Applied Mathematics & Information Sciences Letters An International Journal

http://dx.doi.org/10.12785/amisl/020306

Generalized Anti Fuzzy Interior Ideals in LA-Semigoups

Muhammad Gulistan¹, Muhammad Aslam² and Saleem Abdullah^{2,*}

¹ Department of Mathematics, Hazara University, Mansehra, Pakistan

Received: 16 Feb. 2014, Revised: 14 Aug. 2014, Accepted: 23 Aug. 2014

Published online: 1 Sep. 2014

Abstract: Using the notion of an anti fuzzy point and its *besideness to* and *non-quasicoincidence* with a fuzzy subset, some new concept of an anti fuzzy interior ideals in LA-semigroups are introduced and their interrelations and related properties are investigated. We also introduce the notion of a *strongly besideness* and *strongly non-quasicoincidence* of an anti fuzzy point with a fuzzy subset and characterize anti fuzzy interior ideals of LA-semigroups in terms of these notions.

Keywords: LA-semigroup, beside to, non-quasiconsidence with, $([\alpha], [\beta])$ -fuzzy interior ideal. **2010 AMS Classification**: 06F35, 03G25, 08A72.

1 Introduction

The concept of a fuzzy set was first initiated by Zadeh [1]. Since then it has become a key area of research in engineering, medical science, social science, physics, statistics, graph theory, etc. In [2], Jun et al. introduced the concept of an anti fuzzy bi-ideals of ordered semigroup by using the notion of anti fuzzy points and besideness to and non-quasi-coincidence with a fuzzy set, and investigate their inter-relations and related properties. [3] Shabir et al. studied semigroups by the properties of their anti fuzzy ideals. In [4] Madad et al. studied anti fuzzy ideals in LA-semigroups. An LA-semigroup is a groupoid S whose elements satisfy the left invertive law: (ab)c = (cb)a for all $a,b,c \in S$. An LA-semigroup is the midway structure between a commutative semigroup and a groupoid. It is a useful non-associative structure with wide applications in theory of flocks. In an LA-semigroup the medial law (ab)(cd) = (ac)(bd) holds for all $a,b,c,d \in S$ [5]. If there exists an element e in an LA-semigroup S such that ex = x for all $x \in S$, then S is called an LA-semigroup with left identity e. If an LA-semigroup S has the right identity, then S is a commutative monoid. If an LA-semigroup S contains left identity, then (ab)(cd) = (dc)(ba) holds for all $a,b,c,d \in S$.

In this paper we introduce the concept of generalized anti fuzzy interior ideals in LA-semigroup and investigate their relative properties. We give some interesting characterizations of an LA-semigroup in terms of $([\alpha], [\beta])$ -fuzzy interior ideal and introduce the notion of $(\underline{[\alpha], [\beta]})$ -fuzzy interior ideals of an LA-semigroup.

2 Preliminaries

Here onward *S* will denotes an LA-semigroup.

For subsets A, B of S, we denote $AB = \{ab \in S | a \in A, b \in B\}$. A nonempty subset A of S is called sub LAsemigroup of S if $A^2 \subseteq A$. A is called an interior ideal of S if $A^2 \subseteq A$ and $(SA)S \subseteq A$. By a fuzzy subset ψ of S we mean a mapping $\psi: S \longrightarrow [0,1]$. For any fuzzy subsets ψ_1 and ψ_2 of S define $\psi_1 \circ \psi_2 := S \longrightarrow [0,1]$, $a \longrightarrow (\psi_1 \circ \psi_2)(a)$

$$= \left\{ \begin{array}{ll} \wedge_{a=pq} \{f(p) \vee g(q)\} & \text{if there exist } p,q \in S \text{ such that } a=pq \\ 1 & \text{otherwise} \end{array} \right..$$

For a nonempty family of fuzzy subsets $\{\psi_i\}_{i\in I}$ of S the fuzzy subsets $\bigcup_{i\in I} \psi_i$ and $\bigcap_{i\in I} \psi_i$ of S are defined as follows:

$$\begin{array}{l} \cup_{i \in I} \psi i : S \longrightarrow \left[0,1\right], a \longrightarrow \left(\cup_{i \in I} \psi_i\right)(a) =: \sup_{i \in I} \{\psi_i\left(a\right)\}, \\ \cap_{i \in I} \psi i : S \longrightarrow \left[0,1\right], a \longrightarrow \left(\cap_{i \in I} \psi_i\right)(a) =: \inf_{i \in I} \{\psi_i\left(a\right)\}. \end{array}$$

If *I* is a finite set, say $I = \{1, 2, ..., n\}$, then clearly

² Department of Mathematics, Quaid-i-Azam University, Islamabad 45320, Pakistan

^{*} Corresponding author e-mail: saleemabdullah81@yahoo.com

$$\bigcup_{i \in I} \psi_i(a) = \max \{ \psi_1(a), \psi_2(a), ..., \psi_n(a) \},
\cap_{i \in I} \psi_i(a) = \inf \{ \psi_1(a), \psi_2(a), ..., \psi_n(a) \}.$$

Definition 1.[10] A fuzzy subset ψ of S called fuzzy interior ideal of S, if it satisfy the following conditions.

$$(B1) (\forall x, y \in S) (\psi(xy) \ge \min\{\psi(x), \psi(y)\}),$$

$$(B2) (\forall x, y, a \in S) (\psi((xa)y) > \psi(a)).$$

Lemma 1.[10] A fuzzy subset ψ of S is fuzzy interior ideal of S if and only if χ_A is interior ideal of S.

