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This paper presents new definitions which are a natural combination of the defini-
tion for asymptoticall equivalence and ∆−statistical convergence of sequences. Let
θ = (kr) be a lacunary sequence. Then the sequences x and y are said to be
[w]Lθ,∆−asymptotically equivalent of multiple L provided that for every ε > 0

lim
r

1

hr

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (∆xk)

tkm (∆yk)
− L

∣∣∣ ≥ ε

}∣∣∣∣ = 0 .
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1 Introduction

Let l∞ and c be the Banach spaces of bounded and convergent sequences x = (xk)
with the usual norm ‖x‖ = supk |xk|. A sequence x = (xk) ∈ l∞ is said to be almost con-
vergent if all of its Banach limits coincide. Let ĉ denote the space of all almost convergent
sequences. Lorentz [8] proved that

ĉ =
{
x = (xk) ∈ l∞ : lim

k
tkm (x) exists uniformly in m

}
,

where
tkm (x) =

xm + xm+1 + · · ·+ xm+k

k + 1
.

The space of strongly almost convergent sequences was introduced by Maddox [9] as

[ĉ] =
{
x = (xk) ∈ l∞ : lim

k
tkm (|x− le|) exists uniformly in m, for some l

}
,

where e = (1, 1, 1, . . .) .
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The notion of difference sequence space was introduced by Kizmaz [7] as

X (∆) = {x = (xk) : (∆xk) ∈ X}

for X = l∞, c, c0, where ∆xk = xk − xk+1 for all k.

The idea of statistical convergence was introduced by Fast [4] and studied by Fridy [5]
Fridy and Orhan [6], Connor [2], Salat [13], among others. A sequence x = (xk) is said to
be statistically convergent to number L if for every ε > 0

lim
n

1
n
|{k ≤ n : |xk − L| ≥ ε}| = 0,

where the vertical bars indicate the number of elements in the enclosed set. In this case, we
write S − limx = L or xk → L (S) and S denotes the set of all statistically convergent
sequences.

A complex number sequence x = (xk) is said to be ∆−statistically convergent to the
number L [3] if for every ε > 0

lim
n

1
n
|{k ≤ n : |∆xk − L| ≥ ε}| = 0,

in this case, we write S∆ − limx = L or xk → L (S∆) and S∆ denotes the set of all
statistically convergent sequences, where

∆1xk = ∆xk = xk − xk+1, ∆0xk = xk,

for all k ∈ N .
By a lacunary sequence θ = (kr); r = 0, 1, 2, . . . where k0 = 0, we shall mean

an increasing sequence of nonnegative integers with kr − kr−1 → ∞ as r → ∞. The
intervals determined by θ will be denoted by Ir = (kr−1, kr] and hr = kr − kr−1. The
ratio kr/kr−1 will be denoted by qr.

In 1993, Marouf [10] presented definitions for asymptotically equivalent sequences and
asymptotic regular matrices. In 2003, Patterson [11] extended these concepts by presenting
an asymptotically statistical equivalent analog of these definitions and natural regularity
conditions for nonnegative summability matrices. In 2006, Patterson and Savaş [12] ex-
tended these definitions by using lacunary sequences. In 2008 Altundag and Basarir [1]
defined and studied new definitions which are natural combination of the definition for
asymptotically equivalence and [w]θ −statistically convergence.

2 Definitions and Notations

Definition 2.1 ( [10]). Two nonnegative sequences x and y are said to be asymptotically
equivalent if

lim
k

xk

yk
= 1 (denoted by x ∼ y).
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Definition 2.2 ([1]). Two nonnegative sequences x, y are said to be st-[w]L asymptotically
equivalent of multiple L provided that for ε > 0

lim
n

1
n

∣∣∣∣
{

k ≤ n :
∣∣∣ tkm (x)
tkm (y)

− L
∣∣∣ ≥ ε

}∣∣∣∣ = 0, uniformly in m (denoted by x
st−[w]L∼ y)

and simply st-[w] asymptotically equivalent, if L = 1.

