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Abstract: In this article a capacitated transportation problem iss@ered which is formulated as a multi objective capaditate
transportation problem with mixed constraints. To deteenthe optimum compromise solution of multi objective caiaded
transportation problem (MOCTP) with mixed constraints a#yumulti objective programming approach has been apptiaghich
we use three different forms of membership functions vizedr, exponential and hyperbolic. A numerical illustratioas been
provided to illustrate the solution procedure.
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1 Introduction

The Transportation problem (TP) deals with a situation ifcivia single product is to be transported from several seurce
(also called origin, supply or capacity centers) to sevairdds (also called destination, demand or requiremenecgnt
Hitchcock (1941) developed the basic transportation gmblit has been seen that much effort has been concentrated
on transportation problems (TP) with equality constragutsh as fuzzy programming approach with linear membership
function was applied by Bit et al. (1992) to solve multi olijee transportation problem, Verma et al. (1997) and Li
et al. (2000) presented fuzzy approach to the MOTP, Gupth €@L3) apply GP approach in transportation problem
with equality constraints etc. In real life, however, mosbliems have mixed constraints. A literature search redeal
no systematic method for finding an optimal solution for sortation problems with mixed constraints. Recently some
authors discuss TPs with mixed constraints such as Adlatkdla @006), Mondal and Hossain (2012) etc.

Tanaka et al. (1974) proposed the concept of fuzzy matheat@tiogramming not only on a general level but also on a
more practical level. a relatively practical introductimifuzzy set theory (Zadeh 1965) into conventional multieattive
linear programming problems was first presented by Zimmam{&a978) and further studied by Leberling (1981) and
Hannan (1981). Following the fuzzy decision or the minimypmemator proposed by Bellman and Zadeh (1970) together
with linear, hyperbolic, or piecewise linear membershipdiions respectively, they proved that there exist eqaival
linear programming problems.

In this article, a capacitated transportation problem leesnlronsidered and formulated as multi objective capaditat
transportation problem with mixed constraints in sectior8&ction 3 describes solution procedure to solve MOCTP
i.e. Fuzzy multi objective programming method with threBedent membership functions viz. linear, exponential and
hyperbolic. In section 4 a numerical illustration is preseifor demonstrating the computational procedure of thinate
and section 5 conclude and summarize the work.

2 Formulation of the problem

Let us considem sources (origins; (i = 1,2,...,m) andn destinationd; (j = 1,2,...,n). At each sourc®; (i =
1,2,...,m), leta be the amount of product to be shipped to tidestinationd; in order to satisfy the demariy (j =
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1,2,...,n) there. Then the mathematical model for the multi objectigpacitated transportation problem with mixed
constraints is as follows:

Min ZX =35, 5% ckxj, k=1,2,...,K

SUbJeCttOZT=lX|J{§/:/Z}alal :1727"'7m
@)
Shaxi{</=/=}bjj=12,...,n

0<xj <rjj

where
cikj denotes the transportation costs, delivery time and dactzarges (loss of quality and quantity of transported items)

xij be the variable that represents the unknown quantity tatesp fromit origin to j destination.

rij be the maximum amount of quantity transported friffnsource tojt™" destination i.ex;; < rj; or the capacitated
restriction on the routetoj.

3 Solution Procedure

3.1 Fuzzy multi objective programming method

For a multi objective programming, Zimmermann (1978) ertefuzzy programming by introducing fuzzy goals for
all the objective functions. Let us assume that the DM haszayfgoal for each of the objective functions, then the
corresponding membership functions are defined as

3.1.1 Linear membership function

For each objective function a linear membership funcﬁbﬂzk) is defined as:

1 ifzk<zf
zk—7% .
p-{Z%y = - ifZk < Zk < Z¢
0 ifzk>ZzK
whereZlk andZK are respectively the lower and upper tolerance limits ofabiective functions such that the degrees of

the membership function are 0 and 1, respectively, and i¢Bated in Fig. 1. These tolerance limits are obtained from
the following payoff matrix:

71 72 Zk
X Z4)) 224 - 2}
2 2 2 2
Payo f fMatrix= Xi(j> Zl(xi(j)) ZZOQ'(J')) Zk(xi(j)) i=12..mj=12....n

3 o : ; : : )
Xi<j> Zl(xi(j)) ZZ(Xi(j>) Zk(xi(j))
Wherexg‘j;k =1,2,...,K is the individual optimum solution of the" objective function. The maximum value of each

column gives the upper tolerance limit and the minimum vafi@ach column gives lower tolerance limit for the
objective functions respectively.
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Fig. 1: Linear membership function for k-th fuzzy goal