Definition 2.Let ψ be a fuzzy subset of S. Then for every $t \in [0,1)$ the set $L(\psi;t) = \{x | x \in S, \psi(x) \ge t\}$ is called a level set of ψ .

Lemma 2.[10] Let ψ be a fuzzy subset of S. Then ψ is fuzzy interior ideal of S if and only if $L(\psi;t) \neq \Phi$ is an interior ideal of S for every $t \in [0,1)$.

3 ($[\alpha]$, $[\beta]$)-fuzzy interior ideals

Definition 3.A fuzzy subset ψ of S of the form $\psi(y) = \begin{cases} t \in [0,1) \text{ if } y = x \\ 1 \text{ otherwise} \end{cases} \text{is called an anti fuzzy point}$ with support x and value t and is denoted by $\frac{t}{x}$. A fuzzy subset ψ of S is said to be non unit if there exist $x \in S$ such that $\psi(x) < 1$. For an anti fuzzy point $\frac{t}{x}$ and a fuzzy subset ψ in S, Jun and Sung [7] gave meaning to the symbol $\frac{t}{x}\alpha\psi$, where $\alpha\in\{[\in],[q],[\in]\vee[q],[\in]\wedge[q]\}$. To $\frac{t}{x}[\in] \psi \implies \psi(x) \le t$ $\frac{t}{r}[q]\psi \Longrightarrow \psi(x) + t < 1.$ Also $\frac{t}{r}[\in]$ is called besides to and $\frac{t}{x}[q]$ is called non-quasi-coincident with a fuzzy subset ψ of S. Also $\frac{t}{x}[\in] \vee [q] \Longrightarrow \frac{t}{x}[\in]$ or $\frac{t}{x}[q]$ and $\frac{t}{x}[\in] \wedge [q] \Longrightarrow \frac{t}{x}[\in] \text{ and } \frac{t}{x}[q]. \text{ The symbol } \frac{t}{x}[\alpha] \psi \text{ means }$ that $\frac{t}{x}[\alpha] \psi$ does not hold. A fuzzy point $\frac{t}{x}$ is said to be besides (respectively to non-quasi-coincident) with a fuzzy set ψ written as $\frac{t}{x}[\in]\psi\left(resp, \frac{t}{x}[q]\psi\right)$. If $\frac{t}{x}[\alpha]\psi$ or $\frac{t}{x}[\beta]\psi$, $\frac{t}{x}\left([\alpha]\vee[\beta]\right)$.

Definition 4.Let X be a non empty set and A be a subset of X. Then the anti characteristic functions χ_{A^c} is defined by

$$\chi_{A^c} = \begin{cases} 0 & \text{if } x \in A \\ 1 & \text{if } x \notin A \end{cases}.$$

Definition 5.*A fuzzy subset* ψ *of* S *called an anti fuzzy interior ideal of* S, *if it satisfy the following conditions.*

$$(B1) (\forall x, y \in S) (\psi(xy) \le \max\{\psi(x), \psi(y)\}),$$

$$(B2) (\forall x, y, a \in S) (\psi((xa)y) \le \psi(a)).$$

Lemma 3.*A fuzzy subset* ψ *of* S *is an anti fuzzy interior ideal of* S *if and only if* χ_A *is interior ideal of* S.

Definition 6.Let ψ be a fuzzy subset of S. Then for every $t \in [0,1)$ the set $L(\psi;t) = \{x | x \in S, \psi(x) \leq t\}$ is called a lower level set of ψ .

Lemma 4.Let ψ be a fuzzy subset of S. Then ψ is an antifuzzy interior ideal of S if and only if $L(\psi;t) \neq \Phi$ is an interior ideal of S for every $t \in [0,1)$.

Theorem 1.For any fuzzy subset ψ of S the conditions (B_1) and (B_2) are equivalent to the following.

$$\begin{array}{c} (B_3) \ (\forall x, y \in S) \ (\forall t_1, t_2 \in [0, 1)) \ \left(\frac{t_1}{x} \left[\epsilon\right] \psi, \frac{t_2}{y} \left[\epsilon\right] \psi \Longrightarrow \frac{\max\{t_1, t_2\}}{xy} \left[\epsilon\right] \psi \right). \\ (B_4) \end{array}$$

$$(\forall x, y, a \in S) (\forall t \in [0, 1)) \left(\frac{t}{a} [\in] \psi \Longrightarrow \frac{t}{((xa)y)} [\in] \psi \right).$$

Proof: $(B_1) \Longrightarrow (B_3)$. Let $x, y \in S$ and $t_1, t_2 \in [0, 1)$ be such that $\frac{t_1}{x}[\in] \psi$, and $\frac{t_2}{y}[\in] \psi$. Then $\psi(x) \leq t_1$ and $\psi(y) \leq t_2$. By (B_1) we have $\psi(xy) \leq \max\{\psi(x), \psi(y)\} \leq \max\{t_1, t_2\}$ and so $\frac{\max\{t_1, t_2\}}{xy}[\in] \psi$.

 $(B_3) \Longrightarrow (B_1)$. Let $x,y \in S$. Since $\frac{\psi(x)}{x} [\in] \psi$ and $\frac{\psi(y)}{y} [\in] \psi$. Then by (B_3) , we have $\frac{\max\{\psi(x),\psi(y)\}}{xy} [\in] \psi$ and so $\psi(xy) \le \max\{\psi(x),\psi(y)\}$.

