinear functions in terms of unknown functions
Ui(X,Y),...,un(X,y). The functions ui(xy), Gij(x,y),
lik(X,Y), kij(x,y,t,s) andhi(x,y,t,s) can be approximated
as follows:

Ui (X,y) ~
|ik(X,y) =

®T(xY)C, Gij(xYy) =~ ®T(x,y)Gij,

OT(xY)Lik kij(xyt,s)~dT(xy)Kij d(t,y),
hik(xa y,t,S) = (DT (Xay>Hik(D(Xa S)7
i=1..n j=1..m,k=1..m,

whereC;, Gjj andLik are(N + 1)2 x 1 vectors and;; and
Hik are (N +1)? x (N + 1)? known matrices. Substituting
above approximations into systesj leads to:
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®T (x,y)C + @7 (x y) {3 KijGij RP(x,Y)

m
+oT 9 HiCi R @ y) — filxy) =0,  (14)
=1

i=1..n j=21..m, k=1..m,

whereéij andLjy are operational matrices of product
and their entries are in terms of the components of vectors
Gij and Lj;. B, and R, are operational matrices of
integration inx— andy—directions, respectively. Each the
equations of the system4) is collocated in tensor points

(Xi,Yj) Uexact Uapproximate
(0.1,0.1) | —0.0004995835| —0.0004990535
(0.2,0.2) | —0.0039866844| —0.0039862814
(0.3,0.3) | —0.0133990533| —0.0134002600
(0.4,0.4) | —0.0315756024| —0.0315774590
(0.5,0.5) | —0.0612087190| —0.0612086874
(0.6,0.6) | —0.1047986311| —0.1047956186
(0.7,0.7) | —0.1646104689| —0.1646073175
(0.8,0.8) | —0.2426346326| —0.2426367636
(0.9,0.9) | —0.3405510285| —0.3405573796

(1,1) —0.4596976941| —0.4596795534

Table 1: Different values of exact and approximate solutions in
points (0.1i,0.1i) foN = 4 anda = 8 = 0 of Example 1.

{6, y))}N,_o (stated in subsection 4.1). Finally,
equations 14) give n(N + 1)? linear or nonlinear

equations which nonlinear equations can be solved usin

the Newton'’s iterative method.

4.3 System of two dimensional
\olterra-Fredholm integral equations

In this paper, a system of \olterra-Fredholm integral

equations is considered as follows:

Ui(%,y)+ m/y/llq-(xyts)g--(u (t,9), ... Un(t, ) )dlsdl
iA 1210017,7 ij (UL S), - UnlL,

= fi (X’ y)7 (15)

To solve system1(5) the functionsui(x,y), gij(x,y) and
kij(x,y,t,s) can be approximated as follows:

u(xy) ~ ®T(xy)C, Gij(xy) =@ (xY)Gij,

kij(x,y,t,5) ~ ®T (x,y)Kij @(t,9),
i=1,...,n, k=1..m,

(x,y)eD,i=1,..,n.

whereC; and Gjj are (N + 1)? x 1 vectors andK;; are

(N4 1) x (N+1)2 known matrices. Substituting above
approximations into systeni®) leads to,

m
®T(x,y)Ci + @7 (x,y) > {KijGij}RB— fi(x,y) =0,
=]

(16)
i=1..n j=1.m

whereB is (N + 1)2 matrix as follows:

1
B:/ o(t,y) dt,
JO

and Kij, Gij and R, are (N + 1)? x (N + 1) known
matrices, operational matrices of product and operation

matrix of integration,respectively. Collocating each the

equations of the system 1€) in tensor points

{(x,y))}i_o leads ton(N + 1)* linear or nonlinear.

Unknown coefficientsx:ijk are determined by solving the
system resulted.

% lllustrative examples

In this section, the proposed method is applied to solve
some systems of two dimensional integral equations.

Example 1.Consider the following two dimensional linear
Fredholm integral equation.

u(x,y) — /0 ' /0 "(sin() +ty)u(t9dtds= F(xy), (A7)

where

f(x,y) = x cos(y) gy+gsin(x) - %s‘n(l) - %sin(x) cos(1)

1. .
—Esm(x) sin(1),
and exact solution ig(x, y) = xcos(y) —y. Functionu(x, y)
and kernel are approximated as:

u(x,y) ~ @' (x,y)C, ssin(x)+ty~ @' (x,y)K®(t,s).
Equation (7) is written by using above relations as:

@7 (x,y)C— @" (x,y)KBC— f(x,y) =0,  (18)

where e
B:/ / o(t,9 @ (t,5)dtds
JO JO

Setting N = 4 and using the roots oPéa’B)(x) and

Pé“’ﬁ)(y) in the x— and y—directions, equation1@) is
collocated in 25 inner tensor points for different values of
parametersy and 3. Hereby, the equationl{) reduces
the problem to solve a system of linear algebraic
equations and unknown coefficients are obtained for some
alues of parameterg and 3. Table 1 displays different
alues of the exact and approximate solutions in points
(x,y) =(0.1i,0.1i), (i=1,2,...,10) for a = 3 = 0. Table
2 shows errors of the approximate solutiond D) for
different values ofa and (. Figure 1 indicates the
maximum absolute errors for some valugsand 8 and
y=0.5.
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Table 2: Comparison of the errors ib?(D) for different values
a and of Example 1.

(a,B) Error(L?)
(0,0) 2.7496x 1076
(—0.5,-0.5) | 4.1629x 10
(1,1 3.9061x 1076
(0.5,0.5) | 3.1072x10°®
(—0.5,-0.5) | 3.1597x 107
(-0.1,-0.1) | 7.9793x 10°*
+F
-6 +"'++
4.x 10 ¥
+
+++
e
3.x 1076 &
+
+
+F
+
2.% 10764 +++++
A
+
+++
1.x 10761 & v
++ ..u-ouooo-""".
++ oooo“"..'...
;’Q‘oooooo"° goc,cyoOOOoOoOOO meﬂmm
o e e

0 0.2 0.4 0.6 0.8 1
X
alpha=0, beta=0 + alpha=-0.5, beta=0.5|
* alpha=I, beta=1 o alpha=0.5, beta=0.5
O alpha=-0.5, beta=-0.5

Fig. 1: Plot of the maximum of the absolute errors in Example 1.

Example 2. Consider the following linear system of
\olterra integral equations.

ui(xy) = f1(x,y) +uo(t,y))dt,
L e e e (e,
19)
where
fi(x,y) = 3y + 2%y + %xzy3 —X,

xy)=xy3—%xy“+§x2y2+y—l

and exact solutions atg (x,y) = =xy>—

3x%y andu(x,Y)

1. With N = 3, functions and kernels are approxmated as:

PT(xY)C1,  U(Xy) = ®T(XY)Co,

1~ ®T(x,y)KD(t,y).

Substituting above approximations in systeifl)(eads to
the following algebraic system:

Uy (X7 y) =

{ T(x,y)C1— f1(x,y) + @7 (x,y)K{2C1 + Co}RP(x,y) = O,
®T(x,y)C2 — fa(xy) — CDT( )K{szcl}Py( )_(g’o)

whereC; andC, are operational matrices of product,
P andR, are operational matrices of integration in the
and y—directions, respectively. Now using the roots of
P{%P)(x) andP{*P)(y) in the x— andy—directions, each
equations of systen®() is collocated in 16 inner tensor
points for different values of parametees and 3, the
coefficients are obtained as follows. Thereupon, the exact
solutions are acquired.

11 33 11
C1=155:0.0,7,7.0,0,7,7,0,0,0,0,0,0],
79111091
C2 [—67%’§7E),§’%§ 00000000]
a=p=05:
15 5 11 3 1
1_[?27T6’070’57570707273’E7070’0’0’0’O]’

C2= 8445 407056 7220 105 00 0.0.0.0.0.0
oa=—-3=05:

3 3 9 9 11
Ci=|z=,—= —,—,0,0,-,-,0,0,0,0,0,0
1 [3271677532716733874777755}7

251 9 5 1 5 9 5 1

C2:[727567@7%7%7ﬁ8aaj4787%7070705070707030}7
oa=—-p=-05:

45 15 45 15 31
Ci=|z=,—= —,—,0,0,-,-,0,0,0,0,0,0
1=l216%%5216%%8 % )

151 63 7 3 35 21 7 1

C2:[7275675873727%7@aa747874707070705070707030}7
a=pB=-05:
9 9 3 1
Cl_[T67§’0707573’0’075’1707070’0’070}7
27151 1 5 151 1
C=l===-v == === = 0,0,0,0,0,0,0,0
2 [ 32,32’4720,1671672,10"77,’”],
a=p=1:

9 9 33 11
Ci=[=—,-—+,0,0,-,—,0,0, — ,0,0,0,0,0,0
1=13020%%816%% 1020 )

G 231 1131 1 0000000

10’ 287207 112 20’ 56’ 40’ 224’
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Example 3.Third example covers the system of nonlinear Table 3: Different values of exact and approximate solutions in
\olterra - Fredholm integral equation. points (0.1i,0.1i) foN = 4 anda = 3 = —0.5 of Example 3.