The multi objective capacitated transportation problerthwiixed constraints given in eq. (1) can be written as an
equivalent linear model as follows:

Minimize A

. Zkizk
Subject tozglek >A

ZT:lXij{S/:/Z}aj,i =12....m @
St Xi{</=/>}bj,j=12,...,n

A>0

0<x;j <rjj

3.1.2 Exponential membership function

For each objective function an exponential membershiptfun(ykE (Z¥) is defined as:

1 ifzk < zK
—a(Z-2
expl —p—g— | —exp—a) )
ue{zy = ( Zf_i'qu) ifzf <z} <7z
0 ifzk>2ZK and a — o

wherea is a non-zero parameter, prescribed by the decision maIdaZI‘anZl'j have the usual meaning as described in
section 3.1.1. This is graphically depicted in Fig 2. Nowtidti objective capacitated transportation problem wiiked
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Fig. 2: Exponential membership function for k-th fuzzy goal

constraints given in eq. (1) can be written as an equivalentinear model as follows:

Minimize A
e ) e
Subject to T exa) > A
Siixij{</=/>}bj,j=12,...,n
A>0
0 < xjj <1jj

3.1.3 Hyperbolic membership function

For each objective function a hyperbolic membership fmmnp'kH (Z¥) is defined as:

1 ifzk < zK
kK 7k
Uiz = %tanh((@ —Z"> ak) +1ifzk < zk <z
0 ifzk > zK

whereay = (zh—fzﬁ andzf, ZK have the usual meaning as described in section 3.1.1.

This membership function has the following formal propestjiven by Zimmermann, 1985 which is graphically depicted

in Fig 3:

(Z¥) is strictly monotonously decreasing function with respgedk.

(24 =3 e Z¢=1(Zk+Z0.

(Z¥) is strictly convex forzk > 1 (zk + ZF) and strictly concave faZ* < 3(zX+zf).

(Z¥) satisfies 0< puf! (Z¥) < 1 for Z¢ < pt (Z¥) < ZK and approaches asymptoticallff (Z) = 0 andu{! (Z) = 1
o0 and—oo respectively.
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Fig. 3: Hyperbolic membership function for k-th fuzzy goal
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Now the multi objective capacitated transportation problgith mixed constraints given in eq. (1) can be written as an

equivalent non linear model as follows:

Minimize A

k k
Subjectto%tanh((@ _zk) Gk) +1sa

4 Numerical lllustration

ST x{</=/>}ai=12,..,m
S {</ =/ >} =12,
A>0

0<xj <rjj

(4)

To demonstrate the suggested approach, we consider towifodl example. Here, we consider three origins and three
destinations. The TP cost, time and the damage chargesdbality and quantity damage) during the transportation are
represented by the following matrices given below:

Table 1: Cost Matrix

by b, bs Supply

ap
aQ
az

3 4 13 <12
12 14 7 =15
15 10 8 > 20

Demand| >9 =13 <21
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Table 2: Time Matrix

b1 b, bs Supply
ai 9 1 3 <12
a 2 4 6 =15
asz 8 12 10 > 20
Demand| >9 =13 <21

Table 3: Damage charge Matrix

by b, bs Supply
a1 8 9 11 <12
ap 3 4 7 =15
as 2 1 8 > 20
Demand| >9 =13 <21

Using the data given in table 1,2 and 3, the multi objectiyeaci#ated transportation problem with mixed constraints
can be given as:
Min Z; = (3X11—|— Ax19+ 13)(13) + (12(214— 14x50 + 7X23) + (15X31—|— 10x32+ 8X33)
Min Zp = (X114 X12+ 3X13) + (2X21+ 4X22 + 6X23) + (8X31+ 12%32+ 10x33)
Min Zz = (8X11+ 12+ 11X13) + (3X21+ 4Xo2 + 7X23) + (2X31+ X32+ 6X33)
Subject to
3 _ .3 1. <3 .
ZJ'=1X]_J S 12, 21':1)(2] - 15, ZJ'=1X3] Z 20

SPaXie> 95 3 gx =13; 37 1%y <21

The capacitated constraints are given below:
0<x11<6,0<x12<7,0<x3<13,0<%1<6,0<%0<2,0<%3<130< X33 <4,
0<x32<7,0<x33< 14.