 $(B_2) \Longrightarrow (B_4)$. Let $x,y,a \in S$ and $t \in [0,1)$ be such that $\frac{t}{a} [\in] \psi$. Then $\psi(a) \le t$. By (B_2) we have $\psi((xa)y) \le \psi(a) \le t$ and so $\frac{t}{((xa)y)} [\in] \psi$.

$$(B_4) \Longrightarrow (B_2)$$
. Let $x, y \in S$. Since $\frac{\psi(a)}{a} [\in] \psi$, by (B_4) . We have $\frac{\psi(a)}{((xa)y)} [\in] \psi$ and so $\psi((xa)y) \leq \psi(a)$. \square

4 ($[\in], [\in] \vee [q]$)-Fuzzy Interior Ideals

In[9] Jun et al. introduced the concept of a generalized fuzzy interior ideal of a semigroup. In [8], Jun et al. introduced the concept an (α,β) -fuzzy bi-ideal of an ordered semigroup and characterized ordered semigroups in terms of (α,β) - fuzzy bi-ideals. In [10] Khan et al. introduced the notion of $(\in,\in\vee q)$ - fuzzy interior ideals of an Abel Grassmann's groupoid and investigate some of their properties in terms of $(\in,\in\vee q)$ - fuzzy interior ideals.

Let ψ be a fuzzy subset of S and $\psi(x) \geq 0.5$ for all $x \in S$. Let $x \in S$ and $t \in [0,1)$ be such that $\frac{t}{x}[\in] \wedge [q] \psi$. Then $\frac{t}{x}[\in] \psi$ and $\frac{t}{x}[q] \psi$ and so $\psi(x) \leq t$ and $\psi(x) + 1 < t$. It follows that $1 > \psi(x) + t \geq \psi(x) + \psi(x) = 2\psi(x)$ and so $\psi(x) < 0.5$ which is a contradiction. This means that $\{x \in S|\frac{t}{x}[\in] \wedge [q] \psi\} = \emptyset$.

Definition 7.*A fuzzy subset* ψ *of* S *is called an* $([\alpha], [\beta])$ *-fuzzy interior ideal of* S, *where* $\alpha \neq [\in] \land [q]$, *if it satisfy the following conditions:*

$$(B5) (\forall x, y \in S) (\forall t_1, t_2 \in [0, 1)) \left(\frac{t_1}{x} \left[\alpha\right] \psi, \frac{t_2}{y} \left[\alpha\right] \psi \to \frac{\max\{t_1, t_2\}}{xy} \left[\beta\right] \psi\right)$$

$$(B6)$$

$$(\forall x, y, a \in S) (\forall t \in [0, 1)) \left(\frac{t}{a} [\alpha] \psi \to \frac{t}{((xa)y)} [\beta] \psi \right).$$

Proposition 1.Let ψ be a fuzzy subset of S. If $\alpha = [\in]$ and $\beta = [\in] \vee [q]$ in Definition 7. Then (B5) and (B6), respectively, are equivalent to the following conditions:

(B7) $(\forall x, y \in S) (\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\}),$ (B8) $(\forall x, y, a \in S) (\psi((xa)y) \le \max{\{\psi(a), 0.5\}}).$

Proof: It is very easy to prove. \Box

Remark. A fuzzy subset ψ of S is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S if and only if it satisfy conditions (B7) and (B8) of the Proposition 1.

We have the following characterization of $([\in], [\in] \vee [q])$ -fuzzy interior ideals of an LA-semigroup

Lemma 5.*Let S be an LA-semigroup and* $\emptyset \neq I \subseteq S$ *. Then* I is an interior ideal of S if and only if the characteristic function χ_{I^c} of I is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal

The converse of Theorem 1 is not true in general, as shown in the following example.

Example: Let $S = \{a, b, c, d, e\}$ be an LA-semigroup with the following table:

Example 1.

	а	b	С	d	e
а	а	а	a	а	a
b	а	а	а	а	а
С	а	а	e	С	d
d	а	а	d	e	С
e	а	а	С	d	e

The interior ideals of S are $\{a\}$, $\{a,c,d,e\}$, Φ and S. Define a fuzzy subset $\psi : S \rightarrow [0,1]$ by $\psi(a) = 0.1, \psi(c) =$ $0.2, \psi(d) = 0.4, \psi(e) = 0.6, \psi(b) = 0.8$. Then

$$L(A;t) = \left\{ \begin{array}{ll} S & \text{if } t \in [0.8,1) \\ \{a,c,d,e\} & \text{if } t \in [0.7,1) \\ \{a\} & \text{if } t \in [0.1,0.12) \\ \Phi & \text{if } t \in [0.01,0.02) \end{array} \right\}$$

Obviously ψ is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S. By Lemma 5. But we have the following,

- By Lemma 5. But we have the following, (1) ψ is not an $([\in], [\in])$ -fuzzy interior ideal of S. Since $\frac{0.5}{d}[\in] \psi$ but $\frac{\max\{0.5,0.5\}}{(dd)} = \frac{0.5}{e}[\in] \psi$. (2) ψ is not an $([\in], [q])$ -fuzzy interior ideal of S. Since $\frac{0.7}{d}[\in] \psi$ but $\frac{\max\{0.7,0.7\}}{(dd)} = \frac{0.7}{e}[\overline{q}] \psi$. (3) ψ is not an $([q], [\in])$ -fuzzy interior ideal of S. Since $\frac{0.2}{c}[q] \psi$ and $\frac{0.2}{c}[q] \psi$ but $\frac{\max\{0.2,0.2\}}{(cc)} = \frac{0.2}{e}[\overline{\in}] \psi$. (4) ψ is not an $([q], [\in] \vee [q])$ -fuzzy interior-ideal of S. Since $\frac{0.2}{c}[q] \psi$ and $\frac{0.2}{c}[q] \psi$ but $\frac{\max\{0.2,0.2\}}{(cc)} = \frac{0.2}{e}[\overline{\in}] \psi$. (5) ψ is not an $([\in] \vee [q], [\in] \wedge [q])$ -fuzzy interior ideal of S. Since $\frac{0.5}{c}[\in] \vee [q] \psi$ but $\frac{\max\{0.5,0.5\}}{(cc)} = \frac{0.5}{e}(\overline{[\in],[q]}) \psi$. (6) ψ is not an $([\in] \vee [q], [q])$ -fuzzy interior ideal of