(X| 7yJ ) uzexact uzappro)dmate
{ u(x,y) = f1(xy) + 13' [01 u%(t,s)dtds, 1.000998334| 1.000997067
Uz(x.y) = fa(%y) + (X =) J§ Jo U3(t. S)ctds,

( )
(x,y) €D, ( ) | 1.007946773| 1.007939665
21) ( ) | 1.026596819| 1.026582292
( ) | 1.062306935| 1.062283999
where (0.5,0.5) | 1.119856385 1.119823318
( )
( )
( )
( )

1.315666667| 1.315619935
1.459107898| 1.459071923
1.634494799| 1.634481860
(1,1) 1.841470985| 1.841458774

1 1.203271290| 1.203228160
f(xY) = —y* + 29— oy (448 + 18y°),

fo(X,y) = 1+ y?sin(x) — 0.0166F/(—60— 18.3879/
—3.27214%)(y? — X)

; _ \2
and exact SOIU_“O”S arml()@ y) = -y +2 xy and Table 4: comparison of the errors it?(D) for different valuesx
Uz(xy) = 14 y?sin(x). With N = 4, solutions and kemels 54 of Example 3.
are approximated as: @.B) Error(L?)

(0,0) 8.5374x 10°°

Ul(x, y) = (DT (Xv y)Cl, UZ(X, y) = q)T (X7 y)027 (70.5 70.5) 6.2993% 10-5

~ T 2 T (-0.5,0.5) | 6.4008x 107
1~ (X,y)K‘D(LS), Ul(X,y) ~ ¢ (va)UL (05705) 6.4328% 1075
us(x,y) ~ @ (x,y)U>. (0.5,-05) | 6.4887x 1075
(1,1) 6.5354x 10°°

Substituting above approximations in systezt)(eads to
the following algebraic system.

®(x,y)C1— fi(xy) — @7 (x,y)KU;RB =0, ga-Bo1ct_ta_ 1 o 14 1
{ D(x,Y)Cz — f2(%,y) — (X—y2) @7 (x,y)KUaR,B = 0, G=PF=1:%0=5 2= 75 %5~ 7 %6~ g’
~ ~ . . (2.2) ol 3 1 1 4, 1 4 1
whereU; andU, are operational matrices of produB},is a=B=2:cyp= 1a' Co2 = g’ Cos = 6’ Cos = 8’
operational matrix of integration arlis a(N + 1)? vector

Table 3 shows different values of the exact and
1 approximate  solutions  for ux(x,y) in  points
B:/ @(t,y) dt. (%,yi) = (0.1i,0.1i), (i=1,2,...,10) fora = = —0.5.
0 Table 4 displays the maximum absolute errors for values
Using roots ofPéa’B)(x) and Pé“’ﬁ)(y) in the x— and  of o andp.
y—directions, each equations of syste??)(is collocated
in 25 inner tensor points. The problem reduces to solve a
system of nonlinear algebraic equations which will be 6 Conclusion
solved by means of Newton iterative method and 50
unknown coefficients are determined for some values ofAnalytic solution of the two dimensional integral
parametersy and 3. For ui(x,y), the exact solution is equations are usually difficult. In many cases, it is
obtained. The nonzero components of ved@grfor the  required to approximate solutions. In this paper, the

as:

various values of parametemsandf3 are as follows: system of two dimensional linear and nonlinear integral

equations was solved by using collocation method. For

a=B=0:c :} ol — 1a :} 1 :} this purpose, the shifted Jacobi collocation method was
a=p=Y:Cy » €02 » Cos , Coe ;

6 6 2 2 employed to solve a class of systems of Fredholm and

> \olterra integral equations. First, a general formulation
= for two dimensional Jacobi operational matrix of
9 integration has been derived. This matrix is used to
approximate numerical solution of system of linear and
2, nonlinear Volterra integral equations. Proposed approach
is based on the shifted Jacobi collocation method. The
, 1 4 1 solutions obtained using the proposed method shows that
»C5= 4 C6= 5> this method is a powerful mathematical tool for solving
the integral equations. Proving the convergence of the
0:75:7}_ 11, 14 3, 1 method, consistency and stability are ensured
5" Coo > Co2 g’ Cos 4 Cos 2’ automatically. Moreover, only a small number of shifted
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