Individual optimum solutions are obtained by solving theowb problem separately for each objective using the
optimizing software LINGO as follows:

Table 4: Individual optimum solution

Allocations
Objectives Objective valuesxi1  Xi2 X13 Xp1 X2  Xo3 X31  X32 X33
Cost 345 3 5 0 6 1 8 0 7 13
Time 269 0 7 0 6 2 7 4 4 12
Damage Charges 180 0 4 0 6 2 7 4 7 9
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4.1 Compromise solution by Fuzzy multi objective programgmiethod

To formulate the problem (2), (3) and (4), upper and loweerahce limits are required which we obtained from the
following payoff matrix as:
zt 72 73

X! 345310 23

Payof fMatrix= Xi(jZ) 373 269 22

X’ 367 272 18

Z} =3737' = 34572 =31027% = 269,23 = 232 and Z =180
Now if we are using linear membership function, an equiviedeisp problem (2) can be formulated as:

Minimize A

Subject to

(373~ ((3xaa+4xiz+ 13x3) + (1261 + 1oz + Txg) + (15311 10xa2+ 8xa3))) > 284
(320~ (a1 +X12+ 3X13) + (2xp1 + AXo2+ Bx23) + (BXa1 + 1262+ 10x33))) = 414
(232— ((8x11+ 9x12+ 11x13) + (3X21 + 4Xa2+ 7X23) + (2314 Xa2+ 6%33))) = 52A
Sio1xj <125 57 0% = 15; 57 1% 2 20

SLix1> 9 3 =13; 3axs <21

0<x1<6,0<%2<7,0<x3<130<%1<6,0<%2<2,0<x%3<13

0<X31<4,0<x32<7,0<x33<14
By optimizing software LINGO, the optimum compromise a#tion is obtained as:
Xi1=0,X15=6,X13=0,X51 = 5,X55, = 0,X55 = 10,X3; = 4,X5, = 7, X33 =9
If we are using exponential membership function with par@me = 1, an equivalent crisp problem (3) can be formulated
e Minimize A
Subjectto

e (Z1-345_o-1

1-el >A

e (25269 o1
1-e 1 - A

e (Z3-180 _g-1

1-e1 > A

S5 1x1j <125 55 1%j =15; 351 xaj > 20
SEix1>9 TR =13; 32 x3 <21

0<x11<6,0<%2<7,0<x3<13,0<X%71<6,0<X%,<2,0<%3<13,

0<x31<4,0<x32<7,0<x33<14
By optimizing software LINGO, the optimum compromise a#tion is obtained as:

* * * * * * * * *
X11=0,X12=4,X13 = 1, X571 = 5, X35 = 2,X3 = 8,X31 = 4,X3p = 7, X33 = 9
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Fig. 4: Graphical representation of results

If we are using hyperbolic membership function, an equiviateisp problem (4) can be formulated as:
Minimize A
Subject to
tanh((359— ((3xa1+ 4x12+ 13x13) + (12%1 + 14X+ 7X3) + (15%a1 + 10xa2+ 8%33)))0.2143 + 5 > A
$tanh((2895 — ((9x11+ X124+ 3X13) + (2Xo1+ 4Xp2 + 6X23) + (8Xa1+ 12%3p+ 10x33)))0.1463 + 5 > A
1tanh((206— ((8x11+ 9xa2+ 11x13) + (3X1 + 4Xo2 + 7X23) + (2Xa1+ X2+ 6X33)))0.1154) + 2 > A
$5axj <12 55 1% = 15; 55 x5 > 20
SEax1>9; 32 % =13; 32 1 xz <21

0<x1<6,0<x2<7,0<x3<130<X%3<6,0<%2<2,0<%3<13,

0§X31§4»O§X32§7»0§)%3§ 14
By optimizing software LINGO, the optimum compromise a#tion is obtained as:

Xi1=0,X1,=4,X13=0,X51 = 5,X50 = 2,X553 = 8,X31 = 4,X30, = 7, X33 =9

Table 5: Compromise optimum solution
Objective values

Methods Cost Time Damage charges
Linear membership function 356 282 208
Exponential membership function 375 279 195
Hyperbolic membership function 362 276 184
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5 Conclusion and Summary

Present article presents a solution procedure i.e Fuzzyi mijective programming with three different forms of
membership functions viz. linear, exponential and hypkchio determine the optimum compromise solution of the
MOCTP with mixed constraints. The solutions obtained hansemmarized in table 5 and graphically shown in Fig 4.
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