- (6) ψ is not an $([\in] \vee [q], [q])$ -fuzzy interior ideal of S. Since $\frac{0.5}{c} \in \mathbb{R} \vee \mathbb{R} \psi$ and $\frac{0.9}{c} \in \mathbb{R} \vee \mathbb{R} \psi$ but $\frac{\max\{0.5,0.9\}}{(cc)} = 0$ $\frac{0.9}{e} \left[\overline{q} \right] \psi$.

- (7) ψ is not an $([\in] \lor [q], [\in])$ -fuzzy interior ideal of S. Since $\frac{0.4}{c} [\in] \lor [q] \psi$, but $\frac{\max\{0.4,0.4\}}{(cc)} = \frac{0.4}{e} [\overline{\in}] \psi$.

 (8) ψ is not an $([\in] \land [q], [\in])$ -fuzzy interior ideal of S. Since $\frac{0.3}{c} [\in] \land [q] \psi$, but $\frac{\max\{0.3,0.3\}}{(cc)} = \frac{0.3}{e} [\overline{\in}] \psi$.

 (9) ψ is not an ([q], [q]) -fuzzy interior ideal of S. Since $\frac{0.5}{c} [q] \psi$ and $\frac{0.5}{c} [q] \psi$ but $\frac{\max\{0.5,0.5\}}{(cc)} = \frac{0.5}{e} [\overline{q}] \psi$.

 (10) ψ is not an $([\in], [\in] \lor [q])$ -fuzzy interior ideal of S. Since $\frac{0.5}{c} [q] \psi$ but $\frac{\max\{0.5,0.5\}}{(cc)} = \frac{0.5}{e} (\overline{[\in], [q]}) \psi$.

 (11) ψ is not an $([\in] \lor [q], [\in] \lor [q])$ -fuzzy interior ideal of S. Since $\frac{0.5}{c} [\in] \psi$ and $\frac{0.7}{e} [\in]$ but $\max\{0.5,0.7\}$ $\frac{\max\{0.5,0.7\}}{(ce)} = \frac{0.7}{d} \left(\overline{[\in],[q]} \right) \psi. \quad \Box$

Remark. Every anti fuzzy interior ideal of S is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S. However, the converse is not true, in general.

Example: Consider the LA-semigroup given in Example 4 and define a fuzzy subset $\psi: S \to [0,1]$ by $\psi(a) = 0.1, \psi(c) = 0.2, \psi(d) = 0.4, \psi(e) = 0.6, \psi(b) = 0.6$ 0.8. Clearly ψ is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S. But ψ is not an $([\alpha], [\beta])$ -fuzzy interior ideal of S as shown in Example 4. \square

Theorem 2.Every $([\in], [\in])$ -fuzzy interior ideal of S is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S.

Proof: It is straightforward. \square

Theorem 3.Every $([\in] \lor [q], [\in] \lor [q])$ -fuzzy interior ideal of S is $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S.

Proof: Let ψ be an $([\in] \vee [q], [\in] \vee [q])$ -fuzzy interior ideal of S. Let $x, y \in S$ and $t_1, t_2 \in [0, 1)$ be such that $\frac{t_1}{x}$, $\frac{t_2}{y} \in \psi$. Then $\frac{t_1}{x}$, $\frac{t_2}{y} \in \psi$ which implies that $\frac{\max\{t_1,t_2\}}{xy}$ $[\in] \vee [q] \psi$. Let $x,y,a \in S$ and $t \in [0,1)$ be such that $\frac{t}{a}[\in] \psi$. Then $\frac{t}{a}[\in] \vee [q] \psi$ and we have $\frac{t}{((xq)y)} [\in] \vee [q] \psi$. \square

Theorem 4.Let ψ be a non-zero $([\alpha], [\beta])$ -fuzzy interior ideal of S. Then the set $\psi_1 = \{x \in S | \psi(x) < 1\}$ is an interior ideal of S.

Proof: Let $x, y \in \psi_1$. Then $\psi(x) < 1$ and $\psi(y) < 1$. Let $\psi(xy) = 1$. If $\alpha \in \{[\in], [\in] \lor [g]\},$ $\frac{\psi(x)}{x} [\alpha] \psi, \frac{\psi(y)}{y} [\alpha] \psi. \qquad \text{But}$ $\psi(xy) = 1 > \max\{\psi(x), \psi(y)\} \text{ and}$ $\psi(xy) + \max\{\psi(x), \psi(y)\} > 1. \text{ So } \frac{\max\{\psi(x), \psi(y)\}}{xy} \overline{[\beta]} \psi,$ for every $\beta \in \{[\epsilon], [q], [\epsilon] \lor [q], [\epsilon] \land [q]\}$ which is contradiction. Hence $\psi(xy) < 1$. So $xy \in \psi_1$. Let $a \in \psi_1$ and $x,y \in S$. Then $\psi(a) < 1$. Assume that $\psi((xa)y) = 0$. If $\alpha \in \{[\in], [\in] \lor [q]\}$ then, $\frac{\psi(a)}{a}[\alpha] \psi$ but $\frac{\psi(a)}{((xa)y)} \overline{[\beta]} \psi$ for every $\beta \in \{ [\in], [q], [\in] \lor [q], [\in] \land [q] \}, a$ contradiction. Note that $\frac{1}{a}[q] \psi$ but $\frac{\max\{1,1\}}{((xa)y)} = \frac{1}{((xa)y)} \overline{[\beta]} \psi$ for every $\beta \in \{[\in], [q], [\in] \lor [q], [\in] \land [q]\}, a$ contradiction. Hence $\psi((xa)y) < 1$, that is $(xa)y \in \psi_1$. Consequently ψ_1 is an interior ideal of S. \square

Theorem 5.Let I be an interior ideal and ψ a fuzzy subset of S such that

(1) $(\forall x \in S \setminus I) (\psi(x) = 1)$.