Definition 2.3 ([1]). Let θ = (kr) be a lacunary sequence, the two nonnegative sequences
x and y are said to be st-[w]Lθ asymptotically equivalent of multiple L provided that for
every ε > 0

lim
r

1
hr

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (x)
tkm (y)

− L
∣∣∣ ≥ ε

}∣∣∣∣ = 0, uniformly in m (denoted by x
st−[w]Lθ∼ y)

and simply st-[w]θasymptotically equivalent, if L = 1.

Definition 2.4 ([1]). Let θ = (kr) be a lacunary sequence, the two nonnegative sequences
x and y are said to be [w]Lθ -asymptotically equivalent of multiple L provided that

lim
r

1
hr

∑

k∈Ir

∣∣∣ tkm (x)
tkm (y)

− L
∣∣∣ = 0 (denoted by x

[w]Lθ∼ y)

and simply [w]θ − asymptotically equivalent, if L = 1.

Following the above definitions, we shall now introduce some new ones.
Let (∆xk) and (∆yk) be first order difference sequences of x and y, respectively.

Definition 2.5. The sequences x and y are said to be w∆−asymptotically equivalent if

lim
k

tkm (∆xk)
tkm (∆yk)

= 1 uniformly in m (denoted by x
w∆∼ y).

Example 2.1. Let

x = (xk) = (−1,−2,−3, . . .) and y = (yk) = (1, 0,−1, 2, 1, 0,−1, 2, 1, 0,−1, 2, . . .) .

Then ∆xk = ∆yk = 1 for all k, so

lim
k

tkm (∆xk)
tkm (∆yk)

= 1

uniformly in m, i.e., x
w∆∼ y.

Definition 2.6. The sequences x and y are said to be st− [w]L∆−asymptotically equivalent
of multiple L provided that for every ε > 0

lim
n

1
n

∣∣∣∣
{

k ≤ n :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣ = 0 uniformly in m (denoted by x
st−[w]L∆∼ y)

and simply [w]∆−asymptotically statistical equivalent, if L = 1.
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Definition 2.7. Let θ = (kr) be a lacunary sequence. Then the sequences x and y are said
to be st− [w]Lθ,∆−asymptotically equivalent of multiple L provided that for every ε > 0

lim
r

1
hr

∣∣∣∣
{

k∈Ir :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣≥ε

}∣∣∣∣ = 0 uniformly in m (denoted by x
st−[w]Lθ,∆∼ y)

and simply st-[w]θ,∆−asymptotically equivalent, if L = 1.

Definition 2.8. Let θ = (kr) be a lacunary sequence. Then the sequences x and y are said
to be are −asymptotically equivalent to multiple L provided that

lim
r

1
hr

∑

k∈Ir

∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ = 0 uniformly in m (denoted by x

[w]Lθ,∆∼ y)

and simply [w]θ,∆−asymptotically equivalent, if L = 1.

3 Main Results

Theorem 3.1. Let θ = (kr) be a lacunary sequence, then

(a) If x
[w]Lθ,∆∼ y then x

st−[w]Lθ,∆∼ y ,

(b) If x, y ∈ l∞ (∆) and x
st−[w]Lθ,∆∼ y then x

[w]Lθ,∆∼ y ,

(c) [w]Lθ,∆ ∩ l∞ (∆) = st− [w]Lθ,∆ ∩ l∞ (∆),

where l∞ (∆) = {x = (xk) : (∆xk) ∈ l∞} .

Proof. (a). If ε > 0 and x
[w]Lθ,∆∼ y, then

∑

k∈Ir

∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥

∑

k∈Ir∣∣∣∣
∆mxk
∆myk

−L

∣∣∣∣≥ε

∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣

≥ ε

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣ .

Therefore x
st−[w]Lθ,∆∼ y .

(b). Suppose that x, y ∈ l∞ (∆) and x
st−[w]Lθ,∆∼ y . Then we can assume that

∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≤ M for all k and m.

Given ε > 0

1
hr

∑

k∈Ir

∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ =

1
hr

∑

k∈Ir∣∣∣ tkm(∆xk)
tkm(∆yk)

−L

∣∣∣≥ε

∣∣∣∣
tkm (∆xk)
tkm (∆yk)

− L

∣∣∣∣
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+
1
hr

∑

k∈Ir∣∣∣∣∣
tkm(∆xk)
tkm(∆yk)

−L

∣∣∣∣∣<ε

∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣

≤ M

hr

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣ + ε.

Therefore x
[w]Lθ,∆∼ y .

(c). This immediately follows from (a) and (b).

Theorem 3.2. Let θ = (kr) be a lacunary sequence with lim inf qr > 1, then

x
st−[w]L∆∼ y implies x

st−[w]Lθ,∆∼ y .

Proof. Suppose that lim inf qr > 1, then there exists a δ > 0 such that qr ≥ 1 + δ for
sufficiently large r, which implies

hr

kr
≥ δ

1 + δ
.

If x
st−[w]L∆∼ y, then for every ε>0 and for sufficiently large r, we have

1
kr

∣∣∣∣
{

k ≤ kr :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣ ≥
1
kr

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

≥ δ

1 + δ

1
hr

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣ ,

which completes the proof.

Theorem 3.3. Let θ = (kr) be a lacunary sequence with lim sup qr < ∞,

x
st−[w]Lθ,∆∼ y implies x

st−[w]L∆∼ y .

Proof. Suppose that lim sup qr < ∞, then there exists B > 0 such that qr < B for all

r ≥ 1. Let x
st−[w]Lθ,∆∼ y and ε > 0. There exists R > 0 such that for every j ≥ R

Aj =
1
hj

∣∣∣∣
{

k ∈ Ij :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣ < ε.

We can also find K > 0 such that Aj < K for all j = 1, 2, . . . . Now let n be any integer
with kr−1 < n < kr, where r > R. Then

1
n

∣∣∣∣
{

k ≤ n :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣ ≤
1

kr−1

∣∣∣∣
{

k ≤ kr :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

=
1

kr−1

∣∣∣∣
{

k ∈ I1 :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣
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+
1

kr−1

∣∣∣∣
{

k ∈ I2 :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

+ · · ·+ 1
kr−1

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

=
k1

kr−1k1

∣∣∣∣
{

k ∈ I1 :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

+
k2 − k1

kr−1 (k2 − k1)

∣∣∣∣
{

k ∈ I2 :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

+ · · ·+ kR − kR−1

kr−1 (kR − kR−1)

∣∣∣∣
{

k ∈ IR :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

+ · · ·+ kr − kr−1

kr−1 (kr − kr−1)

∣∣∣∣
{

k ∈ Ir :
∣∣∣ tkm (∆xk)
tkm (∆yk)

− L
∣∣∣ ≥ ε

}∣∣∣∣

=
k1

kr−1k1
A1 +

k2 − k1

kr−1 (k2 − k1)
A2

+ · · ·+ kR − kR−1

kr−1 (kR − kR−1)
AR + · · ·+ kr − kr−1

kr−1 (kr − kr−1)
Ar

≤
(

sup
j≥1

Aj

)
kR

kr−1
+

(
sup
j≥R

Aj

)
kr − kR

kr−1

≤ K
kR

kr−1
+ εB.

This completes the proof.

Theorem 3.4. Let θ be a lacunary sequence with 1 < lim inf qr ≤ lim sup qr < ∞, then

x
st−[w]Lθ,∆∼ y ⇔ x

st−[w]L∆∼ y .

Proof. This immediately follows from Theorem 3.2 and Theorem 3.3.
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