 $(2) (\forall x \in I) (\psi(x) \leq 0.5).$

Then

(a) ψ is a $([q], [\in] \vee [q])$ -fuzzy interior ideal of S.

(b) ψ is an ($[\in]$, $[\in] \vee [q]$)-fuzzy interior ideal of S.

Proof: (a) Let $x, y \in S$ and $t_1, t_2 \in [0, 1)$ be such that $\frac{t_1}{x}[q] \psi$ and $\frac{t_2}{y}[q] \psi$. Then $x, y \in I$ and we have $xy \in I$. If $\max\{t_1, t_2\} \ge 0.5$, then $\psi(xy) \le 0.5 \le \max\{t_1, t_2\}$ and hence $\frac{\max\{t_1,t_2\}}{xy}$ [\in] ψ . If $\max\{t_1,t_2\}$ < 0.5, then $\psi(xy) + \max\{t_1, t_2\} < 0.5 + 0.5 = 1 \text{ and so } \frac{\max\{t_1, t_2\}}{xy} [q] \psi.$ Therefore $\frac{\max\{t_1,t_2\}}{xy}$ $[\in] \lor [q] \psi$. Let $x,y,a \in S$ and $t \in [0,1)$ be such that $\frac{t}{a}[q]\psi$. Then $a \in I$ and we have $(xa)y \in (SI)S \subseteq I$. If $t \ge 0.5$, then $\psi((xa)y) \le 0.5 \le t$ and hence $\frac{t}{((xa)y)} \in \Psi$. If t < 0.5, then $\psi((xa)y) + t < 0.5 + 0.5 = 1$ and so $\frac{t}{((xa)y)}[q]\psi$. Therefore $\frac{t}{((xa)y)} \in [\forall [q] \psi$. Therefore ψ is a $([q], [\in] \vee [q])$ -fuzzy interior ideal of *S*.

(b) Let $x, y \in S$ and $t_1, t_2 \in [0, 1)$ be such that $\frac{t_1}{x} \in [0, 1]$ and $\frac{t_2}{y}$ [\in] ψ . Then $x, y \in I$ and we have $xy \in I$. If $\max\{t_1, t_2\} \ge 0.5$, then $\psi(xy) \le 0.5 \le \max\{t_1, t_2\}$ and hence $\frac{\max\{t_1,t_2\}}{xy}$ $[\in] \psi$. If $\max\{t_1,t_2\} < 0.5$, then $\psi(xy) + \max\{t_1, t_2\} < 0.5 + 0.5 = 1$ and so $\frac{\max\{t_1,t_2\}}{xy}[q]\psi$. Therefore $\frac{\max\{t_1,t_2\}}{xy}[\in]\vee[q]\psi$. Now let $x, y, a \in S$ and $t \in [0,1)$ be such that $\frac{t}{a} \in \Psi$. Then $a \in I$ and we have $((xa)y) \in I$. If $t \ge 0.5$, then $\psi((xa)y) \le 0.5 \le t$ and hence $\frac{t}{((xa)y)}$ $[\in] \psi$. If t < 0.5, then $\psi((xa)y) + t < 0.5 + 0.5 = 1$, and so $\frac{t}{((xa)y)} [q] \psi$. Therefore $\frac{t}{((xa)y)}$ $[\in] \vee [q] \psi$ and so ψ is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S. \square

Example: We see from Example 4 an $([\in], [\in] \vee [q])$ fuzzy interior ideal is not an $([q], [\in] \vee [q])$ -fuzzy interior ideal.

In the following theorem we give a condition for an $([q], [\in] \vee [q])$ -fuzzy interior ideal to be an $([\in], [\in])$ -fuzzy interior ideal of S.

Theorem 6.Let ψ be an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S such that $\psi(x) \ge 0.5$ for all $x \in S$. Then ψ is an $(| \in], | \in])$ -fuzzy interior ideal of S.

Proof: Let $x, y \in S$ and $t_1, t_2 \in [0, 1)$ be such that $\frac{t_1}{x}, \frac{t_2}{y} \in \psi$. Then $\psi(x) \leq t_1$ and $\psi(y) \leq t_2$ and so $\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\} \le \max\{t_1, t_2, 0.5\} =$ $\max\{t_1,t_2\}$ and hence $\frac{\max\{t_1,t_2\}}{xy}$ $[\in]$ ψ . Now, let $x,y,a\in S$ and $t \in [0,1)$ be such that $\frac{t}{a} \in [0,1]$ w. Then $\psi(a) \leq t$ and we have $\psi((xa)y) \leq \psi(a) \leq t$. Consequently, $\frac{t}{((xa)y)}$ [\in] ψ . Therefore ψ is an ([\in],[\in])-fuzzy interior ideal of S. \square

-For any fuzzy subset ψ of an LA-semigroup S and $t \in [0,1)$, we denote $Q(\psi;t) = \{x \in S | \frac{t}{x}[q] \psi\}$, $\begin{array}{lll} [\psi]_t &= \big\{x \in S | \frac{t}{x} [\in] \vee [q] \, \psi \big\}. & \text{Obviously} \\ [\psi]_t &= L(\psi;t) \, \cup \, \mathcal{Q}(\psi;t). & \text{We call} & [\psi]_t & \text{an} \\ ([\in] \vee [q])\text{-level interior ideal of } \psi & \text{and} & \mathcal{Q}(\psi;t) \end{array}$ an [q]-level interior ideal of ψ . We have given a characterization of $([\in], [\in] \vee [q])$ -fuzzy interior ideals by using level subsets (see Proposition 1). Now we another characterization $([\in], [\in] \vee [q])$ -fuzzy interior ideals by using the set

Theorem 7.Le ψ be a fuzzy subset of S. Then ψ is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S if and only if $[\psi]_*$ is an interior ideal of S for all $t \in [0,1)$.

Proof: Let ψ be an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S. Let $x, y \in [\psi]_t$ for $t \in [0, 1)$. Then $\frac{t}{x} \in [\psi] \vee [q] \psi$ and $\frac{t}{y} \in [\psi]_t$ $[\in] \vee [q] \psi$, that is, $\psi(x) \leq t$ or $\psi(x) + t < 1$, and $\psi(y) \leq t$ or $\psi(y) + t < 1$. Since ψ is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of S, we have $\psi(xy) \leq \max{\{\psi(x), \psi(y), 0.5\}}$. We discuss following cases.

Case 1. Let $\psi(x) \le t$ and $\psi(y) \le t$. If $t \le 0.5$ then $\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\} = 0.5$ and we have $\frac{t}{xy}[q]\psi$. If t > 0.5 then $\psi(xy) \le \max\{\psi(x), \psi(y), o.5\} = t$ then and so $\frac{t}{xy} \in \psi$. Hence $\frac{t}{xy} \in \forall [q] \psi$.

Case 2. Let $\psi(x) \le t$ and $\psi(y) + t < 1$. If $t \le 0.5$, $\psi(xy) \leq \max\{\psi(x), \psi(y), 0.5\}$ $\max\{t, 1-t, 0.5\} = 1 - t$ and $\psi(xy) < 1 - t \Longrightarrow \psi(x) + t < 1$ and so $\frac{t}{xy}[q] \psi$. If t > 0.5 $\psi(xy) \leq \max\{\psi(x), \psi(y), 0.5\}$ $\max\{t, 1-t, 0.5\} = 0.5 \le t$, so $\frac{t}{r} \in \psi$. Thus in both cases, we have $\frac{t}{z} \in V \setminus [q] \psi$.

Case 3. Let $\psi(x) + t < 1$ and $\psi(y) \le t$. If $t \ge 0.5$, then $\begin{array}{ll} \psi(xy) & \leq \max\{\psi(x), \psi(y), 0.5\} & \leq \max\{\psi(x), 0.5\} \\ 1-t, \text{ so } \psi(xy)+t < 1 \text{ and hence } \frac{t}{xy}[q]\psi. \text{ If } t < 0.5, \text{ then} \end{array}$ $\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\} \le \max\{1 - t, t, 0.5\} = t,$ and so $\psi(xy) \le t \Rightarrow \frac{t}{xy} [\in] \psi$. Hence $\frac{t}{xy} [\in] \vee [q] \psi$.

Case 4 Let $\psi(x) + t < 1$ and $\psi(y) + t < 1$. If $t \le 0.5$, then $\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\} \le \max\{1-t, 0.5\} =$ 1-t, and so $\psi(xy)+t<1$, hence $\frac{t}{xy}[q]\psi$. If t>0.5 then $\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\} \le \max\{1 - t, 0.5\} = 0.5 \le$ t, hence $\frac{t}{xy}[\in]\psi$. Thus $\frac{t}{xy}[\in]\vee[q]\psi$. Therefore in any case we have $\frac{t}{xy}[\in] \vee [q] \psi$. Hence $xy \in [\psi_t]$.

Now let Let $x, y \in S$ and $t \in [0, 1)$ be such that $a \in [\psi; t]$. Then $\frac{t}{a} \in \mathbb{R} \vee [q] \psi$. Hence $\psi(a) \leq t$ or $\psi(a) + t < 1$ and since ψ is an $([\in], [\in] \vee [q])$ –fuzzy interior ideal of S, we have $\psi((xa)y) \le \psi(a)$. Then we have the following cases:

Case 1 Let $\psi(a) < t$.If $t \le 0.5$. Then $\psi((xa)y) \le \psi(a) = 0.5$ and hence $\frac{t}{a}[q]\psi$. If t > 0.5 Then $\psi((xa)y) \le \psi(a) \le t$ and so $\frac{t}{a} \in \Psi(a)$. Hence $\frac{t}{a} \in \Psi(a) \lor [q] \psi$.

Case 2 Let $\psi(a) \le t$ and $\psi(a) + t < 1$. If $t \le 0.5$, then $\psi((xa)y) \le \psi(a) = 1 - t$, so $\psi((xa)y) + t < 1$ and hence $\frac{t}{((xa)y)}[q]\psi$. If t>0.5. Then $\psi((xa)y)\leq\psi(a)\leq t$ and hence $\frac{t}{((xa)y)}[\in]\psi$. Thus $\frac{t}{((xa)y)}[\in]\vee[q]\psi$. Hence in any case $((xa)y) \in [\psi]_t$. Conversely, let ψ be a fuzzy subset

of and let $x, y, a \in S$ be such $\psi(xy) \ge t \ge \max{\{\psi(x), \psi(y), 0.5\}}$ for some $t \in [0, 0.5)$. Then $x, y \in L(\psi; t) \subseteq [\psi]_t$ it implies that $xy \in [\psi]_t$. Thus $\psi(xy) \le t$ or $\psi(xy) + t < 1$, a contradiction. Hence $\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\}$ for all $x, y \in S$. Now let $\psi((xa)y) \ge \psi(a)$ for some $x, y, a \in S$. Choose t such that $\psi((xa)y) > t \ge \psi(a)$. Then $a \in L \ (\psi;t) \subseteq [\psi]_t$. It follows that $((xa)y) \in [\psi]_t$. This implies that $\psi((xa)y) \le t$ or $\psi((xa)y) + t < 1$ which is a contradiction. Hence $\psi((xa)y) \le \max\{\psi(a), 0.5\}$ for all $x, y, a \in S$. By Proposition 1, it follows that ψ is an $([\in], [\in] \vee [q])$ -fuzzy interior ideal of *S*. \square

 $-L(\psi;t)$ and $[\psi]_t$ are interior ideals of S for all $t \in [0,1)$, but $Q[\psi;t]$ is not an interior ideal of S for all $t \in [0,1)$, in general as we show in the following Example.

Example: Consider the LA-semigroup S as given in Example 4. Define a fuzzy subset $\psi: S \to [0,1]$ by $\psi(a) = 0.1, \psi(c) = 0.2, \psi(d) = 0.4, \psi(e) = 0.6, \psi(b) = 0.6$ 0.8. Then $Q(\psi;t) = \{a,c,d\}$ for all $0.4 \le t \le 0.5$. Since $\frac{0.5}{c} [\in] \psi$ and $\frac{0.7}{e} [\in] \psi$ but $\frac{\max\{0.5,0.7\}}{ce} = \frac{0.7}{d} \overline{[q]} \psi$. \square

Proposition 2.*If* $\{\psi_i\}_{i\in I}$ *is a family of* $([\in], [\in] \lor [q])$ *-fuzzy* interior-ideals of S, then $\cap_{i \in I} \psi_i$ is an $([\in], [\in] \vee [q])$ -fuzzy interior-ideal of S.

Proof: Let $\{\psi_i\}_{i\in I}$ be a family of $([\in], [\in] \vee [q])$ -fuzzy interior-ideals of *S*. Let $x, y \in S$. Then

$$(\bigcap_{i \in I} \psi_i)(xy) = \underset{i \in I}{\iota \in I} \psi_i(xy)$$

$$\leq \underset{i \in I}{\psi_i} \{ \psi_i(x), \psi_i(y) \}$$

$$= (\underset{i \in I}{\psi_i}(x) \wedge \underset{i \in I}{\psi_i}(y))$$

$$= (\bigcap_{i \in I} \psi_i)(x) \wedge \bigcap_{i \in I} \psi_i$$

Let $x, y, a \in S$. Then

$$(\bigcap_{i \in I} \psi_i) ((xa) y) = {}_{i \in I} \psi_i ((xa) y)$$

$$\leq {}_{i \in I} (\psi_i (a))$$

$$= (\bigcap_{i \in I} \psi_i) (a)$$

Thus $\cap_{i \in I} \psi_i$ is an $([\in], [\in] \vee [q])$ fuzzy interior ideal of S.

Definition 8.Let ψ be a fuzzy subset of S. Then ψ is called a strongly anti fuzzy interior ideal of S, if it satisfies the following conditions.

$$(B9) (\forall x, y \in S) (\psi(xy) < \max\{\psi(x), \psi(y)\}).$$

$$(B10) (\forall x, y, a \in S) (\psi((xa)y) < \psi(a)).$$

Lemma 6.Every anti fuzzy interior ideal of S is strongly anti fuzzy interior ideal of S.

Theorem 8.For any fuzzy subset ψ of S. The conditions(B9) and (B10) of Definition 8 are equivalent to the following.

$$\begin{array}{ll} \left(B11\right) & (\forall x,y \in S) \left(\forall t_1,t_2 \in [0,1)\right) \left(\frac{t_1}{x} \left[\in\right] \psi,\frac{t_2}{y} \left[\in\right] \psi \right. \\ & \frac{\max\{t_1,t_2\}}{xy} \left[\in\right] \psi). \end{array}$$

$$\frac{\max\{t_1,t_2\}}{xy} [\in] \psi).$$

$$(B12) \qquad (\forall x,y,a \in S) (\forall t \in [0,1)) (\frac{t}{a} [\in] \psi)$$

$$\frac{t}{((xa)y)} [\in] \psi).$$

Proof: $(B9) \Rightarrow (B11)$ Let ψ be a fuzzy subset of S. Let $x, y \in S$ and $t_1, t_2 \in [0, 1)$ be such that $\frac{t_1}{r} \in [0, 1]$ ψ .

Then $\psi(x) < t_1$ and $\psi(y) < t_2$. Using (B9) we have $\psi(xy) < \max\{\psi(x), \psi(y)\} < \max\{t_1, t_2\}$, and so $\frac{\max\{t_1,t_2\}}{xy}$ \in ψ .

 $(B11) \Rightarrow (B9)$ Let $x, y \in S$. Since $\frac{\psi(x)}{x} [\in] \psi$ and $\frac{\psi(y)}{y} [\in] \psi$. Then by (B9,) we have $\frac{\max\{t_1, t_2\}}{xy} [\in] \psi$ and so $\psi(xy) < \max\{t_1, t_2\}.$

 $(B10) \Rightarrow (B12)$. Let $x, y, a \in S$ and $t \in [0, 1)$ be such that $\frac{t}{a} \in \psi$. Then $\psi(a) < t$. By (B10) we have $\psi((x\ddot{a})y) < \psi(a) < t \text{ and so } \frac{t}{((xa)y)} \in \psi$

 $(B12) \rightarrow (B10)$. Let $x, y \in S$. Since $\frac{\psi(a)}{a} [\in] \psi$, by (B11), we have $\frac{\psi(a)}{((xa)y)}$ [\in] ψ and so $\psi((xa)y) < \psi(a)$.

$5\left(\underline{[\in]},\underline{[\in]}\vee\underline{[q]}\right)$ -Fuzzy Interior Ideals.

In this section we define the notions of $\left(\underline{[\in]},\underline{[\in]}\vee\underline{[q]}\right)$ fuzzy interior ideals of an LA-semigroup and investigate some of their properties in terms of $([\in], [\in] \vee [q])$ -fuzzy interior ideals.

Let ψ be a fuzzy subset of S and $\psi(x) \ge 0.5$ for all $x \in S$. Let $x \in S$ and $t \in [0,1)$ be such that $\frac{t}{x}[\in] \wedge [q]\psi$. Then $\frac{t}{r} \in \psi$ and $\frac{t}{r} = \psi$ and so $\psi(x) < t$ and $\psi(x) + t < 1$. It follows that $1 > \psi(x) + t > \psi(x) + \psi(x) = 2\psi(x)$, and so $\psi(x) < 0.5$, which is a contradiction. This means that $\{x \in S | \frac{t}{x} [\in] \land [q] \psi\} = \emptyset.$

Definition 9. A fuzzy subset ψ of S is called an $([\alpha], [\beta])$ *fuzzy interior ideal of S, where* $\alpha \neq [\in] \land [q]$, *if it satisfy the* following conditions.

$$(B13) \qquad (\forall x, y \in S)$$

$$(\forall t_1, t_2 \in [0, 1)) \left(\frac{t_1}{x} \underline{[\alpha]} \psi, \frac{t_2}{y} \underline{[\alpha]} \psi \to \frac{\max\{t_1, t_2\}}{xy} \underline{[\beta]} \psi\right).$$

$$(B14)$$

$$(\forall x, y, \psi \in S) (\forall t \in [0, 1)) \left(\frac{t}{\psi} \underline{[\alpha]} \psi \to \frac{t}{((xa)y)} \underline{[\beta]} \psi\right).$$

Proposition 3.Let ψ be a fuzzy subset of S. If $\alpha = [\in]$ and $\beta = [\in] \land [q]$ in Definition 9. Then (B13) ,and (B14) , respectively, of Definition 9, are equivalent to the following conditions.

(B15)
$$(\forall x, y \in S) (\psi(xy) \le \max\{\psi(x), \psi(y), 0.5\}).$$

(B16) $(\forall x, y, a \in S) (\psi((xa)y) \le \max\{\psi(a), 0.5\}).$

*Remark.*A fuzzy subset ψ of an LA-semigroup S is an $\left(\underline{[\in]},\underline{[\in]}\vee\underline{[q]}\right)$ -fuzzy interior ideal of S if and only if it satisfies conditions (B15) and (B16) of the above proposition.

Using Proposition 3, we have the following characterization of $([\in], [\in] \vee [q])$ -fuzzy interior ideals of an LA-semigroup *S*.

Lemma 7.Let S be an LA-semigroup and $\emptyset \neq I \subseteq S$. Then I is an interior ideal of S if and only if the characteristic function X_I of I is an $\left([\in], [\in] \vee [q] \right)$ -fuzzy interior ideal of S

References

- [1] L. A. Zadeh, Fuzzy sets, Information and Control 8 (1965), pp 338-353.
- [2] Y. B. Jun, A. Khan, M. Shabir and S. Z. Song, Generalized anti fuzzy bi-ideal in ordered semigroups, Lobachevskii. J. Math. Vol. 31 (2010) no. 1, pp 72-83.
- [3] M. Shabir and Y. Nawaz, Semigroups characterized by the properties of their anti fuzzy ideals, Journal of advance Research in Pure Mathematics, 3, 42-59.
- [4] M. Khan, M. F. Iqbal and M. N. A. Khan, On anti fuzzy ideals in left almost semigroups, Journal of Mathematics Research, Vol. 2, No. 3, 2010 pp 203-210.
- [5] M. A. Kazim and M. Naseerudin, On almost semigroups, Alig.Bull.Math. 2 (1972), pp 1-7.
- [6] S. K. Bhakat and P. Das, "On the definition of a fuzzy subgroup," Fuzzy Sets and Systems, Vol. 51, no. 2, pp. 235– 241, 1992.
- [7] Y. B. Jun and S. Z. Song, Generalized anti fuzzy subalgebras, East Asian. Math. J. 22 (2), 195 (2006).
- [8] Y. B. Jun, A. Khan, and M. Shabir, "Ordered semigroups characterized by their (∈, ∈ ∨q) -fuzzy bi-ideals," Bulletin of the Malaysian Mathematical Sciences Society, Vol. 32, no. 3, pp. 391–408, 2009.
- [9] Y. B. Jun and S. Z. Song, "Generalized fuzzy interior ideals in semigroups," Information Sciences, Vol. 176, no. 20, pp. 3079–3093, 2006.
- [10] A. Khan, Y. B. Jun and T. Mahmood, Generalized Fuzzy Interior Ideals in Abel Grassmann's Groupoids, Int. J. Math. Math. Anal. Vol (2010), pp 1-14.